### Describing the Structure of New Physics on "The Day After"

Natalia Toro

with J. Alwall, P. Schuster

## **Reminder: Simplified Models**

- Small number (4) of topological models tailored to "SUSY-like" excesses in X+MET searches
  - Cover a broad range of phenomenology
  - Baseline from which to build evidence for complex new-physics structure from data

don't need to study one simplified model per idea/theorist

## Physics Assumptions

- Working with validated, stable, large excesses
- Signals in multiple channels
- Not Z' (easy)

#### These are <u>reasonable</u>:

- SUSY predicts many channels
- Naturalness suggests low masses, big xsec's

## Case Study:

## A SUSY Model with Complicated Decay Chains, at 500 pb<sup>-1</sup>

- What kinds of physics we can learn from different distributions
- Why we need more than distributions (and why simplified models help)
- Deduction
- Implications of Limited Model-Resolution

### **Discovery!** (Our starting point)



 $E_T^{\text{miss}} > 80 \text{ GeV}$  $N_{jet} \geq 2$  $H_T > 350 \text{ GeV}$ (combination of ee,  $e\mu$ ,  $\mu\mu$  searches)

(In each case, Lepton=e or  $\mu$  with pT>10 GeV, plus isolation etc.)

#### $1100\pm100$ events

 $420\pm50$  events

+ distributions in each case.

Relative rates of 2-lepton, 1-lepton events are important, but we don't know yet!

- count 21 events with tighter cuts (lose statistics!)
- divide by efficiencies of decay chain for some model (which one?)

## Models that populate these final states?

• Have SUSY-like topologies in mind



# Models that populate these final states?

• Have SUSY-like topologies in mind



not ready to measure spins & <u>for now</u> don't care whether SUSY or other partners w/ same decays (little higgs, UEP, ...)

# Models that populate these final states?

• Have SUSY-like topologies in mind



not ready to measure spins & <u>for now</u> don't care whether SUSY or other partners w/ same decays (little higgs, UEP, ...)

• Leptons imply cascade decays:



-How do we distinguish? -What are masses? -Are one or multiple modes present?

+ perhaps longer cascades ... or top quarks?

## Distributions

#### • $\geq$ 3 Jet, I Lepton+MET



MET, jet p<sub>T</sub>'s, ... jet multiplicity

•  $\geq$  2 Jet, 2 Lepton + MET

Same kinematic plots, dilepton mass, ...



## Branching Ratios



5 params and 3 independent counts in 2-lepton data (under-constrained)

Additional constraint from 0-, 1- or 3-lepton data

AMBIGUITY: W goes to 1 lepton (30%) or 0 leptons (70%).

Hard to distinguish W's from combination of direct and one-lepton cascade

## Branching Ratios (Best Fits)

Parameters that fit counts, HT,  $p_T$ (lepton):

| F                                                                    | 1                                       | i            |          | 1                                                                | с <b>ои</b> ло | hrand  | hina   |
|----------------------------------------------------------------------|-----------------------------------------|--------------|----------|------------------------------------------------------------------|----------------|--------|--------|
| Lep(G) / $B_{\ell\nu} = 0$                                           | 700-440100                              | 11.5         | 0.0636   | _                                                                | 0.0            | 0.8710 | 0.0654 |
| $Lep(G) / B_W = 0$                                                   | 650-440100                              | 13.6         | 0.0507   | 0.2928/-                                                         | 0.5840         | _      | 0.0725 |
| $\mathrm{Lep}(\mathbf{Q}) \ / \ \frac{B_{\ell\nu}}{B_{\ell\nu}} = 0$ | <u>650-</u> 440100                      | 12.8         | 0.0485   | _                                                                | 0.0            | 0.9244 | 0.0270 |
| $Lep(Q) / B_W = 0$                                                   | 500-440100                              | 46.1         | 0.0151   | 0.4155/-                                                         | 0.5274         | _      | 0.0420 |
| Model / Limit                                                        | $M_{Q/G}$ - $M_I$ - $M_L^*$ - $M_{LSP}$ | $\sigma(pb)$ | $B_{ll}$ | $B_{\nu l+l\nu} \left( \frac{B_{\nu l}}{B_{\nu l+l\nu}} \right)$ | $B_{LSP}$      | $B_W$  | $B_Z$  |

| ambiguity -<br>affects conclusions! | big syst. effect on | some pranching<br>ratios more stable |  |
|-------------------------------------|---------------------|--------------------------------------|--|
|                                     | masses, xsec        | than others                          |  |

Theorist on the outside **can** estimate these from 1,2-lepton data... **but** given large systematics, we're likely to make mistakes combining channels reliably

### What the best fits look like

#### Counts, jet kinematics reproduced well!





(also jet p<sub>T</sub> plots, MET...)

#### What the best fits look like (I-lepton plots) (2-lepton plots) # Evts/Bin 1000 E vts/Bin pseudoData 50 E pseudoData Lep(G) B\_Inu=0 Lep(G) B\_Inu=0 Lep(Q) B\_Inu=0 Lep(Q) B\_Inu=0 40 250 E 30 200E 20 150 100Ē 10 50 <del>|</del> 2 1.5 1.5 ⊨

0.5

Lepton p<sub>T</sub>

500

400

Cannot reproduce the data with these models (or with tops). Robustly demonstrating this is hard, but provides STRONG EVIDENCE for more complex source of soft, flavor-uncorrelated leptons.

300

0.5 0

100

200





200

100

250

350

300

OSSF (e<sup>+</sup>e<sup>-</sup>) invariant mass

400

450

(Lone theorist with PGS can NEVER draw this conclusion with confidence)

## Interim Conclusions and Questions

- Data consistent with squark and/or gluino production
- Need two-stage cascades to explain data
- Large rate of single-lepton cascade (+ precise numbers)
- I play around in PGS to try to reproduce the 2-lepton counts...<u>on-shell slepton</u> and charginos.



See if this can be confirmed from kinematics - dilepton invariant mass should have an EDGE (this is sub-dominant source of 2-lepton events, edge didn't jump out but this motivates looking harder)

I can find SUSY models with both hierarchies, see if **any** of them are consistent with larger set of distributions in data...

## More conclusions from b-jet studies

- Gluon-partner production models work better, but need ~60% branching fraction to heavy flavor. Not flavor-universal! (there may also be Q production)
- Lepton-rich events have fewer b-jets (opposite of top) and this is not just a selection bias



## More conclusions from b-jet studies

- Gluon-partner production models work better, but need ~60% branching fraction to heavy flavor. Not flavor-universal! (there may also be Q production)
- Lepton-rich events have fewer b-jets (opposite of top) and this is not just a selection bias



#### Three very different SUSY models:



Different combinations of on/off-shell decays, Bino much heavier/slightly lighter than Higgsino

Might find one by parameter scan, another by good fortune/persistent theorist. But clear **description of data** helps to bring them all to light.

Finding multiple models not a weakness of our structure, but **real ambiguity** with "basic" distributions and low stats.



Fortunately, once we have reduced the problem to "Point A vs. Point B," many more sophisticated measurement techniques apply (cf most of today's talks)  Pre-existing parameter space designed for jets+X+MET analyses (Simplified Models) allows thorough, **unbiased** exploration

• **Build evidence for particles** needed to explain structure of distributions

 Theorists can help find reasonable models, but we can't do it on our own with distributions