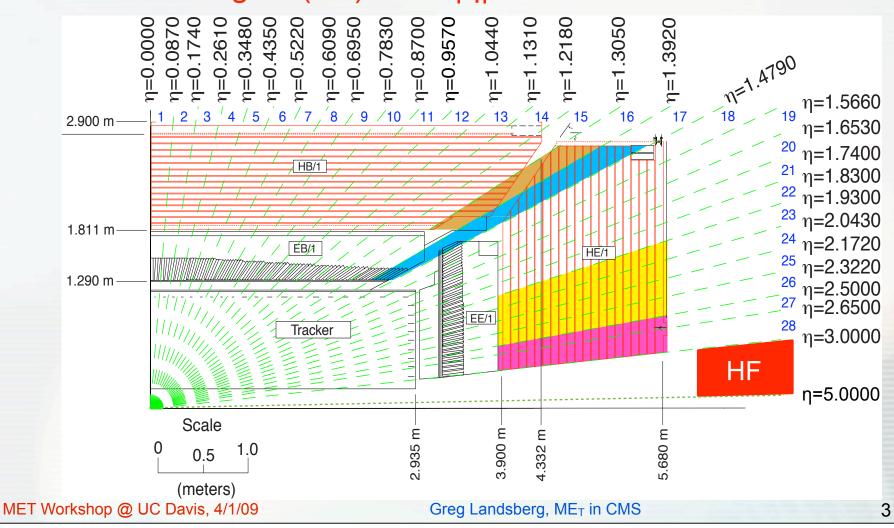


Greg Landsberg


Missing Energy Signals at LHC
HEFTI Workshop, UC Davis
April 1, 2009

Collider Detector Concept


Nearly 4π, hermetic, redundant, Russian-doll design

CMS Hermeticity

- CMS calorimeter coverage:
 - Central region: $|\eta| < 3.0$
 - Forward region (HF): $3.0 < |\eta| < 5.0$

Monojets: Tainted History

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY

ACCOMPANIED BY A JET OR A PHOTON(S) IN pp COLLISIONS

AT /s = 540 GeV

[PL, **139B**, 115 (1984)]

UAl Collaboration, CERN, Geneva, Switzerland

Abstract

we report the observation of five events in which a missing transverse energy larger than 40 GeV is associated with a narrow hadronic jet and of two similar events with a neutral electromagnetic cluster (either one or more closely spaced photons). We cannot find an explanation for such events in terms of backgrounds or within the expectations of the Standard Model.

Monojets: Tainted History

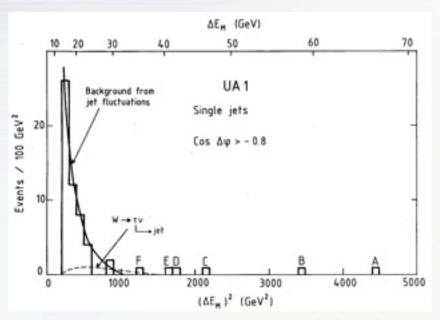
EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY

ACCOMPANIED BY A JET OR A PHOTON(S) IN PP COLLISIONS

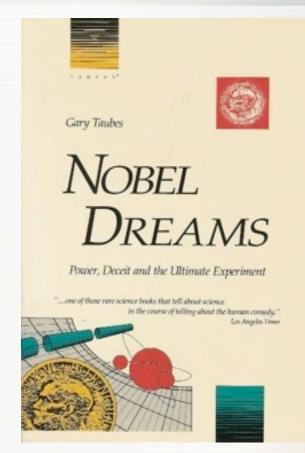
AT /s = 540 GeV

[PL, **139B**, 115 (1984)]

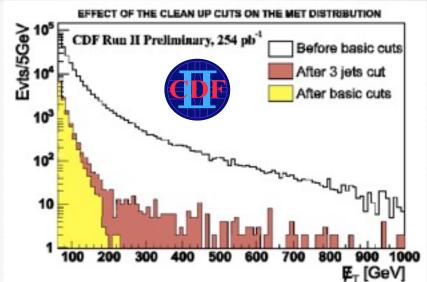
UAl Collaboration, CERN, Geneva, Switzerland

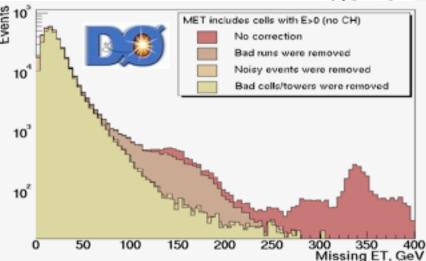

Abstract

we report the observation of five events in which a missing transverse energy larger than 40 GeV is associated with a narrow hadronic jet and of two similar events with a neutral electromagnetic cluster (either one or more closely spaced photons). We cannot find an explanation for such events in terms of backgrounds or within the expectations of the Standard Model.



Monojets: Tainted History

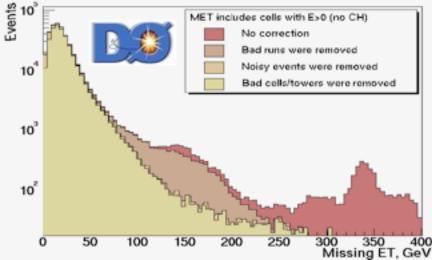

- These monojets turned out to be due to unaccounted background
- •The signature was deemed doomed and nearly forgotten
- •It took many years for successful monojet analyses at a hadron collider to be completed (CDF/DØ)



Why ME_T is Tough?

- Fake ME_T appears naturally in multijet events, which have enormous rate at the LHC
- Jets tend to fluctuate wildly:
 - Large shower fluctuation
 - Fluctuations in the e/h energy ratio
 - Non-linear calorimeter response
 - Non-compensation (i.e., e/h ≠ 1)
- Instrumental effects:
 - Dead or "hot" calorimeter cells
 - Cosmic ray bremsstrahlung
 - Poorly instrumented area of the detector
- Consequently, it will be a challenge to use in early LHC running
- Nevertheless, ME_T is one of the most prominent signatures for new physics and thus must be pursued

 Raw ME_T spectrum at the Tevatron and that after thorough clean-up


Why ME_T is Tough?

 Fake ME_T appears naturally in multijet events, which have enormous rate at the LHC

 Nevertheless, ME_T is one of the most prominent signatures for new physics and thus must be pursued

 Raw ME_T spectrum at the Tevatron and that after thorough clean-up

ME_T Reconstruction and Performance

Missing E_T is based on the calorimeter information and defined as a 2D-vector sum of transverse energy deposits in the calorimeter cells:

$$\vec{E}_T = -\sum_n (E_n \sin \theta_n \cos \phi_n \hat{\mathbf{i}} + E_n \sin \theta_n \sin \phi_n \hat{\mathbf{j}}) = -\vec{E}_x \hat{\mathbf{i}} - \vec{E}_y \hat{\mathbf{j}}$$

In case of muons in the event, it receives an additional correction:

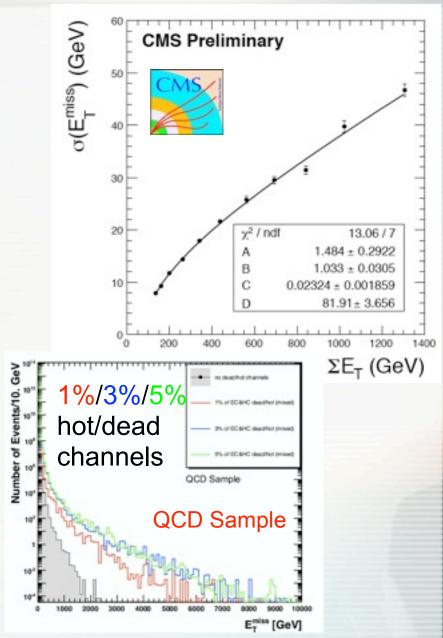
$$ec{E}_T = -\sum_{i=1}^{ ext{towers}} ec{E}_T^{\,i} - \sum_{ ext{}}^{ ext{muons}} ec{p}_T^{\,\mu} + \sum_{i=1}^{ ext{towers}} ec{E}_T^{\,i}.$$

ME_T resolution in QCD events depends on total transverse energy deposit in the calorimeter and is often parameterized as a function of scalar E_T sum over the calorimeter cells, or S_T:

$$\sigma(E_T) = A \oplus B \sqrt{\Sigma E_T - D} \oplus C (\Sigma E_T - D)$$

Noise Stochastic

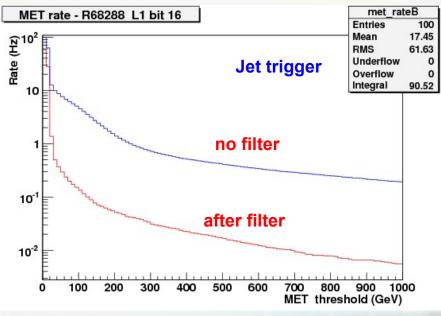
Constant


Offset

ME_T in CMS

Parameters:

- A = 1.48 GeV
- B = $1.03 \text{ GeV}^{1/2}$
- C = 0.023 (dominates at large S_T)
- D = 82 GeV
- Apart from the resolution an important characteristic is the non-Gaussian tails
- Very hard to simulate; will have to wait for real data to see how large the effect is
 - A few special cases have been looked at already, e.g. the effect of hot/dead channels

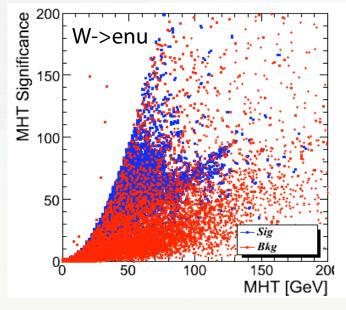


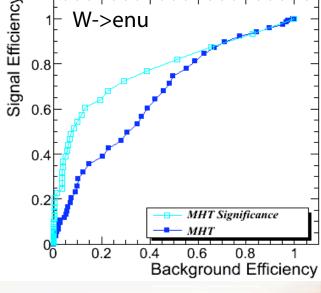
ME_T in Cosmic Ray Data

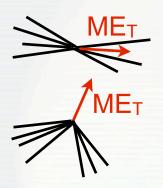
- Started commissioning of ME_T with cosmics data
- Focus on identifying calorimeter noise and developing filters to suppress it
- Not the final configuration of the detector; as a result of these tests the noisiest readout modules have been replaced
- Nevertheless the noise is under control for the trigger purposes and can be further reduced offline

MET VS. MHT

- ME_T is prone to instrumental effects
 - Hot/Dead calorimeter cells
 - Muon halo
- On the other hand, true ME_T is dominated by clustered energy (jets, EM clusters)
 - Unclustered energy is typically uniformly distributed
 - Consequently, the effect on ME_T goes as $sqrt(\Sigma E_T)$ ("random walk") equivalent to a slight increase in the stochastic term
- Most of instrumental effects won't be reconstructed as clustered energy (passing basic quality cuts)
- Thus, an alternative to ME_T is MH_T = -ΣE^(j)_T
 - Note that EM objects of sufficient energy are also reconstructed as jets
- CMS now uses MH_T at both trigger levels and offline!



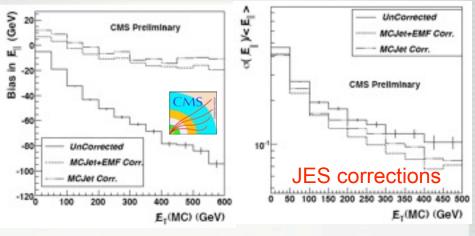

MET Significance

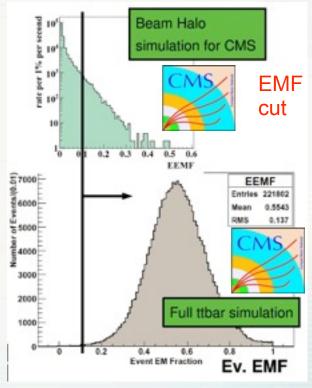

- Consider event topology as well as resolution of individual objects, e.g. jets vs. EM objects
- Smear each object with its resolution and find the effect on

 ME_{T}

 Express the result in terms of significance (S) of ME_T not be consistent with zero

ME_T is easy to fake, S ≈ 0


 ME_T is hard to fake, $S \neq 0$


Significant improvement in signal vs. background separation for intermediate ME_T values

ME_T Corrections and Clean-Up

- To improve the resolution and remove possible bias for events with true ME_T, we correct ME_T for
 - Jet energy scale
 - Hadronic tau's
 - Muons
- The non-Gaussian tails are reduced by jet quality cuts, e.g. p_T/E_T or EMF
- Philosophy: make ME_T
 look as good as possible

Conclusions

- Robust ME_T is crucial for many early searches at the LHC (cf. Meenakshi Narain's talk)
- Yet, ME_T is one of the hardest objects to understand because of numerous instrumental effects
- At CMS, we have developed a number of handles for robust ME_T determination and a number of corrections to optimize ME_T performance
- ME_T triggering can be made robust using the MH_T variable
- First ME_T validation results using cosmics look quite promising:
 ME_T trigger rate is under control
- ME_T clean-up tools based on cosmic data experience are being commissioned
- Number of tools exist to monitor ME_T performance online and offline
- Eagerly anticipate collision data to validate ME_T performance