
The MSSM



interactions of particles and sparticles
The field content of the MSSM
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interactions of particles and sparticles
SM has three generations, i is a generation label

ui = (u, c, t), di = (d, s, b),
νi = (νe, νµ, ντ ), ei = (e, µ, τ).

Higgs VEV breaks SU(2)L × U(1)Y → U(1)

Q = T 3
L + Y

1
e2 = 1

g2 + 1
g′2 .



Two Higgs Doublets
Two Higgs doublets with opposite hypercharges are needed to cancel

the U(1)3
Y and U(1)Y SU(2)2

L anomalies from higgsinos
even number of fermion doublets to avoid the Witten anomaly for SU(2)L.

The superpotential for the Higgs :

WHiggs = uYuQHu − dYdQHd − eYeLHd + µHuHd .

In the SM we can have Yukawa couplings with H or H∗ but holomorphy
requires both Hu and Hd in order to write Yukawa couplings for both u
and d



Yukawa Couplings
mt � mc,mu; mb � ms,md; mτ � mµ,me,

Yu ≈

 0 0 0
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 , Yd ≈

 0 0 0
0 0 0
0 0 yb

 , Ye ≈

 0 0 0
0 0 0
0 0 yτ


WHiggs = yt(ttH

0
u − tbH+

u )− yb(btH−d − bbH0
d)

−yτ (τντH
−
d − ττH0

d) + µ(H+
u H

−
d −H0

uH
0
d) .

0
Hu

0
F

tR

~

~

~

*

**
~

~ ~

F

F
tL

Hu

  

Hu
0

tL

tR
Hu

0 Hu
0

tR

tL tL

tR

tL tL

tRtRHu



µ-term
gives a mass to the higgsinos and a mixing term between a Higgs and

the auxiliary F field of the other Higgs. Integrating out auxiliary fields
yields the Higgs mass terms and the cubic scalar interactions

d
0 Hd

0

H H

t

t~

~

u
~ ~0 0

d

R

L

*

F
uH

(c)

(a) (b)

(d)

Hd
0

Hd
0 H



Higgs mass terms
Lµ,quadratic = −µ(H̃+

u H̃
−
d − H̃0

uH̃
0
d) + h.c.

−|µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−d |2).

The D-term potential adds quartic terms with positive curvature, so
there is a stable minimum at the origin with 〈Hu〉 = 〈Hd〉 = 0.

EWSB requires soft SUSY breaking terms.
without unnatural cancellations we will need µ ∼ O(msoft) ∼ O(MW )

rather than O(MPl). This is known as the µ-problem. perhaps µ is
forbidden at tree-level so µ is then determined by the SUSY breaking
mechanism which also determines msoft.



cubic scalar
After integrating out auxiliary fields,

Lµ,cubic = µ∗
(
ũ∗RYuũLH

0∗
d + d̃∗RYdd̃LH

0∗
u + ẽ∗RYeẽLH

0∗
u

+ũ∗RYud̃LH
−∗
d + d̃∗RYdũLH

+∗
u + ẽ∗RYeν̃LH

+∗
u

)
+ h.c.

The quartic scalar interactions are obtained in a similar fashion.
other holomorphic renormalizable terms :

Wdisaster = αijkQiLjdk + βijkLiLjek + γiLiHu + δijkdidjuk ,

Wdisaster violates lepton and baryon number!



Rapid Proton Decay
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Super Kamiokande



Super Kamiokande



Rapid Proton Decay
τp = 1

Γ ≈ 1
|αδ|2

( mq̃
1 TeV

)4
2× 10−11 s

Experimentally, τp > 1032 years ≈ 3× 1039 s

need |αδ| < 10−25



R-Parity
invent a new discrete symmetry called R-parity:

(observed particle) → (observed particle) ,
(superpartner) → −(superpartner) .

Imposing this discrete R-parity forbids Wdisaster

R-parity ≡ to imposing a discrete subgroup of B − L
(“matter parity”) PM = (−1)3(B−L) since

R = (−1)3(B−L)+F

R-parity is part of the definition of the MSSM



R-Parity
R-parity has important consequences:

• at colliders superpartners are produced in pairs;

• the lightest superpartner (LSP) is stable, and thus (if it is neutral)
can be a dark matter candidate;

• each sparticle (besides the LSP) eventually decays into an odd
number of LSPs.



R-Parity
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Soft SUSY Breaking

LMSSM
soft = − 1

2

(
M3G̃G̃+M2W̃W̃ +M1B̃B̃

)
+ h.c.

−
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to msoft ≈ 1 TeV in order to solve the hierarchy problem by canceling
quadratic divergences:

Mi,Af ∼ msoft , m2
f , b ∼ m2

soft .

105 more parameters than the SM!



Electroweak symmetry breaking
D-term potentials for the Higgs fields. The SU(2)L and U(1)Y D-

terms are (with other scalars set to zero)

Da|Higgs = −g (H∗uτ
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aHd) ,
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Electroweak symmetry breaking
SU(2)L gauge transformation can set 〈H+

u 〉 = 0. If we look for a
stable minimum along the charged directions we find

∂V
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u
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stabilizing D-flat direction H0
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d where the b term is arbitrarily
negative requires
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Electroweak symmetry breaking
tight relation between b and µ

there is no solution if m2
Hu

= m2
Hd

. Typically, choose m2
Hu

and m2
Hd

to
have opposite signs and different magnitudes
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Figure 1: Above the top line the Higgs VEVs go to ∞, while below the
bottom line the Higgs VEVs go to zero.



Electroweak symmetry breaking
〈H0

u〉 = vu√
2
,

〈H0
d〉 = vd√

2
.

VEVs produce masses for the W and Z

M2
W = 1

4g
2v2 ,

M2
Z = 1

4 (g2 + g′2)v2 ,

where we need to have

v2 = v2
u + v2

d ≈ (246 GeV)2 ,

define an angle β:

sβ ≡ sinβ ≡ vu
v , cβ ≡ cosβ ≡ vd

v ,

with 0 < β < π/2. From this definition it follows that

tanβ = vu/vd ,

cos 2β =
v2
d−v

2
u

v2 .



Electroweak symmetry breaking
imposing ∂V/∂H0

u = ∂V/∂H0
d = 0 gives

|µ|2 +m2
Hu

= b cotβ + (M2
Z/2) cos 2β .

|µ|2 +m2
Hd

= b tanβ − (M2
Z/2) cos 2β ,

this is another way of seeing the µ-problem.
Higgs scalar fields consist of eight real scalar degrees of freedom. three

are eaten by the Z0 and W±. This leaves five degrees of freedom: H±,
the h0 and H0 which are CP even and the A0 is CP odd.

shift the fields by their VEVs:

H0
u → vu√

2
+H0
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H0
d → vd√

2
+H0

d ,



Higgs spectrum

V ⊃ (ImH0
u, ImH

0
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would-be Nambu–Goldstone boson π0 is massless
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.



Higgs spectrum

V ⊃ (H+∗
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Higgs spectrum
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and the mixing angle α is determined given by
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By convention, h0 corresponds to the lighter mass eigenstate



Higgs spectrum

Figure 14: Lightest CP-even Higgs mass (mh), heaviest CP-even Higgs mass (mH) and charged Higgs mass (mH± ) as a
function of mA for two choices of tanβ = 3 and tanβ = 30. Here, we have taken Mt = 174.3 GeV, and we have assumed
that the diagonal soft squark squared-masses are degenerate: MSUSY ≡ MQ = MU = MD = 1 TeV. In addition, we
choose the other supersymmetric parameters corresponding to the maximal mixing scenario. The slight increase in the
charged Higgs mass as tan β is increased from 3 to 30 is a consequence of the radiative corrections.

maximal mixing. For each value of tanβ, we denote the maximum value of mh by mmax
h (tanβ) [this

value also depends on the third-generation squark mixing parameters]. Allowing for the uncertainty
in the measured value of mt and the uncertainty inherent in the theoretical analysis, one finds for
MSUSY <∼ 2 TeV that mh ≤ mmax

h ≡ mmax
h (tan β $ 1), where

mmax
h % 122 GeV, if top-squark mixing is minimal,

mmax
h % 135 GeV, if top-squark mixing is maximal. (45)

In practice, parameters leading to maximal mixing are not expected in typical models of supersymmetry
breaking. Thus, in general, the upper bound on the lightest Higgs boson mass is expected to be
somewhere between the two extreme limits quoted above. Cross-checks among various programs [157]
and rough estimates of higher order corrections not yet computed suggest that the results for Higgs
masses should be accurate to within about 2 to 3 GeV over the parameter ranges displayed in figs. 12–14.

In fig. 14, we exhibit the masses of the CP-even neutral and the charged Higgs masses as a function
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Higgs spectrum
Note that mA, m±H , and mH → ∞ as b → ∞ but mh is maximized

at mA =∞ so at tree-level there is an upper bound on the Higgs mass

mh < | cos 2β|MZ ,

which is ruled out by experiment
There can be large one-loop corrections to the Higgs mass



The sparticle spectrum
gluino, G̃, which is a color octet fermion with mass |M3|
for squarks and sleptons masses have to diagonalize 6×6 matrices

neglecting the intergenerational mixing stop mass terms are given by

Lstop = − ( t̃∗L t̃∗R ) m2

t̃

(
t̃L
t̃R

)

m2

t̃
=

(
m2
Q33 +m2

t + δu v(Au33 sβ − µytcβ)

v(Au33 sβ − µytcβ) m2
u33 +m2

t + δu

)
,

where

δf = −gT 3
f 〈D3〉 − g′Yf 〈D′〉 = (T 3

f −Qfs2
W ) cos 2βM2

Z ,

m2
Q33 and m2

u33 and Au33 are soft SUSY breaking terms

m2
t terms come from quartic with two Higgses

δf terms represent the contributions from quartic D-terms
terms ∝ µ arise from integrating out the Higgs auxiliary fields
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The sparticle spectrum
for bottom squarks and tau sleptons

m2

b̃
=

(
m2
Q33 +m2

b + δd v(Ad33 cβ − µybsβ)

v(Ad33 cβ − µybsβ) m2
d33

+m2
b + δd

)
,

m2

τ̃
=

(
m2
L33 +m2

τ + δe v(Ae33 cβ − µyτsβ)
v(Ae33 cβ − µyτsβ) m2

e33 +m2
τ + δe

)
large Yukawa couplings or A-terms allow for large mixing and the pos-
sibility that the lower mass squared eigenvalue is driven negative This
would break U(1)em and/or SU(3)c, and must be avoided



The sparticle spectrum
without soft SUSY breaking mass terms, 6×6 mixing matrices

m2

ũ
=

(
mu
†mu + δu I ∆u

∆u
† mumu

† + δu I

)
,

m2

d̃
=

(
md
†md + δd I ∆d

∆d
† mdmd

† + δd I

)
,

where mu and md are the 3 × 3 quark mass matrices, I is the identity
matrix Note that δu + δu + δd + δd = 0, so at least one δf ≤ 0 Suppose
δu ≤ 0, let ~γ be an eigenvector with the smallest eigenvalue,

mu~γ = mu~γ ,

squark mass2 > 0, upper bound on the smallest squark eigenvalue, m2
min

m2
min ≤ (~γT , 0)m2

ũ

(
~γ
0

)
≤ m2

u

So there would be a squark lighter than the u quark



Chargino spectrum
In the basis ψ = (W̃+, H̃+

u , W̃
−, H̃−d ), the chargino mass terms are

Lchargino = − 1
2ψ

TM
C̃
ψ + hc

where

M
C̃

=

(
0 MT

M 0

)
, M =

(
M2

√
2sβMW√

2cβMW µ

)
mixing comes from the wino–higgsino–Higgs coupling
can be diagonalized by a singular value decomposition:

L∗MR−1 =

(
m
C̃1

0
0 m

C̃2

)
,

with mass eigenstates given by(
C̃+

1

C̃+
2

)
= R

(
W̃+

H̃+
u

)
,

(
C̃−1
C̃−2

)
= L

(
W̃−

H̃−d

)
,



Chargino spectrum
After diagonalization the elements of L and R appear in the interac-

tion vertices for chargino mass eigenstates

m2

C̃1,C̃2

= 1
2

[
(|M2|2 + |µ|2 + 2M2

W )

∓
√

(|M2|2 + |µ|2 + 2M2
W )2 − 4|µM2 −M2

W sin 2β|2
]

In the limit that ||µ| ±M2| � MW the charginos are approximately a
wino and a higgsino with masses |M2| and |µ|



Neutralino spectrum
ψ0 = (B̃, W̃ 3, H̃0

d , H̃0
u), mass terms in the Lagrangian are

Lneutralino − 1
2 (ψ0)TM

Ñ
ψ0 + hc

where

M
Ñ

=


M1 0 −cβ sW MZ sβ sW MZ

0 M2 cβ cW MZ −sβ cW MZ

−cβ sW MZ cβ cW MZ 0 −µ
sβ sW MZ −sβ cW MZ −µ 0


mixing terms come from the wino–higgsino–Higgs and bino–higgsino–
Higgs couplings

Since M
Ñ

is a symmetric complex matrix it can be diagonalized by
a Takagi factorization using a unitary matrix U

Mdiag

Ñ
= U∗M

Ñ
U−1 .



Neutralino spectrum
In the region of parameter space where

MZ � |µ±M1|, |µ±M2|

then the neutralino mass eigenstates are very nearly B̃, W̃ 0, (H̃0
u ±

H̃0
d)/
√

2, with masses: (|M1|, |M2|, |µ|, |µ|).
A“bino-like” LSP can make a good dark matter candidate, N1 is

often arranged to be the LSP



Spectrum
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Figure 18: A schematic sample spectrum for the undiscovered particles in the MSSM. This spectrum is
presented for entertainment purposes only. No warranty, expressed or implied, guarantees that this spectrum
looks anything like the real world.

(lower) compared to the neutralinos, charginos and gluino; taking larger values of tan β with
other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses compared to
those of the other sparticles, etc. The important point is that by measuring the masses and
mixing angles of the MSSM particles we will be able to gain a great deal of information which
can rule out or bolster evidence for competing proposals for the origin of supersymmetry
breaking. Testing the various possible organizing principles will provide the high-energy
physicists of the next millennium with an exciting challenge.

8 Sparticle decays

In this section we will give a brief qualitative overview of the decay patterns of sparticles
in the MSSM, assuming that R-parity is exactly conserved. We will consider in turn the
possible decays of neutralinos, charginos, sleptons, squarks, and the gluino. If, as is most
often assumed, the lightest neutralino Ñ1 is the LSP, then all decay chains will end up
containing it in the final state. In section 8.5 we consider the alternative possibility that
the gravitino/goldstino G̃ is the LSP.

8.1 Decays of neutralinos and charginos

Let us first consider the possible two-body decays. Each neutralino and chargino contains
at least a small admixture of the electroweak gauginos B̃, W̃ 0 or W̃±, as we saw in section
7.3. So Ñi and C̃i inherit couplings of weak interaction strength to (scalar, fermion) pairs,
as shown in Fig. 9b,c. If sleptons or squarks are sufficiently light, a neutralino or chargino
can therefore decay into lepton+slepton or quark+squark. (We will often not distinguish
between particle and antiparticle names and labels in this section.) Since sleptons are
probably lighter than squarks, the lepton+slepton final states are more likely to be open.
A neutralino or chargino may also decay into any lighter neutralino or chargino plus a
Higgs scalar or an electroweak gauge boson, because they inherit the gaugino-higgsino-
Higgs (see Fig. 9b,c) and SU(2)L gaugino-gaugino-vector boson (see Fig. 5c) couplings of
their components. So, the possible two-body decay modes for neutralinos and charginos in
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Dark Matter
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Dark Matter Relic Abundance
Robertson-Walker metric and scale factor R

ds2 = −dt2 +R(t)2
(

dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2
)

Friedman equation

H2 ≡
(
Ṙ
R

)2

= 8
3πGρ− k

R2 + . . . ,

relates the Hubble parameter H to Newton’s constant, G, times the
energy density, ρ, the critical density is for k = 0 is

ρc = 3H2

8πG ≈ 10−29 g/cm3 ≈ 3× 10−47 GeV4 .



Dark Matter Relic Abundance
Energy conservation

R3
(
dp
dt

)
= d

dt

[
R3 (ρ+ p)

]
dp
dt = −3 ṘR (ρ+ p)

for p = aρ

ρ ∝ R−3(1+a)

radiation a = 1/3 ρ ∝ R−4

matter a = 0 ρ ∝ R−3

curvature a = 0 ρ ∝ R−2

vacuum energy a = −1 ρ ∝ R0



Dark Matter Relic Abundance
a stable weakly interacting dark matter particle X is held in equilibrium
by annihilations

XX ↔ pipi

eventually the expansion of the Universe dilutes the particles so they are
too sparse to maintain equilibrium

equilibrium number density, neq, thermal average of the annihilation
cross section times the relative velocity 〈σv〉
ṅannihilations ∼ 〈σv〉n2

eq

ṅexpansion ∼ 3Hneq
when ṅannihilations ≈ ṅexpansion dark matter ‘freezes out”
after freeze out, number of dark matter particles per comoving volume
N ≡ n/T 3 remains constant



Freeze Out



Quantum Stat. Mech.
Bose-Einstein and Fermi-Dirac

b(E) = 1
e(E−µ)/T−1

f(E) = 1
e(E−µ)/T+1

assume chemical potential µ = 0 and relativistic

Nb = gs
2π2

∫∞
0
dp p2

ep/T−1

Nf = gs
2π2

∫∞
0
dp p2

ep/T+1

scalar gs = 1
Dirac gs = 2× 2 = 4

Majorana gs = 2
photon gs = 2
Z gs = 3
W gs = 2× 3 = 6



Quantum Stat. Mech.∫∞
0
dx xν−1

eax−1 = a−ν Γ(ν)ζ(ν)∫∞
0
dx xν−1

eax+1 = (1− 21−ν) a−ν Γ(ν)ζ(ν)

Nb = gs
π2 ζ(3)T 3

Nf = 3
4
gs
π2 ζ(3)T 3

ρb = gs
2π2

∫∞
0
dp p3

ep/T−1
= gsπ

2

30 T 4

ρf = gs
2π2

∫∞
0
dp p3

ep/T+1
= 7

8
gsπ

2

30 T 4

where we used ζ(4) = π4/90



Quantum Stat. Mech.
assume chemical potential µ = 0 and non-relativistic m� T

Nf,b ≈ gs
2π2

∫∞
0
dp p2

em/T+p2/(2mT )±1

≈ gsT
3

2π2

∫∞
0
du u2

em/T+u2T/m±1

≈ gsT
3e−m/T

2π2

∫∞
0
duu2 e−u

2T/m

≈ gsT
3e−m/T

(2πT/m)3/2



Equilibrium
equilibrium number of nonrelativistic particles per comoving volume:

Neq = e−mX/T

(2π)3/2

(
mX
T

)3/2
above T ≈ 1 eV the universe is radiation-dominated

ρ = π2

15 N∗ T
4

N∗ = 1
2

(
nb + 7

8nf
)

so

H =
√

8
3πGρ =

√
8π3N∗G

15 T 2

〈σv〉 = σ0

(
T
m

)α
,

α = 0 for Dirac fermion, α = 1 for a Majorana fermion



Cross Sections
Dirac fermion:

〈σv〉 =
G2
F

2π m
2
X

Majorana fermions have no vector current couplings
only axial current:

〈σv〉 ∝ G2
F

2π p
2

referred to as p-wave suppression

〈p2〉 = 3
2mXT



Freeze Out
Equating the annihilation rate with the expansion rate at T = Tf

〈σv〉n2
eq = 3Hneq

σ0

(
Tf
mX

)α
e−mX/Tf

(2π)3/2

(
mX
Tf

)3/2

T 3
f = 3

√
8π3N∗G

15 T 2
f

e−mX/Tf = 3
√

8π3N∗G
15

(2π)3/2

σ0 mX

(
mX
Tf

)α−1/2

Numerically mX/Tf ≈ 30. So the number per comoving volume at Tf is

Nf =
√

8π3N∗G
15

3
σ0 mX

(
mX
Tf

)1+α

×T 3 gives the number density, ×mX gives the energy density. weak
annihilation cross section σ0 = NAG

2
Fm

2
X/2π (where NA counts final

states) with a current temperature of T = 2.7 K = 2 × 10−13 GeV,
α = 1, N∗ = 100, NA = 20, that

ρX
ρc

= 0.6
(

100GeV
mX

)2



Stable WIMPS



LSP Dark Matter

Figure 1: The three bands show the contribution to Ωh2 from pure Bino LSP with 0.3 <
M1/mẽR

< 0.9 (red band), Higgsino LSP with 1.5 < mt̃/µ < ∞ (blue band) and Wino LSP
with 1.5 < m!̃L

/M2 < ∞ (green band).

but early enough not to upset the nucleosynthesis predictions. The final relic abundance will

of course depend on the initial gravitino density or, ultimately, on TRH .

1.3 Wino

The Wino can be the LSP in anomaly mediation [18, 19]. In the case of pure state, the

dominant annihilation is into gauge bosons, with a contribution from fermion–antifermion

channel through scalar exchange. Coannihilation among the different states in the Wino

weak triplet is important. In the limit in which the Wino mass M2 is larger than MW , the

effective annihilation cross section and the Wino contribution to Ω are well approximated

by (see appendix A)

〈σeffv〉 =
3g4

16πM2
2

, (6)

ΩW̃ h2 = 0.13
(

M2

2.5TeV

)2

. (7)

4

Bino, Higgsino, Wino

Arkani-Hamed, Delgado, Giudice, hep-ph/0601041



Xenon Detector

EGC

Cathode

Grid

Anode

EAG

EAG >  EGC

Liquid phaseLiquid phase

Gas phaseGas phase

PMT Array

(not all tubes shown)

Light SignalLight Signal

UV ~175 nmUV ~175 nm

photonsphotons

TimeTime

PrimaryPrimary

SecondarySecondary

Interaction (WIMP or Electron)Interaction (WIMP or Electron)

Liq. Surface

ee--ee--

ee--
ee--

ee--ee--

ee--
ee--

ee--ee--

ee--
ee--

Electron Drift

~2 mm/!s

0–150 !s

depending on
depth

~40 ns width

~1 !s width

How was this done?



Xenon 100 and LUX

Schumann 1405.7600



Dark Matter Searches



Dark Matter Searches



SU(5) GUT
SU(5)→ SU(3)× SU(2)× U(1)

5→ (3,1)−1/3 + (1,2)1/2 ∼ dR + (ec,−νc)L

5̄→ (3̄,1)+1/3 + (1,2)−1/2 ∼ dcR + (ν, e)L

5× 5 = 10A + 15S

10 → (3,2)1/6 + (3̄,1)−2/3 + (1,1)1

∼ (u, d)L + ucR + ec

5̄ + 10 is anomaly free



SU(5)→ SU(3)× SU(2)× U(1)
5→ (3,1)−1/3 + (1,2)1/2

5× 5̄ = 1 + 24
= (1,1)0 + (8,1)0 + (1,1)0 + (1,3)0

+(3,2)−5/6 + (3̄,2)5/6

24 → (8,1)0 + (1,3)0 + (1,1)0

+(3,2)−5/6 + (3̄,2)5/6



SU(5)→ SU(3)× SU(2)× U(1)

Gaµ ↔ T 1,...,8 = 1
2

(
λ1,...,8 0

0 0

)

W a
µ ↔ T 9,10,11 = 1

2

(
0 0
0 σ1,2,3

)

Xµ, Yµ ↔ T 12,...,23 = 1
2

(
0 x
x† 0

)

Bµ ↔ T 24 = 1
2
√

15


−2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 3 0
0 0 0 0 3





SU(5)→ SU(3)× SU(2)× U(1)

TrT 24T 24 = 1
4·15Tr


4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 9 0
0 0 0 0 9

 = 1
2

Y =
√

15
3 T 24 =

√
5
3 T

24

g′Y =
(√

5
3g
′
)(√

3
5Y
)

= g1T
24

g1 =
√

5
3g
′

Q1 = T 24 =
√

3
5Y



Gauge coupling unification
for SU(5)GUT

g1 ≡
√

5
3g
′ , g2 ≡ g, g3 ≡ gC , αi ≡ g2

i

4π

The measured values of gauge couplings renormalized at MZ are

α1(MZ) = 0.016830± 0.000007
α2(MZ) = 0.03347± 0.00003
α3(MZ) = 0.1187± 0.002

These couplings run at one-loop according the RG equation:

µ dga
dµ = − 1

16π2 bag
3
a ⇒ µ

dα−1
a

dµ = ba
2π

In the SM and MSSM the β function coefficients are

bSM
a = (−41/10, 19/6, 7)

bMSSM
a = (−33/5,−1, 3)



SM β-functions

b1 = − 2
3Q

2
F − 1

3Q
2
S = − 3

5

(
2
3Y

2
F + 1

3Y
2
S

)
= − 3

5

(
2
3Ngen

[
3 · 2 · Y 2

Q + 3Y 2
u + 3Y 2

d + 2Y 2
L + Y 2

e

]
+ 1

32Y 2
H

)
= − 1

5

(
2Ngen

[
3 · 2 ·

(
1
6

)2
+ 3

(
2
3

)2
+ 3

(
1
3

)2
+ 2

(
1
2

)2
+ 12

]
+ 2

(
1
2

)2)
= − 1

5

(
2Ngen

[
1
6 + 4

3 + 1
3 + 1

2 + 1
]

+ 1
2

)
= − 1

5

(
Ngen

1+8+2+9
3 + 1

2

)
= − 1

5

(
Ngen

20
3 + 1

2

)
= − 41

10

b2 = 11
3 ·N − 2

3T (F )− 1
3T (S) = 22

3 − 2
3Ngen

(
3 · 1

2 + 1
2

)
− 1

3 · 1
2

= 22
3 − 4

3Ngen − 1
6 = 22

3 − 4
3Ngen − 1

6 = 20−1
6

= 19
6

b3 = 11
3 · 3− 2

3T (F ) = 33
3 − 2

3Ngen

(
2 · 2 · 1

2

)
= 33

3 − 4
3Ngen

= 33−12
3 = 7



MSSM β-functions

b1 = − 2
3Q

2
F − 1

3Q
2
S = −Q2 = − 3

5Y
2

= − 3
5

(
Ngen

[
3 · 2 · Y 2

Q + 3Y 2
u + 3Y 2

d + 2Y 2
L + Y 2

e

]
+ 2 · 2Y 2

H

)
= − 3

5

(
Ngen

[
3 · 2 ·

(
1
6

)2
+ 3

(
2
3

)2
+ 3

(
1
3

)2
+ 2

(
1
2

)2
+ 12

]
+ 4

(
1
2

)2)
= − 3

5

(
Ngen

[
1
6 + 4

3 + 1
3 + 1

2 + 1
]

+ 1
)

= − 3
5

(
Ngen

1+8+2+9
6 + 1

)
= − 3

5

(
Ngen

20
6 + 1

)
= − 33

5

b2 = 3N − F = 3 · 2−Ngen

(
3 · 1

2 + 1
2

)
− 1

= 6− 2Ngen − 1
= −1

b3 = 3 · 3− 2Ngen = 9− 6
= 3



Gauge coupling unification
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10

α 
(µ

)
−1 i

common threshold MSUSY

3 GeV < MSUSY < 100 TeV.

MU ≈ 2× 1016 GeV.



Radiative electroweak symmetry
breaking

RG equations for the soft SUSY breaking masses of the Higgs and
third-generation scalars
gaugino terms additive consider separately
consider only the running induced by yt

16π2 d
dtm

2
Hd

= 0

16π2 d
dt

 m2
Hu

m2
u33

m2
Q33

 = 2|yt|2
 3 3 3

2 2 2
1 1 1

 m2
Hu

m2
u33

m2
Q33





Radiative electroweak symmetry
breaking

transform to an eigenbasis: (1,−1, 0), (0, 1,−1), and (3, 2, 1)
eigenvalues 0, 0 , and 6.
eigenvector (3, 2, 1) scaled to zero

m2
Hu

= m2
u3

= m2
Q3

= m2
0 at high scale

decompose initial conditions: 1
1
1

 = − 1
2

 1
−1

0

− 1
2

 0
1
−1

+ 1
2

 3
2
1


in IR masses run to

m2
0

2

 −1
0
1





Radiative electroweak symmetry
breaking

m2
Hu

runs negative. EWSB may or may not follow depending on the
values of µ and b. claimed that this “predicted” a large top mass, but it
really only required a large :

yt =
√

2 mt
v sin β



Radiative EWSB

Figure 1: The running of the Higgs mass parameter m2
2 as a function of the RG scale Q. The

top frame shows the case of a generic supersymmetric setup, leading to |m2
2(MS)| = O(M2

S)
and MS ! Qc ! MP . The bottom frame corresponds to a fine-tuned choice of soft terms,
such that |m2

2(MS)| ! M2
S and MS " Qc.

matrix flows to a negative value somewhere between MP and MS [2]. This makes electroweak

symmetry breaking a rather natural phenomenon within supersymmetric extensions of the

SM.

For the sake of this discussion we should, however, be slightly more precise. Notice

that, since the RG evolution is homogeneous in the soft terms, the RG scale Qc at which

the Higgs mass eigenvalue crosses zero depends on MP and on dimensionless ratios of soft

parameters, but it is parametrically unrelated to MS. Furthermore, as long as the Higgs

mass matrix is positive definite at MP , since the evolution is logarithmic in the RG scale,

Qc is exponentially suppressed with respect to MP (see fig. 1, top frame). Therefore, the

supersymmetric parameter space is essentially divided into two regions (phases) characterized

2

Giudice, Rattazzi, hep-ph/0606105



One-loop Higgs mass
tree-level :

mh < | cos 2β|MZ = g2+g′2

4 |v2
d − v2

u|
Higgs mass is controlled by the quartic Higgs coupling
failure of the top-stop cancellation should give the leading correction

(c)

tR
~tR

~

Hu
0

Hu
0 Hu

0

Hu
0

~tL

~tLHu
0 Hu

0

Hu
0Hu

0

Hu
0

tL

tL

tRtR

Hu
0

Hu
0Hu

0 (b)(a)

λ(mt) = λ(m
t̃
) +

∫mt
mt̃

βλ d lnµ

= λSUSY + 2Nc|yt|4
16π2 ln

(
mt̃1mt̃2
m2
t

)



One-loop Higgs mass
shift in the physical Higgs mass squared

∆(m2
h0) = 2 δλ v2

u = 3
4π2 v

2y4
t sin2 β ln

(
mt̃1mt̃2
m2
t

)
≈ (90 GeV)2

sin2 β

assuming yt does not blowup below the unification scale:

mh0 < 130 GeV



NMSSM Higgs mass
add a new singlet field N with coupling

WNMSSM = yNNHuHd

so the VEV of N can generate the µ-term gives a new contribution,
O(y2

N ), to the Higgs quartic coupling
assuming that yN remains perturbative up to the unification scale :

mh0 < 150 GeV



Precision electroweak measurements
Below the EWSB scale terms in the effective Lagrangian like

Leff ⊂ − gg′S
16π W

3
µνB

µν

Experimentally S must be O(1/10)



Precision electroweak measurements

10. Electroweak model and constraints on new physics 37

T to vary as well, since T > 0 is expected from a non-degenerate extra family. However,
the data currently favor T < 0, thus strengthening the exclusion limits. A more detailed
analysis is required if the extra neutrino (or the extra down-type quark) is close to
its direct mass limit [208]. This can drive S to small or even negative values but at
the expense of too-large contributions to T . These results are in agreement with a fit
to the number of light neutrinos, Nν = 2.986 ± 0.007 (which favors a larger value for
αs(MZ) = 0.1231 ± 0.0020 mainly from R" and ττ ). However, the S parameter fits are
valid even for a very heavy fourth family neutrino.

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

S

-1.25

-1.00

-0.75

-0.50

-0.25

0.00
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0.50
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1.00

1.25

T

all: M
H
 =   117 GeV

all: M
H
 =   340 GeV

all: M
H
 = 1000 GeV

!Z, "had, Rl, Rq
asymmetries

M
W

# scattering
Q

W

E 158

Figure 10.4: 1 σ constraints (39.35 %) on S and T from various inputs combined
with MZ . S and T represent the contributions of new physics only. (Uncertainties
from mt are included in the errors.) The contours assume MH = 117 GeV except
for the central and upper 90% CL contours allowed by all data, which are for
MH = 340 GeV and 1000 GeV, respectively. Data sets not involving MW are
insensitive to U . Due to higher order effects, however, U = 0 has to be assumed in all
fits. αs is constrained using the τ lifetime as additional input in all fits. See full-color
version on color pages at end of book.

There is no simple parametrization that is powerful enough to describe the effects
of every type of new physics on every possible observable. The S, T , and U formalism
describes many types of heavy physics which affect only the gauge self-energies, and it
can be applied to all precision observables. However, new physics which couples directly
to ordinary fermions, such as heavy Z ′ bosons [192] or mixing with exotic fermions [209]
cannot be fully parametrized in the S, T , and U framework. It is convenient to treat these
types of new physics by parameterizations that are specialized to that particular class of

May 1, 2007 14:25

Particle Data Group, http://pdg.lbl.gov/



Precision electroweak measurements

Wµ Bµ

SU(2)L doublet fermion with Nc colors that gets a mass from EWSB
contributes to vacuum polarization Π3B

µν (p2) for LL gauge vertices

TrT 3
LY = 0

for LR gauge vertices

TrT 3
LY = TrT 3

LQ = 1
2

by gauge invariance

Π3B
µν (p2) =

(
gµν − pµpν

p2

)
Π3B(p2)



Precision electroweak measurements
For m�MZ , Taylor series around p2 = 0:

Π3B(p2) = m2
∑∞
n=0 an

(
p2

m2

)n
,

contribution to S proportional to

d
dp2 Π3B(p2)|p2=0 ∝ Nc m

2

m2 .

S parameter counts the number of fields in the EWSB sector
For a superpartner in the MSSM the masses are of the formmsp(msoft, µ, v).

In the limit µ, msoft →∞ with v fixed we have msp →∞, S ∝ (v/msp)n

superpartners decouple from EWSB if they are sufficiently heavy

R-parity: at low-energy superpartners only contribute at loop-level



Problems with flavor and CP
generically the mass matrices m2

e and m2
L are not diagonal in the

same basis as the lepton mass matrix. This leads to the nonobserved
decay µ→ eγ

Γµ→eγ ≈ 8 sin2 θW
(
α2

4π

)3 πm5
µ

M4
SUSY

(
∆m2

L

M2
SUSY

)2

Γµ→eνν̄ =
(
α2

4π

)2 πm5
µ

64M4
W



Problems with flavor and CP
Γµ→eγ
Γµ→eνν̄

≈ 3× 10−4
(

500 GeV
MSUSY

)4 (
∆m2

L

M2
SUSY

)2

,

experimentally less than 5 ×10−11



FCNC’s
KK mixing:

u, c

u, c

d

s d

s

ds

d

d

~d s~

s~ ~

s

~ ~
WW G G

(a) (b)

for SM in the limitmq → 0, diagram is proportional to CKM elements
after diagonalizing the up-type and down-type quark mass matrices

by unitary matrices Uu and Ud the product V = Ud
†Uu appear in the

W couplings
V V † = I, so loop is proportional to

(Vdi V
∗
is)
(
V ∗sjVjd

)
= δdsδsd = 0 ,



Glashow, Iliopoulos, Maiani

leading contribution comes only at O(m2
quark) known as the GIM

suppression mechanism



FCNC’s
MSM

KK
≈ α2

2
m2
c

M4
W

sin2 θc cos2 θc ,

where Vud = cos θc.

MMSSM
KK

≈ 4α2
3

(
∆m2

Q

M2
SUSY

)2
1

M2
SUSY

.

Since the SM amplitude roughly accounts for the observed KL-KS mass
splitting, we require MSM

KK
>MMSSM

KK
, so(

∆m2
Q

M2
SUSY

)
< 4× 10−3 MSUSY

500 GeV .

observed size of CP violation in the KK leads to stringent bounds on
the phases of the squark mixing matrix



EDM’s
with Higgs VEV, A-terms introduce off-diagonal squark and slepton

mass mixing
gives rise to an electric dipole moment (EDM) the d quark, and neutron.

dimension 5 operator in the low-energy effective theory, d†Rσ
µνdLFµν ,

  

dd
G~

~
d

L

L

d
H

γ

dR
~

R

the amplitude must have an inverse mass dimension, and it must be
proportional to the VEV of Hd.



EDM’s
call the overall phase δ

MEDM ≈ α3

4π
e vcβ Ad11 δ

M2
SUSY

.

The experimentally EDM of the neutron is < 0.97× 10−25 e cm, which
translates into the bound:

cβAd11δ
(

500GeV
M2

SUSY

)2

< 5× 10−7 .

for Ad = Yd

δ <
(
M2

SUSY

500 GeV

)2

10−2 .



Safe Neighborhoods
• “Soft Breaking Universality” requires the soft SUSY breaking squark

and slepton masses are proportional to the identity in the same ba-
sis where quark and lepton mass matrices are diagonal, the A-term
∝ Yukawa , and no new nontrivial phases

• The “More Minimal Supersymmetric Model” only require the lead-
ing quadratic divergences in the Higgs mass to cancel. t̃L, t̃R, b̃L,
H̃u, H̃d, B̃,W̃ must have masses below 1 TeV, while first- and
second-generation sparticles can be as heavy as 20 TeV. possible
danger: two-loop running below the heavy squark threshold

dm2

t̃

dt =
8g2

3

16π2C2

[
3g2

3

16π2m
2

ũ,d̃
−M2

3

]
,

may drive the top squark mass squared negative, depending on
gluino mass



Safe Neighborhoods

• The “Alignment” scenario requires a particular relation between
squark mass matrices and Yukawa matrices

m2
Q = Y∗uYT

u + Y∗dYT
d ,

m2
u = Y†uYu ,

m2
d = Y†dYd ,

such that FCNC processes are suppressed.


