SUSY gauge theories



SUSY QCD

Consider a SUSY SU(N) with F' “flavors” of “quarks” and squarks
Qi = (¢i, Qi Fi),i=1,..., I,
where ¢ is the squark and () is the quark.
Qi = (04, Qi Fi)

in the antifundamental representation. Note the the bar ( ) is part of
the name not a conjugation, the conjugate fields are

Q;r :( :7Q17Fi*)7 @j — (%j,@j,f:)




matter content is:

SUSY QC"
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R-charge
[Rv Qa: = —Qa-

chiral supermultiplet:
Ry = Rg—1,
normalize the R-charge by
RA* = )\,

R-charge of the gluino is 1, and the R-charge of the gluon is 0.



Group Theory: Bird Tracks

Identify the group generator with a vertex as in Fig. 77.
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Figure 1: Bird-track notation for the group generator 1'“.



Bird Tracks

quadratic Casimir Cs(r) and the indexT'(r) of the representation r,

(TE)7" (T ) Ca(r)o,’
(L) (T), = T(x)6™ |

are given diagrammaticly as

cn 8 = n ﬁ

TN 8= .

m

Figure 2:



Bird Tracks

Contracting the external legs: In the first diagram setting m equal

Figure 3:

to n and summing over n yields a factor of d(r). In the second diagram
setting a equal to b and summing yields a factor d(Ad).

d(r)Cs(r) = d(Ad)T'(r) .
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Sum over (enerators

For the fundamental representation LI
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Figure 4:

We can reduce the sums over multiple generators to an essentially topo-
logical exercise



Anomalies

Since we can define an R-charge by taking arbitrary linear combina-
tions of the U(1)r and U(1)p charges we can choose @; and Q; to have
the same R-charge. For a U(1) not be to broken by instanton effects the
SU(N)?U(1)g anomaly diagram vanishes
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Figure 5:

fermion contributes its R-charge times T'(r). Sum over gluino, quarks:
1-T(Ad) + (R— 1)T(O)2F =0 ,

__ F—-N
so R = —



Renormalization group

tree-level SUSY: Y = /29, A = ¢2. For SUSY to be a consistent
quantum symmetry these relations must be preserved under RG running.
the § function for the gauge coupling at one-loop is

_9°b
1672 7

By = Ng_z — _1(?7?;2 (%T(Ad) - %T(F) — %T(S))

For SUSY QCD:
b = (BN -F)



Renormalization group

the 3 function for the Yukawa coupling is :

(r28y = LY (F)YI + YIV(F)| +2v*yity
+Y*RTr YRYT — 3¢g2 {CT(F), Y7},

where

Yo(F) = YIityJ

YZT(F )Y7 represents the scalar loop corrections to the fermion legs
2Y*YITY® contains the 1PI vertex corrections

Y TrY*YJ represents fermion loop corrections to the scalar leg
CP'(F) is the quadratic Casimir of the fermion fields in the mth gauge
group, and represents gauge loop corrections to the fermion legs



SUSY QCD RG

For SUSY QCD the Yukawa coupling of quark ¢ with color index m,

gluino a, and antisquark 5 with color index n is given by
YI' = \/29(T*)" 6 .
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Figure 6: Feynman diagrams and associated bird-track diagrams.
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Y5(Q) = 29°Co(0), Y2(N\) = 29 2F T(0)



SUSY QCD RG

no scalar corrections corresponding to Y*¥Y17Y*. As for the fermion loop
correction it always has a quark (antisquark) and gluino for the internal
lines so we have

YETeYMYT = Yot (Vi)Y = 202 Co(0)(T%)367

m,a

gauge loop corrections are
{C(F), Y7} = (Co(0) + C2(Ad)) Y7V
all the terms in 37 proportional to Cy(CJ) cancel:

4m)23, = 2¢3(Co(0) + F 4 2C5(0) — 3C2(0) — 3N)
—V2¢°(3N — F)
= \/5(47T)259

so the relation between the Yukawa and gauge couplings is preserved
under RG running



SUSY QCD Quartic RG

SUSY also requires the D-term quartic coupling A = ¢?. The auxiliary
D* field is given by

D = g(¢* ™ (T) 7 bmi — & (T)7 bymi)
and the D-term potential is

V =3D“D"

The (@ function for a quartic scalar coupling at one-loop is

(47)2Bx = A —4H 4+ 3A + AY — 3A%,

A®) corresponds to the 1PI contribution from the quartic interactions
H corresponds to the fermion box graphs

A to the two gauge boson exchange graphs

AY to the Yukawa leg corrections

A® corresponds to the gauge leg corrections



SUSY QCD Quartic RG
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SUSY QCD Quartic RG
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Figure 8: The bird-track diagram for the sum over four generators
quickly reduces to the sum over two generators and a product of identity
matrices.



SUSY QCD Quartic RG

(" ™(T) i — G (TO) ", N (91T s — (TG )

(with flavor indices i # j, the case ¢ = j is left as an exercise) we have

A® = (2F+ N - )(Ta) (T)P +(1——)5;75g;,
—4H = —8( —%) Tap—4(1——)5g;%5g,
34 = 3(N - %)(T Tap+3(1——)5;';%55,
A= AN e

—3A° = (N — =) (T“) (T“)

individual diagrams that renormalize the gauge invariant, SUSY break-

ing, operator (¢*™ ¢,,; ) (6*P ¢,;) but the full 8 function for this operator
vanishes and the D-term ([ function satisfies

ﬁ)\ — 6g2TaTa )
592 = 2969 .

So SUSY is not anomalous at one-loop, and the  functions preserve the
relations between couplings at all scales.



SUdY RG

Figure 9: The couplings remain equal as we run below the SUSY thresh-
old M, but split apart below the non-SUSY threshold m.

If we had added dimension 4 SUSY breaking terms to the theory then
the couplings would have run differently at all scales



one-loop squark mass

Esquark(0> — _Zg )fln(Ta) f (277) LQ
— Ty [ dk? .




one-loop squark mass
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Figure 11: The quark—gluino loop correction to the squark mass.
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one-loop squark mass

(a) (b)
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Figure 12: (a) The squark—gluon loop and (b) the gluon loop.
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one-loop squark mass

Adding all the terms together we have

2(0) = (~14+4+€—(3+) 12 Ca@ay [} di> =0

The quadratic divergence in the squark mass cancels! In fact for a
massless squark all the mass corrections cancel. This means that in a
SUSY theory with a Higgs the Higgs mass is protected from quadratic
divergences from gauge interactions as well as from Yukawa interactions




Flat directions F' < N
D® = g(¢* " (T s — B (T4 Gr)

and the scalar potential is:

define dy, = (¢*"" bmi)

maximal rank F. In a SUSY vacua;:
D* = Ty™(dy, — dyy) =0

Since T'“ is a complete basis for traceless matrices, we must therefore
have that the difference of the two matrices is proportional to the identity
matrix:



Flat directions F' < N

d? can be diagonalized by an SU(N) gauge transformation
UtdU

In this diagonal basis there will be at least N — F' zero eigenvalues

(v, )

\ Yy

where v2 > 0. In this basis d,, must also be diagonal, and it must also
have N — F' zero eigenvalues. This tells us that a = 0, and hence that

dy, = d,



Flat directions F' < N

d" and d, are invariant under SU(F) x SU(F) transformations since
omi = Vi
B~ VIS )V
— <¢*jn¢mj> =dy, .

Thus, up to a flavor transformation, we can write

(o)
Gr== 4,

oo

D-term potential has flat directions, as we change the VEVs, we move
between different vacua with different particle spectra,
generically SU(N — F') gauge symmetry




Flat directions £ > N

dy and 3& are N x N positive semi-definite Hermitian matrices of max-
imal rank N in a SUSY vacuum :

dr —d. = pI .

d? can be diagonalized by an SU(N) gauge transformation:

/ o1 |? \

|va]?

| e

must also be diagonal, with eigenvalues [7;]%, so

—n

In this basis, d

m

vil* = [T:]* +p .



Flat directions £ > N

Since d;», and d,, are invariant under flavor transformations, we can

use SU(F') x SU(F) transformations to put (¢) and (¢) in the form

U1 ) \

(@) = : @@= U(])V

Y

Again we have a space of degenerate vacua. At a generic point in the
moduli space the SU(N) gauge symmetry is completely broken.




The super Higgs mechanism

a massless vector supermultiplet eats a chiral supermultiplet to form a
massive vector supermultiplet

: .lﬁ Fayet



The super Higgs mechanism

Consider the case when v; =v; =vand v; =v; =0, for ¢ > 1
SU(N) — SU(N —1) and SU(F) x SU(F) — SU(F —1) x SU(F —1).

The number of broken gauge generators is
N2—-1—-((N-12?-1)=2(N—-1)+1,
decompose the adjoint of SU(N) under SU(N — 1), we have
Ady =1+0+ 04 Adn_4

convenient basis of gauge generators is G4 = X% X¢& X T* where
A=1,....N°—-1,a=1,....N—1l,anda=1,..., (N —-1)? - 1.

Xs are the broken generators (span the coset of SU(N)/SU(N — 1)),
T's are the unbroken SU(N — 1) generators



The super Higgs mechanism

The Xs are analogs of the Pauli matrices:
( N -1
—1

XO 1 —1

0
o 0 N 0
=z, 0 XE=2|




The super Higgs mechanism

We can also define raising and lowering operators:

X+ = S5 (X} FiXF)

>
so that

0 01 0 ... 0 0

( \ [

0

+a _ 1 —a 1
AT =7 0 A=
0




The super Higgs mechanism

We can then write the sum of the product of two generators as:
GAGA = XOX0 4 XtaXx—o 4 X—e Xt 4 Tage
Expanding the squark field around its VEV (¢)
¢ — (D) + ¢,

we have

S AGH) = X%g) + >, X (o)
(@) Y4 GA= ()X O+ (¢) >, X T,

since T* annihilates (¢). label the components of the gluino field as

GANA = XOAO 4 XToATe 4 X~ A= > L Te)Ne



The super Higgs mechanism
write the quark field as

0 ' o —0 —Q
(2 q) o (5 o)

where 7 is a flavor index, o and m are color indices, (' is a matrix with
N — 1 rows and F — 1 columns, and Q is a matrix with ' — 1 rows and
N — 1 columns.

fermion mass terms generated by the Yukawa interactions:

['F mass — _\/Zg [(<¢*>XOAO + <¢*>X+QA+Q) Q
—Q (X0A(F") + XA () + hec
= —gu [/ V5t (WOA° —TOA%) WA - DA e

So we have a Dirac fermion (A°, (1/v/2)(w®—&")) with mass gv+/2(N — 1)/N,
two sets of N — 1 Dirac fermions (AT, w®), (A~%, —w®)) with mass gv,

and massless Weyl fermions @', @', 1, ¥, and (1/v/2)(w® 4+ @Y)).



The super Higgs mechanism

decompose the squark field as

o ]’L 0; - E ﬁa
¢_<Ha ¢/Tnz >’ ¢<ai amm )’

where ¢’ is a matrix with V — 1 rows and F' — 1 columns. Shifting the
scalar field by its VEV so that ¢ — (¢) + ¢ we have that the auxiliary
D4 field is given by

Do = ($")GAe) — (B)GA(F%) + (¢*)G 6 — (§)GAF™
+6 GA@) — G (0%) + ¢ GAo — 6GA 6" .



The super Higgs mechanism

picking out the mass terms in the scalar potential V' = %DADA ;

Vo = 5 | (0)X00 + °X°00) - @)X - 5x°(5"))
£2((¢7) X9 — (F) X TG ) (6" X (g) — 5X~(3")]

= & [22%5—% (bt — @ +h))

+(Ha o F*O‘)(H*a .

diagonalize the mass matrix:

H+e :%(HQ—H_Q N

H<~ = %(H*a_—H : T
h' =Re(h—h), 0
Q = —(h+h).



The super Higgs mechanism

mass terms reduce to

Vinass = g°0* [F5 (h%)? + HTH 2]

real scalar h® with mass gv\/2(N — 1)/N,
a complex scalar HT% (and its conjugate H %) with mass gv,
massless complex scalars o;, ¢, and ().

s become the longitudinal components of the massive gauge bosons,
can be removed by going to Unitary gauge



The super Higgs mechanism
We can write the gauge fields as:
GPAT = XOW) + XTOWre 4+ X—oW,* + T A% .
Then the A%2¢? terms which lead to gauge boson masses are
= GPALAT g (¢")GAGE ()

— 92guu<¢*>(XOWBXOWI9 _i_X—Fanj—aX—aWV—a + X—onIu—ozX—l—a]
= GG (SR WaW) s WIeW).

£A2¢2

identical term arising from £ 4252
gauge boson W with mass gv\/2(N —1)/N,

gauge bosons W[L" “ and W with mass gv,

the massless gauge bosons Aj; of the unbroken SU (N — 1) gauge group.

all the particles fall into supermultiplets




The super Higgs mechanism
SU(N) | SU(F) SU(F) b.d.o.f.

v=0 & [] [] 1 2NF
Q O 1 O] ONF
for v # 0 we have massive states (in Unitary gauge):
SUN—-1) | SU(F-1) SU(F—-1) b.d.o.f
W 1 1 1 4
W+ ] 1 1 4N —1)
W [] 1 1 4(N —1)

massive vector supermultiplet (WS, ho A%, (1/v/2)(w® — @)

L 2(N-1)
mwyo = gu N )

massive vector supermultiplets (W, H*, AT w®) and (W *, H™*, A%, &"

my+ = gu.



The super Higgs mechanism

for v # 0 also have the massless states:

SU(N —1) | SU(F—1) SU(F —1) b.d.o.f.
o) N m 1 OIN —1)(F —1)
(o} O 1 O 2(N — 1)(F — 1)
W 1 [ 1 2(F — 1)
¥ 1 1 N 2(F — 1)
S 1 1 1 2

quark chiral supermultiplet Q" = (¢’, Q")
gauge singlets ¢ = (o,%) and S = (1/v/2)(h + h), (1/v/2)(w® + @)

In both cases (v = 0 and v # 0) a total of 2(N? — 1) + 4FN b.d.o.f.
(and, of course, the same number of fermionic degrees of freedom).



