
SUSY gauge theories



SUSY QCD
Consider a SUSY SU(N) with F “flavors” of “quarks” and squarks

Qi = (φi, Qi,Fi), i = 1, . . . , F ,

where φ is the squark and Q is the quark.

Qi = (φi, Qi,Fi) ,

in the antifundamental representation. Note the the bar ( ) is part of
the name not a conjugation, the conjugate fields are

Q†i = (φ∗i , Q
†
i ,F∗i ), Q†i = (φ

∗
i , Q

†
i ,F∗i ).



SUSY QCD
matter content is:

SU(N) SU(F ) SU(F ) U(1)B U(1)R

Q 1 1 F−N
F

Q 1 −1 F−N
F

W = 0



R-charge
[R,Qα] = −Qα.

chiral supermultiplet:

Rψ = Rφ − 1 ,

normalize the R-charge by

Rλa = λa ,

R-charge of the gluino is 1, and the R-charge of the gluon is 0.



Group Theory: Bird Tracks
Identify the group generator with a vertex as in Fig. ??.

m
n mn

a
(T     =)r

Figure 1: Bird-track notation for the group generator T a.



Bird Tracks
quadratic Casimir C2(r) and the indexT (r) of the representation r,

(T ar )ml (T ar )ln = C2(r)δmn ,
(T ar )mn (T br )nm = T (r)δab ,

are given diagrammaticly as

δ2 n

m

n m

δ
ab

a bT(r)       =

C (r)       =

Figure 2:



Bird Tracks
Contracting the external legs: In the first diagram setting m equal

=

Figure 3:

to n and summing over n yields a factor of d(r). In the second diagram
setting a equal to b and summing yields a factor d(Ad).

d(r)C2(r) = d(Ad)T (r) .



Casimirs
d( ) = N, d(Ad) = N2 − 1
T ( ) = 1

2 , T (Ad) = N

so

C2( ) = N2−1
2N , C2(Ad) = N .



Sum over Generators
For the fundamental representation :

(T a)lp(T
a)mn = 1

2 (δlnδ
m
p − 1

N δ
l
pδ
m
n ) .

2
1 −

2Ν
1=

Figure 4:

We can reduce the sums over multiple generators to an essentially topo-
logical exercise



Anomalies
Since we can define an R-charge by taking arbitrary linear combina-

tions of the U(1)R and U(1)B charges we can choose Qi and Qi to have
the same R-charge. For a U(1) not be to broken by instanton effects the
SU(N)2U(1)R anomaly diagram vanishes

Figure 5:

fermion contributes itsR-charge times T (r). Sum over gluino, quarks:

1 · T (Ad) + (R− 1)T ( ) 2F = 0 ,

so R = F−N
F



Renormalization group
tree-level SUSY: Y =

√
2g, λ = g2. For SUSY to be a consistent

quantum symmetry these relations must be preserved under RG running.
the β function for the gauge coupling at one-loop is

βg = µ dgdµ = − g3

16π2

(
11
3 T (Ad)− 2

3T (F )− 1
3T (S)

)
≡ − g3 b

16π2 ,

For SUSY QCD:

b = (3N − F )



Renormalization group
the β function for the Yukawa coupling is :

(4π)2βjY = 1
2

[
Y †2 (F )Y j + Y jY2(F )

]
+ 2Y kY j†Y k

+Y k TrY k†Y j − 3g2
m{Cm2 (F ), Y j} ,

where

Y2(F ) ≡ Y j†Y j

Y †2 (F )Y j represents the scalar loop corrections to the fermion legs
2Y kY j†Y k contains the 1PI vertex corrections
Y k TrY k†Y j represents fermion loop corrections to the scalar leg
Cm2 (F ) is the quadratic Casimir of the fermion fields in the mth gauge
group, and represents gauge loop corrections to the fermion legs



SUSY QCD RG
For SUSY QCD the Yukawa coupling of quark i with color index m,
gluino a, and antisquark j with color index n is given by

Y jnim,a =
√

2g(T a)nmδ
j
i .

Q Qλ

φ
= Y (Q)

= Y (  )2

2

λ

= Tr Y Y
φφ

Q

λ

Q λλ

φ

Figure 6: Feynman diagrams and associated bird-track diagrams.

Y2(Q) = 2g2C2( ), Y2(λ) = 2g2 2F T ( )



SUSY QCD RG
no scalar corrections corresponding to Y kY †jY k. As for the fermion loop
correction it always has a quark (antisquark) and gluino for the internal
lines so we have

Y k TrY k†Y j = Y kqim,a (Y kqfp,b)
†Y jnfp,b = 2g2C2( )(T a)nmδ

j
i ,

gauge loop corrections are

{Cm2 (F ), Y j} = (C2( ) + C2(Ad))Y j .

all the terms in βjY proportional to C2( ) cancel:

(4π)2βjY =
√

2g3(C2( ) + F + 2C2( )− 3C2( )− 3N)
= −

√
2g3(3N − F )

=
√

2(4π)2βg

so the relation between the Yukawa and gauge couplings is preserved
under RG running



SUSY QCD Quartic RG
SUSY also requires the D-term quartic coupling λ = g2. The auxiliary
Da field is given by

Da = g(φ∗in(T a)mn φmi − φ
in

(T a)mn φ
∗
mi)

and the D-term potential is

V = 1
2D

aDa

The β function for a quartic scalar coupling at one-loop is

(4π)2βλ = Λ(2) − 4H + 3A+ ΛY − 3ΛS ,

Λ(2) corresponds to the 1PI contribution from the quartic interactions
H corresponds to the fermion box graphs
A to the two gauge boson exchange graphs
ΛY to the Yukawa leg corrections
ΛS corresponds to the gauge leg corrections



SUSY QCD Quartic RG
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Figure 7:



SUSY QCD Quartic RG
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Figure 8: The bird-track diagram for the sum over four generators
quickly reduces to the sum over two generators and a product of identity
matrices.



SUSY QCD Quartic RG
(φ∗in(T a)mn φmi − φ

in
(T a)mn φ

∗
mi)(φ

∗jq(T a)pqφpj − φ
jq

(T a)pqφ
∗
pj) ,

(with flavor indices i 6= j, the case i = j is left as an exercise) we have

Λ(2) =
(
2F +N − 6

N

)
(T a)mn (T a)pq +

(
1− 1

N2

)
δmn δ

p
q ,

−4H = −8
(
N − 2

N

)
(T a)mn (T a)pq − 4

(
1− 1

N2

)
δmn δ

p
q ,

3A = 3
(
N − 4

N

)
(T a)mn (T a)pq + 3

(
1− 1

N2

)
δmn δ

p
q ,

ΛY = 4
(
N − 1

N

)
(T a)mn (T a)pq ,

−3ΛS = −6
(
N − 1

N

)
(T a)mn (T a)pq .

individual diagrams that renormalize the gauge invariant, SUSY break-
ing, operator (φ∗miφmi)(φ∗pjφpj) but the full β function for this operator
vanishes and the D-term β function satisfies

βλ = βg2T
aT a ,

βg2 = 2gβg .

So SUSY is not anomalous at one-loop, and the β functions preserve the
relations between couplings at all scales.



SUSY RG

Figure 9: The couplings remain equal as we run below the SUSY thresh-
old M , but split apart below the non-SUSY threshold m.

If we had added dimension 4 SUSY breaking terms to the theory then
the couplings would have run differently at all scales



one-loop squark mass

Figure 10: The squark loop correction to the squark mass.

Σsquark(0) = −ig2(T a)ln(T a)ml
∫

d4k
(2π)4

i
k2

= −ig2
16π2C2( )δmn

∫ Λ2

0
dk2 .



one-loop squark mass

Figure 11: The quark–gluino loop correction to the squark mass.

Σquark−gluino(0) = (−i
√

2g)2(T a)ln(T a)ml (−1)
∫

d4k
(2π)4 Tr ik·σk2

ik·σ
k2

= −2g2C2( )δmn
∫

d4k
(2π)4

2k2

k4

= 4ig2

16π2C2( )δmn
∫ Λ2

0
dk2 .



one-loop squark mass
(a) (b)

Figure 12: (a) The squark–gluon loop and (b) the gluon loop.

Σquark−gluino(0) = (ig)2(T a)ln(T a)ml
∫

d4k
(2π)4

i
k2 k

µ(−i) (gµν+(ξ−1)
kµkν

k2
)

k2 kν

= ξig2

16π2C2( )δmn
∫ Λ2

0
dk2 ,

Σgluon(0) = 1
2 ig

2
{

(T a)ln, (T
b)ml
}
δabgµν

∫
d4k

(2π)4
i
k2 (−i) (gµν+(ξ−1)

kµkν

k2
)

k2

= −(3+ξ)ig2

16π2 C2( )δmn
∫ Λ2

0
dk2 .



one-loop squark mass
Adding all the terms together we have

Σ(0) = (−1 + 4 + ξ − (3 + ξ)) ig2

16π2C2( )δmn
∫ Λ2

0
dk2 = 0 .

The quadratic divergence in the squark mass cancels! In fact for a
massless squark all the mass corrections cancel. This means that in a
SUSY theory with a Higgs the Higgs mass is protected from quadratic
divergences from gauge interactions as well as from Yukawa interactions



Flat directions F < N

Da = g(φ∗in(T a)mn φmi − φ
in

(T a)mn φ
∗
mi)

and the scalar potential is:

V = 1
2D

aDa

define dnm ≡ 〈φ∗inφmi〉
d
n

m = 〈φinφ∗mi〉

maximal rank F . In a SUSY vacua:

Da = T amn (dnm − d
n

m) = 0

Since T a is a complete basis for traceless matrices, we must therefore
have that the difference of the two matrices is proportional to the identity
matrix:

dnm − d
n

m = αI



Flat directions F < N
dnm can be diagonalized by an SU(N) gauge transformation

U†dU

In this diagonal basis there will be at least N − F zero eigenvalues

d =



v2
1

v2
2

. . .
v2
F

0
. . .

0


where v2

i ≥ 0. In this basis d
n

m must also be diagonal, and it must also
have N − F zero eigenvalues. This tells us that α = 0, and hence that

d
n

m = dnm



Flat directions F < N
dnm and d

n

m are invariant under SU(F )×SU(F ) transformations since

φmi → φmiV
i
j ,

dnm → V ∗ji 〈φ∗in〉〈φmi〉V ij ,
→ 〈φ∗jnφmj〉 = dnm .

Thus, up to a flavor transformation, we can write

〈φ∗〉 = 〈φ〉 =



v1

. . .
vF

0 . . . 0
...

...
0 . . . 0


.

D-term potential has flat directions, as we change the VEVs, we move
between different vacua with different particle spectra,
generically SU(N − F ) gauge symmetry



Flat directions F ≥ N
dnm and d

n

m are N ×N positive semi-definite Hermitian matrices of max-
imal rank N in a SUSY vacuum :

dnm − d
n

m = ρI .

dnm can be diagonalized by an SU(N) gauge transformation:

d =


|v1|2

|v2|2
. . .

|vN |2


In this basis, d

n

m must also be diagonal, with eigenvalues |vi|2, so

|vi|2 = |vi|2 + ρ .



Flat directions F ≥ N
Since dnm and d

n

m are invariant under flavor transformations, we can
use SU(F )× SU(F ) transformations to put 〈φ〉 and 〈φ〉 in the form

〈Φ〉 =

 v1 0 . . . 0
. . .

...
...

vN 0 . . . 0

 , 〈Φ〉 =



v1

. . .
vN

0 . . . 0
...

...
0 . . . 0


.

Again we have a space of degenerate vacua. At a generic point in the
moduli space the SU(N) gauge symmetry is completely broken.



The super Higgs mechanism
a massless vector supermultiplet eats a chiral supermultiplet to form a
massive vector supermultiplet

Fayet



The super Higgs mechanism
Consider the case when v1 = v1 = v and vi = vi = 0, for i > 1

SU(N)→ SU(N − 1) and SU(F )× SU(F )→ SU(F − 1)× SU(F − 1).
The number of broken gauge generators is

N2 − 1− ((N − 1)2 − 1) = 2(N − 1) + 1 ,

decompose the adjoint of SU(N) under SU(N − 1), we have

AdN = 1 + + + AdN−1

convenient basis of gauge generators is GA = X0, Xα
1 , X

α
2 , T

a where
A = 1, . . . , N2 − 1, α = 1, . . . , N − 1, and a = 1, . . . , (N − 1)2 − 1.
Xs are the broken generators (span the coset of SU(N)/SU(N − 1)),
T s are the unbroken SU(N − 1) generators



The super Higgs mechanism
The Xs are analogs of the Pauli matrices:

X0 = 1√
2(N2−N)


N − 1

−1
−1

. . .
−1

 ,

Xα
1 = 1

2



0 . . . 0 1 0 . . . 0
0
...
0
1 0
0
...
0


, Xα

2 = 1
2



0 . . . 0 i 0 . . . 0
0
...
0
−i 0
0
...
0


,



The super Higgs mechanism
We can also define raising and lowering operators:

X±α = 1√
2
(Xα

1 ∓ iXα
2 )

so that

X+α = 1√
2



0 . . . 0 1 0 . . . 0

0


, X−α = 1√

2



0
0
...
0
1 0
0
...
0


.



The super Higgs mechanism
We can then write the sum of the product of two generators as:

GAGA = X0X0 +X+αX−α +X−αX+α + T aT a

Expanding the squark field around its VEV 〈φ〉

φ→ 〈φ〉+ φ ,

we have ∑
AG

A〈φ〉 = X0〈φ〉+
∑
αX

−α〈φ〉 ,
〈φ〉
∑
AG

A = 〈φ〉X0 + 〈φ〉
∑
αX

+α ,

since T a annihilates 〈φ〉. label the components of the gluino field as

GAλA = X0Λ0 +X+αΛ+α +X−αΛ−α + T aλa ,



The super Higgs mechanism
write the quark field as

Q =
(
ω0 ψi
ωα Q′mi

)
, Q =

(
ω0 ωα

ψ
i

Q
′im

)
,

where i is a flavor index, α and m are color indices, Q′ is a matrix with
N − 1 rows and F − 1 columns, and Q is a matrix with F − 1 rows and
N − 1 columns.

fermion mass terms generated by the Yukawa interactions:

LF mass = −
√

2g
[(
〈φ∗〉X0Λ0 + 〈φ∗〉X+αΛ+α

)
Q

−Q
(
X0Λ0〈φ∗〉+X−αΛ−α〈φ∗〉

)
+ h.c.

]
= −gv

[√
N−1
N

(
ω0Λ0 − ω0Λ0

)
+ ωαΛ+α − ωαΛ−α + h.c.

]
.

So we have a Dirac fermion (Λ0, (1/
√

2)(ω0−ω0)) with mass gv
√

2(N − 1)/N ,
two sets of N − 1 Dirac fermions (Λ+α, ωα), (Λ−α,−ωα)) with mass gv,
and massless Weyl fermions Q′, Q′, ψ, ψ, and (1/

√
2)(ω0 + ω0)).



The super Higgs mechanism
decompose the squark field as

φ =
(

h σi
Hα φ′mi

)
, φ =

(
h H

α

σi φ
′im

)
,

where φ′ is a matrix with N − 1 rows and F − 1 columns. Shifting the
scalar field by its VEV so that φ → 〈φ〉 + φ we have that the auxiliary
DA field is given by

DA

g = 〈φ∗〉GA〈φ〉 − 〈φ〉GA〈φ∗〉+ 〈φ∗〉GAφ− 〈φ〉GAφ∗
+φ∗GA〈φ〉 − φGA〈φ∗〉+ φ∗GAφ− φGAφ∗ .



The super Higgs mechanism
picking out the mass terms in the scalar potential V = 1

2D
ADA :

Vmass = g2

2

[(
〈φ∗〉X0φ+ φ∗X0〈φ〉 − 〈φ〉X0φ

∗ − φX0〈φ∗〉
)2

+2(〈φ∗〉X+αφ− 〈φ〉X+αφ
∗
)(φ∗X−α〈φ〉 − φX−α〈φ∗〉)

]
= g2v2

2

[
(N−1)2

2(N2−N)

(
h+ h∗ − (h

∗
+ h)

)2

+(Hα −H∗α)(H∗α −Hα
)
]
.

diagonalize the mass matrix:

H+α = 1√
2
(Hα −H∗α), π+α = 1√

2
(Hα +H

∗α
),

H−α = 1√
2
(H∗α −Hα

), π−α = 1√
2
(H∗α +H

α
),

h0 = Re(h− h) , π0 = Im(h− h) ,
Ω = 1√

2
(h+ h).



The super Higgs mechanism
mass terms reduce to

Vmass = g2v2
[
N−1
N (h0)2 +H+αH−α

]
.

real scalar h0 with mass gv
√

2(N − 1)/N ,
a complex scalar H+α (and its conjugate H−α) with mass gv,
massless complex scalars σi, σi, and Ω.

πs become the longitudinal components of the massive gauge bosons,
can be removed by going to Unitary gauge



The super Higgs mechanism
We can write the gauge fields as:

GBABµ = X0W 0
µ +X+αW+α

µ +X−αW−αµ + T aAaµ .

Then the A2φ2 terms which lead to gauge boson masses are

LA2φ2 = g2AAµA
B
ν g

µν〈φ∗〉GAGB〈φ〉
= g2gµν〈φ∗〉(X0W 0

µX
0W 0

ν +X+αW+α
µ X−αW−αν +X−αW−αµ X+αW+α

ν )〈φ〉
= g2v2gµν

(
N−1
2N W 0

µW
0
ν + 1

2W
+α
µ W−αν

)
.

identical term arising from L
A2φ

2

gauge boson W 0
µ with mass gv

√
2(N − 1)/N ,

gauge bosons W+α
µ and W−αµ with mass gv,

the massless gauge bosons Aaµ of the unbroken SU(N − 1) gauge group.
all the particles fall into supermultiplets



The super Higgs mechanism

v=0
SU(N) SU(F ) SU(F ) b.d.o.f.

Q 1 2NF
Q 1 2NF

for v 6= 0 we have massive states (in Unitary gauge):

SU(N − 1) SU(F − 1) SU(F − 1) b.d.o.f.
W 0 1 1 1 4
W+ 1 1 4(N − 1)
W− 1 1 4(N − 1)

massive vector supermultiplet (W 0
µ , h0, Λ0, (1/

√
2)(ω0 − ω0))

mW 0 = gv
√

2(N−1)
N ,

massive vector supermultiplets (W+α
µ , H+α,Λ+α, ωα) and (W−αµ , H−α,Λ−α, ωα)

mW± = gv.



The super Higgs mechanism
for v 6= 0 also have the massless states:

SU(N − 1) SU(F − 1) SU(F − 1) b.d.o.f.
Q′ 1 2(N − 1)(F − 1)
Q′ 1 2(N − 1)(F − 1)
ψ 1 1 2(F − 1)
ψ 1 1 2(F − 1)
S 1 1 1 2

quark chiral supermultiplet Q′ = (φ′, Q′)
gauge singlets ψ = (σ, ψ) and S = (1/

√
2)(h+ h), (1/

√
2)(ω0 + ω0)

In both cases (v = 0 and v 6= 0) a total of 2(N2 − 1) + 4FN b.d.o.f.
(and, of course, the same number of fermionic degrees of freedom).


