Introduction to AdS/CFT

D-branes

Type IIA string theory: Dp-branes p even (0,2,4,6,8)

Type IIB string theory: Dp-branes p odd (1,3,5,7,9)

10D Type IIB

two parallel D3-branes low-energy effective description: Higgsed $\mathcal{N} = 4$ SUSY gauge theory

Two parallel D3-branes

lowest energy string stretched between D3-branes: $m \propto LT$ $L \rightarrow 0$ massless particle $\subset 4D$ effective theory Dirichlet BC's \rightarrow gauge boson and superpartners D3-branes are BPS invariant under half of the SUSY charges \Rightarrow low-energy effective theory is $\mathcal{N} = 4$ SUSY gauge theory

six extra dimensions, move branes apart in six different ways moduli space $\leftrightarrow \langle \phi \rangle$ six scalars in the $\mathcal{N} = 4$ SUSY gauge multiplet

moduli space is encoded geometrically

N parallel D3-branes

low-energy effective theory is an $\mathcal{N} = 4$, U(N) gauge theory N^2 ways to connect oriented strings

Moving one of the branes \rightarrow mass for 2N - 1 of the gauge bosons $\leftrightarrow \langle \phi \rangle$ breaks $U(N) \rightarrow U(N - 1)$

gauge coupling related to string coupling g_s

$$g^2 = 4\pi g_s$$

Type IIA D4-branes

5D gauge theory, compactify 1 dimension

D4-brane shares three spatial directions with the 5-brane

$$g_4^2 = \frac{g_5^2}{L}$$

Type IIA D4-branes

3D end of the D4-brane has two coordinates on the 5-brane \leftrightarrow two real scalars

two sets of parallel BPS states: D4-branes and 5-branes each set invariant under one half of the SUSYs low-energy effective theory has $\mathcal{N} = 2$ SUSY

two real scalars \leftrightarrow scalar component of $\mathcal{N} = 2$ vector supermultiplet

moduli space is reproduced by the geometry

D-brane constructions

(a) $\mathcal{N} = 2$ SUSY (b) non-parallel NS5-branes $\leftrightarrow \mathcal{N} = 1$ SUSY

rotate one of the NS5-branes \rightarrow D4-branes can't move \leftrightarrow massive scalar breaks $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ SUSY

the non-parallel NS5-branes preserve different SUSYs

Adding Flavors

F D6-branes || one of NS5-branes along 2D of the NS5 \perp D4-branes

(a) $SU(N) \mathcal{N} = 1$, F flavors. (b) Higgsing the gauge group

strings between D4 and D6 have SU(N) color index and SU(F) flavor index, two orientations \rightarrow chiral supermultiplet and conjugate

Adding Flavors

Moving D6 in \perp direction, string between D6 and D4 has finite length \leftrightarrow adding a mass term for flavor

break the D4-branes at D6-brane and move section of the D4 between || NS5 and D6-brane \leftrightarrow squark VEV $\langle \phi \rangle \neq 0$, $\langle \overline{\phi} \rangle \neq 0 \leftrightarrow$ Higgsing

counting # of ways of moving segments \rightarrow dimension of the the moduli space = $2NF - N^2$ correct result for classical U(N) gauge theory

Seiberg Duality

(a) move NS5' through the D6 (b) move NS5' around the NS5

N D4s between NS5s join up, leaving (F - N) D4s, #R - #L fixed $\leftrightarrow SU(F - N) \mathcal{N} = 1$ SUSY gauge theory with F flavors D4s between || NS5 and D6-branes move without Higgsing SU(F - N) # ways of moving = F^2 complex dof \leftrightarrow meson in classical limit dual quarks \leftrightarrow strings from (F - N) D4s to F D4s stretched to finite length \leftrightarrow meson VEV \rightarrow dual quark mass

Lift to M-theory

to get quantum corrections

Type IIA string theory \leftrightarrow compactification of M-theory on a circle

$$g_s = (R_{10}M_{\rm Pl})^{3/2}$$

finite string coupling $g_s \leftrightarrow$ to a finite radius R_{10} eg. $\mathcal{N} = 2 SU(2)$ gauge theory \leftrightarrow two D4-branes between || NS5s NS5 is low-energy description of M5-brane D4 is low-energy description of M5-brane wrapped on circle

Lift to M-theory

D4s ending on NS5s \rightarrow single M5

M-theory curve describes a 6D space, 4D spacetime remaining 2D given by the elliptic curve of Seiberg-Witten larger gauge groups, more D4-branes, surface has more handles

M-theory brane bending

M5s not ||, bend toward or away from each other depending on the # branes "pulling" on either side move one D4 \leftrightarrow Higgsing by a $v = \langle \phi \rangle$ probe g(v)

$$g_4^2 = \frac{g_5^2}{L}$$

bending of M5-brane \leftrightarrow to running coupling

at large v bending reproduces β

M-theory not completely developed

not understood:

get quantum moduli space for $\mathcal{N} = 1$ SU(N) rather than U(N)dimension of dual quantum moduli space reduced from F^2 to $F^2 - ((F - N)^2 - 1)$

N D3 branes of Type IIB

 $E \ll 1/\sqrt{\alpha'}$, effective theory:

$$S_{\rm eff} = S_{\rm brane} + S_{\rm bulk} + S_{\rm int}$$

 $S_{\text{brane}} = \text{gauge theory}$ $S_{\text{bulk}} = \text{closed string loops} = \text{Type IIB sugra} + \text{higher dimension ops}$ 10D graviton fluctuations h:

$$g_{MN} = \eta_{MN} + \kappa_{\text{IIB}} h_{MN}$$

where $\kappa_{\text{IIB}} \sim g_s \alpha'^2$, 10D Newton's constant, has mass dimension -4

$$S_{\text{bulk}} = \frac{1}{2\kappa_{\text{IIB}}^2} \int \sqrt{g}R \sim \int (\partial h)^2 + \kappa_{\text{IIB}} (\partial h)^2 h + \dots$$

 $E \to 0 \equiv$ drop terms with positive powers of κ_{IIB} , leaves kinetic term all terms in S_{int} can be neglected \to free graviton

Equivalently, hold E, g_s, N fixed take $\alpha' \to 0$ ($\kappa_{\text{IIB}} \to 0$)

 \rightarrow free IIB sugra and 4D SU(N), $\mathcal{N} = 4$ SUSY gauge theory

Supergravity Approximation

low-energy effective theory: Type IIB supergravity with N D3-branes, source for gravity, warps the 10D space solution for the metric:

$$ds^{2} = f^{-1/2} \left(-dt^{2} + dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + f^{1/2} \left(dr^{2} + r^{2} d\Omega_{5}^{2} \right)$$

$$f = 1 + \left(\frac{R}{r} \right)^{4}, \quad R^{4} = 4\pi g_{s} \alpha'^{2} N$$

where r is radial distance from branes, and R is curvature radius observer at r measures red-shifted E_r , observer at $r = \infty$ measures

$$E = \sqrt{g_{tt}} E_r = f^{-1/4} E_r$$

 $E \to 0 \leftrightarrow$ keep states with $r \to 0$ or bulk states with $\lambda \to \infty$ two sectors decouple since long wavelengths cannot probe short-distances agreement with previous analysis states with $r \to 0 \leftrightarrow$ gauge theory, bulk states \leftrightarrow free Type IIB sugra

Near-Horizon Limit

study the states near D-branes, $r \rightarrow 0$, by change of coordinate

$$u = \frac{r}{\alpha'}$$

hold finite as $\alpha' \to 0$ low-energy (near-horizon) limit:

$$\frac{ds^2}{\alpha'} = \frac{u^2}{\sqrt{4\pi g_s N}} \left(dt^2 + dx_i^2 \right) + \sqrt{4\pi g_s N} \left(\frac{du^2}{u^2} + d\Omega_5^2 \right)$$

metric of $AdS_5 \times S^5$

identify the gauge theory with supergravity near horizon limit Maldacena's conjecture: Type IIB string theory on $AdS_5 \times S^5 \equiv 4D$ SU(N) gauge theory with $\mathcal{N} = 4$ SUSY, a CFT

so much circumstantial evidence, called AdS/CFT correspondence

Supergravity Approximation

Sugra on $AdS_5 \times S^5$ is good approximation string theory when g_s is weak and $R/\alpha'^{1/2}$ is large:

 $g_s \ll 1$, $g_s N \gg 1$

Perturbation theory is a good description of a gauge theory when

 $g^2 \ll 1 \ , \ g^2 N \ll 1$

AdS/CFT correspondence:

weakly coupled gravity \leftrightarrow large N, strongly coupled gauge theory

hard to prove but also potentially quite useful

$$\mathrm{AdS}_5 \times S^5$$

 S^5 can be embedded in a flat 6D space with constraint:

$$R^2 = \sum_{i=1}^6 Y_i^2$$
,

 S^5 space with constant positive curvature, SO(6) isometry $\leftrightarrow SU(4)_R$ symmetry of $\mathcal{N} = 4$ gauge theory

 AdS_5 can be embedded in 6D:

$$ds^{2} = -dX_{0}^{2} - dX_{5}^{2} + \sum_{i=1}^{4} dX_{i}^{2}$$

with the constraint:

$$R^{2} = X_{0}^{2} + X_{5}^{2} - \left(\sum_{i=1}^{4} X_{i}^{2}\right)$$

AdS₅ space with a constant negative curvature and $\Lambda < 0$ isometry is $SO(4, 2) \leftrightarrow$ conformal symmetry in 3+1 D

AdS Space

hyperboloid embedded in a higher dimensional space

AdS_5

change to "global" coordinates:

$$X_0 = R \cosh \rho \cos \tau \quad X_5 = R \cosh \rho \sin \tau$$
$$X_i = R \sinh \rho \Omega_i, \ i = 1, \dots, 4, \ \sum_i \Omega_i^2 = 1$$
$$ds^2 = R^2 (-\cosh^2 \rho \, d\tau^2 + d\rho^2 + \sinh^2 \rho \, d\Omega^2)$$

periodic coordinate τ going around the "waist" at $\rho = 0$ while $\rho \ge 0$ is the \perp coordinate in the horizontal direction

to get causal (rather than periodic) structure cut hyperboloid at $\tau = 0$, paste together an infinite number of copies so that τ runs from $-\infty$ to $+\infty$ causal universal covering spacetime

AdS₅: "Poincaré coordinates" $X_0 = \frac{1}{2u} \left(1 + u^2 (R^2 + \vec{x}^2 - t^2) \right), X_5 = R \, u \, t$ $X_i = R \, u \, x_i, \ i = 1, \dots, 3 \ ; \ X_4 = \frac{1}{2u} \left(1 - u^2 (R^2 - \vec{x}^2 + t^2) \right)$ $ds^2 = R^2 \left(\frac{du^2}{u^2} + u^2 (-dt^2 + d\vec{x}^2) \right)$

cover half of the space covered by the global coordinates Wick rotate to Euclidean

$$\tau \to \tau_E = -i\tau , \text{ or } t \to t_E = -it$$
$$ds_E^2 = R^2 \left(\cosh^2 \rho d\tau_E^2 + d\rho^2 + \sinh^2 \rho d\Omega^2\right)$$
$$= R^2 \left(\frac{du^2}{u^2} + u^2 (dt_E^2 + d\vec{x}^2)\right)$$

AdS₅: "Poincaré coordinates"

another coordinate choice (also referred to as Poincaré coordinates)

$$u = \frac{1}{z}$$
, $x_4 = t_E$

metric is conformally flat:

$$ds_E^2 = \frac{R^2}{z^2} \left(dz^2 + \sum_{i=1}^4 dx_i^2 \right)$$

boundary of this space is R^4 at z = 0, Wick rotation of 4D Minkowski, and a point $z = \infty$

AdS/CFT correspondence

partition functions of CFT and the string theory are related $\langle \exp \int d^4x \phi_0(x) \mathcal{O}(x) \rangle_{\text{CFT}} = Z_{\text{string}} [\phi(x, z)|_{z=0} = \phi_0(x)]$ $\mathcal{O} \subset \text{CFT} \leftrightarrow \phi \text{ AdS}_5 \text{ field}, \phi_0(x) \text{ is boundary value}$

For large N and $g^2 N$, use the supergravity approximation $Z_{\text{string}} \approx e^{-S_{\text{sugra}}[\phi(x,z)|_{z=0}=\phi_0(x)]}$

CFT Operators

$\mathcal{O} \subset \mathrm{CFT} \leftrightarrow \phi \mathrm{AdS}_5$ field

scaling dimensions of chiral operators can be calculated from R-charge

primary operators annihilated by lowering operators S_{α} and K_{μ} descendant operators obtained by raising operators Q_{α} and P_{μ} interested in the mapping of chiral primary operators

 $\mathcal{N} = 4$ multiplet $SU(4)_R$ representations: $(A_\mu, \mathbf{1}), (\lambda_\alpha, \Box), (\phi, \Box)$

Chiral Primary Operators

Operator	$SU(4)_R$	Dimension
$T^{\mu u}$	1	4
J^{μ}_R		3
$\mathrm{Tr}(\Phi^{I_1}\Phi^{I_k}), k \ge 2$	$(0, k, 0)$, \square	k
$\operatorname{Tr}(W^{\alpha}W_{\alpha}\Phi^{I_{1}}\Phi^{I_{k}})$	$(2, k, 0) \square, \square, \square, \square, \dots$	k+3
$\operatorname{Tr} \phi^k F^{\mu\nu} F_{\mu\nu} + \dots$	$(0,k,0)$ 1 , \square , \square ,	k+4

Corresponding Type IIB KK modes harmonics on S^5 , masses determined by $SU(4)_R$ irrep

lowest states form graviton supermultiplet of D = 5, gauged sugra

Waves on AdS_5

massive scalar field in AdS_5 :

$$S = \frac{1}{2} \int d^4x \, dz \sqrt{g} (g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + m^2 \phi^2)$$

Using the conformally flat Euclidean metric

$$ds_E^2 = \frac{R^2}{z^2} \left(dz^2 + \sum_{i=1}^4 dx_i^2 \right)$$

and assuming a factorized solution:

$$\phi(x,z) = e^{ip.x} f(p\,z)$$

eqm reduces to

$$z^5\partial_z\left(\frac{1}{z^3}\partial_z f\right) - z^2p^2f - m^2R^2f = 0$$

Waves on AdS_5

Writing y = pz the solutions are modified Bessel functions:

$$f(y) = \begin{cases} y^2 I_{\Delta-2}(y) & \sim & y^{\Delta}, \text{ as } y \to 0\\ y^2 K_{\Delta-2}(y) & \sim & y^{4-\Delta}, \text{ as } y \to 0 \end{cases},$$

 Δ is determined by the mass

$$\begin{split} \Delta &= 2 + \sqrt{4 + m^2 R^2} \\ y^2 I_{\Delta - 2}(y) \text{ blows up as } y \to \infty \text{: not normalizable} \\ & x \to \frac{x}{\rho} \ , \ p \to \rho p \end{split}$$

then the scalar field transforms as

$$\phi(x,z) \to \rho^{4-\Delta} e^{ip.x} f(pz)$$

conformal weight $4 - \Delta$, \leftrightarrow CFT \mathcal{O} must have dimension Δ

bulk mass, $m \leftrightarrow$ scaling dimension, Δ

Propagators on AdS_5

propagate boundary ϕ_0 into the interior:

$$\phi(x,z) = c \int d^4x' \frac{z^{\Delta}}{(z^2 + |x - x'|^2)^{\Delta}} \phi_0(x')$$

for small z the bulk field scales as $z^{4-\Delta}\phi_0(x)$

$$\partial_z \phi(x,z) = c\Delta \int d^4x' \frac{z^{\Delta-1}}{|x-x'|^{2\Delta}} \phi_0(x') + \mathcal{O}(z^{\Delta+1}) \qquad (*)$$

integrating action by parts + eqm yields:

$$S = \frac{1}{2} \int d^4 x dz \,\partial_5 \left(\frac{R^3}{z^3} \phi \partial_5 \phi\right) = \frac{1}{2} \int d^4 x \,\left(\frac{R^3}{z^3} \phi \partial_5 \phi\right)|_{z=0}$$

Using the boundary condition $\phi(x,0) = \phi_0(x)$ and (*)

$$S = \frac{cR^{3}\Delta}{2} \int d^{4}x d^{4}x' \frac{\phi_{0}(x)\phi_{0}(x')}{|x-x'|^{2\Delta}}$$

Two-Point Function of CFT

for corresponding operator ${\mathcal O}$ derived from

 $\langle \exp \int d^4x \phi_0(x) \mathcal{O}(x) \rangle_{\rm CFT} \approx e^{-S_{\rm sugra}[\phi(x,z)|_{z=0} = \phi_0(x)]}$

$$\langle \mathcal{O}(x)\mathcal{O}(x')\rangle = \frac{\delta^2 S}{\delta\phi_0(x)\,\delta\phi_0(x')} = \frac{cR^3\Delta}{|x-x'|^{2\Delta}}$$

correct scaling for dimension Δ in 4D CFT

Dimension \leftrightarrow Mass

In AdS_{d+1} :

scalars : $\Delta_{\pm} = \frac{1}{2}(d \pm \sqrt{d^2 + 4m^2R^2})$ spinors : $\Delta = \frac{1}{2}(d + 2|m|R)$ vectors : $\Delta_{\pm} = \frac{1}{2}(d \pm \sqrt{(d - 2)^2 + 4m^2R^2})$. *p*-forms: $\Delta_{\pm} = \frac{1}{2}(d \pm \sqrt{(d - 2p)^2 + 4m^2R^2})$

massless spin 2 : $\Delta = d$

for scalar requiring Δ_{\pm} is real \Rightarrow Breitenlohner–Freedman bound

$$-\frac{d^2}{4} < m^2 R^2$$

Dimension \leftrightarrow Mass

relation is expected to hold for stringy states:

$$m \sim \frac{1}{l_s} \leftrightarrow \Delta \sim (g^2 N)^{1/4}$$
$$m \sim \frac{1}{l_{\rm Pl}} \leftrightarrow \Delta \sim N^{1/4}$$

large N and large $g^2 N \leftrightarrow$ very large dimension \mathcal{M} neglected in the supergravity approximation

(N+1) D3-branes

 $SU(N+1), \mathcal{N} = 4$ SUSY gauge theory pull one of the branes distance u away $SU(N+1) \rightarrow SU(N)$ stretched string states \leftrightarrow massive gauge bosons

$$m_W = \frac{u}{\alpha'}$$

 $\Box + \overline{\Box} \text{ of } SU(N)$

 $u \to \infty \leftrightarrow \text{static quark}$

consider static quark–antiquark pair at distance r on ∂AdS_5 minimum action: string stretching from the quark to the antiquark

Wilson Loops

in AdS_5

$$\langle W(C) \rangle = e^{-\alpha(D)}$$

where D is surface of minimal area $\partial D = C$, surface $D \leftrightarrow$ to the world-

sheet of the string

 $\alpha(D)$ is a regularized area

subtract a term \propto the circumference of $C \leftrightarrow$ action of the widely separated static quarks

If C is a square in Euclidean, width r and height T (along the Euclidean time direction)

$$\langle W(C) \rangle = e^{-TV(r)}$$

Nonperturbative Coulomb potential

Using the conformally flat Euclidean metric

$$ds_E^2 = \frac{R^2}{z^2} \left(dz^2 + \sum_{i=1}^4 dx_i^2 \right)$$

scale size of C by

 $x_i \to \rho x_i$

keep $\alpha(D)$ fixed by scaling D:

 $x_i \rightarrow \rho x_i \quad z \rightarrow \rho z$

 $\alpha(D)$ is independent of $\rho,\,\alpha(D)\not\propto C\sim\rho^2$

$$V(r) \sim -\frac{\sqrt{g^2 N}}{r}$$

1/r behavior required by conformal symmetry $\sqrt{g^2 N}$ behavior is different from perturbative result

Breaking SUSY: finite temperature

take Euclidean time $(t_E = -it)$ to be periodic:

 $t_E \sim t_E + \beta \ e^{itE} \to e^{-\beta E}$

 $\leftrightarrow \text{ finite temperature 4D gauge theory} \\ \text{periodic boundary conditions for bosons} \\ \text{antiperiodic boundary conditions for fermions} \\ \end{array}$

zero-energy boson modes, no zero-energy fermion modes \rightarrow SUSY is broken Scalars will get masses from loop effects gluons are protected by gauge symmetry low-energy effective theory is pure non-SUSY Yang-Mills

high-temperature limit lose one dimension \rightarrow zero-temperature, non-SUSY, 3D Yang-Mills

AdS Finite Temperature

in AdS there is a at high T partition function dominated by a black hole metric with a horizon size $b = \pi T$

$$\frac{ds^2}{R^2} = \left(u^2 - \frac{b^4}{u^2}\right)^{-1} du^2 + \left(u^2 - \frac{b^4}{u^2}\right) d\tau^2 + u^2 dx^i dx^i$$

blackhole horizon \leftrightarrow confinement in gauge theory

Finite Temperature and Confinement $\langle W(C) \rangle = e^{-\alpha(D)}$

in black hole metric bounded by the horizon, u = bminimal area of D is area at the horizon

$$\alpha(D) = R^2 b^2 \operatorname{area}(C)$$

 \leftrightarrow area law confinement

$$V(r) = R^2 b^2 r$$

string tension is very large

$$\sigma \sim R^2 b^2 \sim \sqrt{g^2 N} \, \alpha' b^2$$

Glueballs

massless scalar field Φ in AdS₅, dilaton which couples to Tr F^2 Tr F^2 has nonzero overlap with gluon states

 $\Phi \leftrightarrow 0^{++}$ glueball

with AdS black hole metric:

$$\partial_{\mu} \left[\sqrt{g} g^{\mu\nu} \partial_{\nu} \Phi \right] = 0 , \qquad \Phi = f(u) e^{ik.x}$$
$$u^{-1} \frac{d}{du} \left(\left(u^4 - b^4 \right) u \frac{df}{du} \right) - k^2 f = 0$$

for large u, $f(u) \sim u^{\lambda}$ where $m^2 = 0 = \lambda(\lambda + 4)$ so as $u \to \infty$ either $f(u) \sim \text{constant}$ or $\sim u^{-4}$. second solution is normalizable solution need f to be regular at $u = b \Rightarrow df/du$ is finite wave guide problem, bc in the direction \perp to k

Glueball Mass Gap

no normalizable solutions for $k^2 \ge 0$ discrete eigenvalues solutions for $k^2 < 0$ 3D glueball masses

$$M_i^2 = -k_i^2 > 0$$

mass gap as expected for confining gauge theory

4D Glueball Masses

M-theory 5-brane wrapped on two circles one circle is small \rightarrow Type IIA D4-branes on a circle problem is that the supergravity limit $g \rightarrow 0, g^2 N \rightarrow \infty \not\leftrightarrow$ gauge theories we usually think about.

Strong coupling problem

 QCD_3 intrinsic scale:

$$g_3^2 N = g^2 N T$$

hold fixed as $T \to \infty$ need $g^2 N \to 0$

 QCD_4 intrinsic scale:

$$\Lambda_{\rm QCD} = \exp\left(\frac{-24\pi^2}{11\,g^2N}\right)T$$

hold fixed as $T \to \infty$ need $g^2 N \to 0$

supergravity calculation works when extra SUSY states have masses \sim glueballs

4D Glueball Masses

consider M5-branes wrapped on two circles where the M5-branes have some angular momentum \boldsymbol{a}

$$\begin{split} ds_{\text{IIA}}^2 &= \frac{2\pi\lambda A}{3u_0} u^3 \Delta^{1/2} \bigg[\begin{array}{c} 4 \big(-dx_0^2 + dx_1^2 + dx_2^2 + dx_3^2 \big) + \frac{4A^2}{9u_0^2} \, \left(1 - \frac{u_0^6}{u^6 \Delta} \right) d\theta_2^2 \\ &+ \frac{4 \, du^2}{u^4 (1 - \frac{a^4}{u^4} - \frac{u_0^6}{u^6})} d\theta^2 + \frac{\tilde{\Delta}}{u^2 \Delta} \sin^2 \theta d\varphi^2 \\ &+ \frac{1}{u^2 \Delta} \cos^2 \theta d\Omega_2^2 - \frac{4a^2 A u_0^2}{3u^6 \Delta} \sin^2 \theta d\theta_2 d\varphi \bigg] \\ & \Delta \equiv 1 - \frac{a^4 \cos^2 \theta}{u^4} \, , \quad \tilde{\Delta} \equiv 1 - \frac{a^4}{u^4} \, , \\ A \equiv \frac{u_0^4}{u_H^4 - \frac{1}{3}a^4} \, , \quad u_H^6 - a^4 u_H^2 - u_0^6 = 0 \end{split}$$

horizon u_H , dilaton background $e^{2\Phi}$, temperature T_H

$$e^{2\Phi} = \frac{8\pi}{27} \frac{A^3 \lambda^3 u^3 \Delta^{1/2}}{u_0^3} \frac{1}{N^2} , \quad R = (2\pi T_H)^{-1} = \frac{A}{3u_0}$$

when $a/u_0 \gg 1 \ R \to 0$ shrinks to zero

4D Glueball Masses

 0^{++} glueballs $\leftrightarrow \text{Tr}FF$, solve

$$\partial_{\mu} \left[\sqrt{g} e^{-2\Phi} g^{\mu\nu} \partial_{\nu} \Phi \right] = 0$$

$$0^{-+}$$
 glueballs $\leftrightarrow \text{Tr} F \tilde{F}$, solve
 $\partial_{\nu} \left[\sqrt{g} g^{\mu\rho} g^{\nu\sigma} (\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho}) \right] = 0$

discrete sets of eigenvalues, functions of a

4D Glueball Masses: $a \to \infty$

state	lattice $N = 3$	SUGRA $a = 0$	SUGRA $a \to \infty$
0^{++}	1.61 ± 0.15	1.61 (input)	1.61 (input)
0^{++*}	2.48 ± 0.23	2.55	2.56
0^{-+}	2.59 ± 0.13	2.00	2.56
0^{-+*}	3.64 ± 0.18	2.98	3.49

circle KK modes decouple \Rightarrow real 4D gauge theory 0⁺⁺ glueball mass ratios change only slightly S⁴ KK modes do not decouple

 $a/u_0 \gg 1$, approaches a SUSY limit

4D Glueball Mass

masses are within 4% of the lattice results strong-coupling expansion off by between 7% and 28% SUGRA results are much better than we have any reason to expect

Breaking SUSY: Orbifolds

Type IIB on $AdS_5 \times S^5$ KK mode	\leftrightarrow	$\mathcal{N} = 4 \mathrm{CFT}$ operator
\downarrow	orbifolding S^5	\downarrow
$\mathrm{AdS}_5 \times S^5 / \Gamma$ invariant KK mode	\leftrightarrow	$\mathcal{N} < 4 \mathrm{CFT}$ invariant operator

construct $\mathcal{N} = 1$ SUSY CFTs by orbifolding $\mathcal{N} = 4$ with discrete group Γ embedded in SU(N) using an N-fold copy of the regular representation

 \leftrightarrow Type IIB string theory on orbifold $\mathrm{AdS}_5 \times S^5/\Gamma$ For $\mathcal{N} = 1$, the $SO(6) \simeq SU(4)_R$ isometry of S^5 is broken to $U(1)_R \times \Gamma$

$Z_3 \text{ Orbifold}$ $X^{1,2,3} \to e^{2\pi i/3} X^{1,2,3} ,$

 X^i parameterize the $R^6 \bot$ to the D3-branes

where i = 1, 2, 3, SU(3) global symmetry is broken by the superpotential orbifold fixed point $X^i = 0$ volume of S^5 is nonzero, manifold is non-singular supergravity description still applicable

Z_3 Orbifold

$$\mathbf{50}
ightarrow \mathbf{10}_2 + \overline{\mathbf{10}}_{-2} + \mathbf{15}_{2/3} + \overline{\mathbf{15}}_{-2/3}$$

 Z_3 on **3** of SU(3): $(x^1, x^2, x^3) \rightarrow (e^{2\pi i/3}x^1, e^{2\pi i/3}x^2, e^{-4\pi i/3}x^3)$ **10** is contained in $\mathbf{3} \times \mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{10}$ is invariant under the Z_3 projection, **10** has correct *R*-charge $\leftrightarrow 10$ chiral primary operators $\operatorname{Tr} U^{i_1} V^{i_2} W^{i_3}$ symmetric in i_k

Z_3 Orbifold

k = 0, dilaton transforms as **1** invariant under the Z_3 projection couples to the marginal primary operator $\sum_{i=1}^{3} \operatorname{Tr} F_i^2$

result is independent of Γ

Tr F^2 is marginal in any theory obtained by Γ projection on $\mathcal{N} = 4$