
Introduction to AdS/CFT



D-branes

Type IIA string theory: Dp-branes p even (0,2,4,6,8)

Type IIB string theory: Dp-branes p odd (1,3,5,7,9)



10D Type IIB

two parallel D3-branes
low-energy effective description: Higgsed N = 4 SUSY gauge theory



Two parallel D3-branes
lowest energy string stretched between D3-branes: m ∝ LT
L→ 0 massless particle ⊂ 4D effective theory
Dirichlet BC’s → gauge boson and superpartners
D3-branes are BPS invariant under half of the SUSY charges
⇒ low-energy effective theory is N = 4 SUSY gauge theory

six extra dimensions, move branes apart in six different ways
moduli space ↔ 〈φ〉 six scalars in the N = 4 SUSY gauge multiplet

moduli space is encoded geometrically



N parallel D3-branes
low-energy effective theory is an N = 4, U(N) gauge theory

N2 ways to connect oriented strings

Moving one of the branes → mass for 2N − 1 of the gauge bosons
↔ 〈φ〉 breaks U(N)→ U(N − 1)

gauge coupling related to string coupling gs

g2 = 4πgs



Type IIA D4-branes
5D gauge theory, compactify 1 dimension

N

NS5NS5 NS5 NS5’

(a) (b)

xD4 xD4N

D4-brane shares three spatial directions with the 5-brane

g2
4 = g2

5
L



Type IIA D4-branes
3D end of the D4-brane has two coordinates on the 5-brane

↔ two real scalars

two sets of parallel BPS states: D4-branes and 5-branes
each set invariant under one half of the SUSYs
low-energy effective theory has N = 2 SUSY

two real scalars ↔ scalar component of N = 2 vector supermultiplet

moduli space is reproduced by the geometry



D-brane constructions

N

NS5NS5 NS5 NS5’

(a) (b)

xD4 xD4N

(a) N = 2 SUSY (b) non-parallel NS5-branes ↔ N = 1 SUSY

rotate one of the NS5-branes → D4-branes can’t move ↔ massive scalar
breaks N = 2 → N = 1 SUSY

the non-parallel NS5-branes preserve different SUSYs



Adding Flavors
F D6-branes || one of NS5-branes along 2D of the NS5 ⊥ D4-branes

N

NS5NS5 NS5’NS5’

(a) (b)
xD6F

xD4N

xD6F

xD4

(a) SU(N) N = 1, F flavors. (b) Higgsing the gauge group

strings between D4 and D6 have SU(N) color index and SU(F ) flavor
index, two orientations → chiral supermultiplet and conjugate



Adding Flavors
Moving D6 in ⊥ direction, string between D6 and D4 has finite length

↔ adding a mass term for flavor

break the D4-branes at D6-brane and move section of the D4 between ||
NS5 and D6-brane ↔ squark VEV 〈φ〉 6= 0, 〈φ〉 6= 0 ↔ Higgsing

counting # of ways of moving segments
→ dimension of the the moduli space = 2NF −N2

correct result for classical U(N) gauge theory



Seiberg Duality
(a) move NS5’ through the D6 (b) move NS5’ around the NS5

xD4

’’NS5NS5 NS5
NS5

(a) (b)
xD6F

xD4F

xD4

xD6F

(F−N)

xD4F

N

N D4s between NS5s join up, leaving (F −N) D4s, #R−#L fixed
↔ SU(F −N) N = 1 SUSY gauge theory with F flavors

D4s between || NS5 and D6-branes move without Higgsing SU(F −N)
# ways of moving = F 2 complex dof ↔ meson in classical limit
dual quarks ↔ strings from (F −N) D4s to F D4s
stretched to finite length ↔ meson VEV → dual quark mass



Lift to M-theory
to get quantum corrections
Type IIA string theory ↔ compactification of M-theory on a circle

gs = (R10MPl)3/2

finite string coupling gs ↔ to a finite radius R10

eg. N = 2 SU(2) gauge theory ↔ two D4-branes between || NS5s
NS5 is low-energy description of M5-brane
D4 is low-energy description of M5-brane wrapped on circle



Lift to M-theory
D4s ending on NS5s → single M5

M-theory curve describes a 6D space, 4D spacetime
remaining 2D given by the elliptic curve of Seiberg-Witten
larger gauge groups, more D4-branes, surface has more handles



M-theory brane bending
M5s not ||, bend toward or away from each other depending on the

# branes “pulling” on either side
move one D4 ↔ Higgsing by a v = 〈φ〉
probe g(v)

g2
4 = g2

5
L

bending of M5-brane ↔ to running coupling
at large v bending reproduces β

M-theory not completely developed
not understood:
get quantum moduli space for N = 1 SU(N) rather than U(N)
dimension of dual quantum moduli space reduced
from F 2 to F 2 − ((F −N)2 − 1)



N D3 branes of Type IIB
E � 1/

√
α′, effective theory:

Seff = Sbrane + Sbulk + Sint

Sbrane = gauge theory
Sbulk = closed string loops = Type IIB sugra + higher dimension ops
10D graviton fluctuations h:

gMN = ηMN + κIIB hMN

where κIIB ∼ gsα′2, 10D Newton’s constant, has mass dimension -4

Sbulk = 1
2κ2

IIB

∫ √
gR ∼

∫
(∂h)2 + κIIB(∂h)2h+ . . .

E → 0 ≡ drop terms with positive powers of κIIB, leaves kinetic term
all terms in Sint can be neglected → free graviton

Equivalently, hold E, gs, N fixed take α′ → 0 (κIIB → 0)
→ free IIB sugra and 4D SU(N), N = 4 SUSY gauge theory



Supergravity Approximation
low-energy effective theory: Type IIB supergravity withN D3-branes,

source for gravity, warps the 10D space
solution for the metric:

ds2 = f−1/2
(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+ f1/2

(
dr2 + r2dΩ2

5

)
f = 1 +

(
R
r

)4
, R4 = 4πgsα′2N

where r is radial distance from branes, and R is curvature radius
observer at r measures red-shifted Er, observer at r =∞ measures

E =
√
gttEr = f−1/4Er

E → 0 ↔ keep states with r → 0 or bulk states with λ→∞
two sectors decouple since long wavelengths cannot probe short-distances
agreement with previous analysis
states with r → 0 ↔ gauge theory, bulk states ↔ free Type IIB sugra



Near-Horizon Limit
study the states near D-branes, r → 0, by change of coordinate

u = r
α′

hold finite as α′ → 0
low-energy (near-horizon) limit:

ds2

α′ = u2√
4πgsN

(
dt2 + dx2

i

)
+
√

4πgsN
(
du2

u2 + dΩ2
5

)
metric of AdS5 × S5

identify the gauge theory with supergravity near horizon limit
Maldacena’s conjecture: Type IIB string theory on AdS5 × S5 ≡ 4D
SU(N) gauge theory with N = 4 SUSY, a CFT

so much circumstantial evidence, called AdS/CFT correspondence



Supergravity Approximation
Sugra on AdS5 × S5 is good approximation string theory when

gs is weak and R/α′1/2 is large:

gs � 1 , gsN � 1

Perturbation theory is a good description of a gauge theory when

g2 � 1 , g2N � 1

AdS/CFT correspondence:
weakly coupled gravity ↔ large N , strongly coupled gauge theory

hard to prove but also potentially quite useful



AdS5 × S5

S5 can be embedded in a flat 6D space with constraint:

R2 =
∑6
i=1 Y

2
i ,

S5 space with constant positive curvature,
SO(6) isometry ↔ SU(4)R symmetry of N = 4 gauge theory

AdS5 can be embedded in 6D:

ds2 = −dX2
0 − dX2

5 +
∑4
i=1 dX

2
i

with the constraint:

R2 = X2
0 +X2

5 −
(∑4

i=1X
2
i

)
AdS5 space with a constant negative curvature and Λ < 0
isometry is SO(4, 2) ↔ conformal symmetry in 3+1 D



AdS Space

hyperboloid embedded in a higher dimensional space



AdS5

change to “global” coordinates:

X0 = R cosh ρ cos τ X5 = R cosh ρ sin τ
Xi = R sinh ρΩi, i = 1, . . . , 4 ,

∑
i Ω2

i = 1

ds2 = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2)

periodic coordinate τ going around the “waist” at ρ = 0
while ρ ≥ 0 is the ⊥ coordinate in the horizontal direction

to get causal (rather than periodic) structure
cut hyperboloid at τ = 0, paste together an infinite number of copies so
that τ runs from −∞ to +∞
causal universal covering spacetime



AdS5: “Poincaré coordinates”
X0 = 1

2u

(
1 + u2(R2 + ~x2 − t2)

)
, X5 = Ru t

Xi = Ruxi, i = 1, . . . , 3 ; X4 = 1
2u

(
1− u2(R2 − ~x2 + t2)

)
ds2 = R2

(
du2

u2 + u2(−dt2 + d~x2)
)

cover half of the space covered by the global coordinates
Wick rotate to Euclidean

τ → τE = −iτ , or t→ tE = −it

ds2
E = R2

(
cosh2 ρdτ2

E + dρ2 + sinh2 ρdΩ2
)

= R2
(
du2

u2 + u2(dt2E + d~x2)
)



AdS5: “Poincaré coordinates”
another coordinate choice (also referred to as Poincaré coordinates)

u = 1
z , x4 = tE

metric is conformally flat:

ds2
E = R2

z2

(
dz2 +

∑4
i=1 dx

2
i

)
boundary of this space is R4 at z = 0, Wick rotation of 4D Minkowski,
and a point z =∞



AdS/CFT correspondence
partition functions of CFT and the string theory are related

〈exp
∫
d4xφ0(x)O(x)〉CFT = Zstring [φ(x, z)|z=0 = φ0(x)]

O ⊂ CFT ↔ φ AdS5 field, φ0(x) is boundary value

For large N and g2N , use the supergravity approximation

Zstring ≈ e−Ssugra[φ(x,z)|z=0=φ0(x)]



CFT Operators
O ⊂ CFT ↔ φ AdS5 field

scaling dimensions of chiral operators can be calculated from R-charge

primary operators annihilated by lowering operators Sα and Kµ

descendant operators obtained by raising operators Qα and Pµ
interested in the mapping of chiral primary operators

N = 4 multiplet SU(4)R representations:
(Aµ, 1), (λα, ), (φ, )



Chiral Primary Operators
Operator SU(4)R Dimension
Tµν 1 4

JµR 3

Tr(ΦI1 ...ΦIk), k ≥ 2 (0, k, 0) , , , . . . k

Tr(WαWαΦI1 ...ΦIk) (2, k, 0) , , , . . . k + 3

TrφkFµνFµν + ... (0, k, 0) 1, , , . . . k + 4



Corresponding Type IIB KK modes
harmonics on S5, masses determined by SU(4)R irrep

Spin SU(4)R ∼ SO(6) m2R2 Operator
2 1, , , . . . k(k + 4) , k ≥ 0 k=0, Tµν

1 , , , . . . (k − 1)(k + 1) , k ≥ 1 k = 1, JµR

0 , , , . . . k(k − 4) , k ≥ 2 Tr(ΦI1 ...ΦIk)

0 , , , . . . (k − 1)(k + 3) , k ≥ 0 Tr(WαWαΦI1 ...ΦIk)

0 1, , , . . . k(k + 4) , k ≥ 0 TrφkFµνFµν + ...

lowest states form graviton supermultiplet of D = 5, gauged sugra



Waves on AdS5

massive scalar field in AdS5:

S = 1
2

∫
d4x dz

√
g(gµν∂µφ∂νφ+m2φ2)

Using the conformally flat Euclidean metric

ds2
E = R2

z2

(
dz2 +

∑4
i=1 dx

2
i

)
and assuming a factorized solution:

φ(x, z) = eip.xf(p z)

eqm reduces to

z5∂z
(

1
z3 ∂zf

)
− z2p2f −m2R2f = 0



Waves on AdS5
Writing y = pz the solutions are modified Bessel functions:

f(y) =
{

y2I∆−2(y) ∼ y∆, as y → 0
y2K∆−2(y) ∼ y4−∆, as y → 0 ,

∆ is determined by the mass

∆ = 2 +
√

4 +m2R2

y2I∆−2(y) blows up as y →∞: not normalizable

x→ x
ρ , p→ ρp

then the scalar field transforms as

φ(x, z)→ ρ4−∆eip.xf(pz)

conformal weight 4−∆, ↔ CFT O must have dimension ∆

bulk mass, m ↔ scaling dimension, ∆



Propagators on AdS5

propagate boundary φ0 into the interior:

φ(x, z) = c
∫
d4x′ z∆

(z2+|x−x′|2)∆φ0(x′)

for small z the bulk field scales as z4−∆φ0(x)

∂zφ(x, z) = c∆
∫
d4x′ z∆−1

|x−x′|2∆φ0(x′) +O(z∆+1) (∗)

integrating action by parts + eqm yields:

S = 1
2

∫
d4xdz ∂5

(
R3

z3 φ∂5φ
)

= 1
2

∫
d4x

(
R3

z3 φ∂5φ
)
|z=0

Using the boundary condition φ(x, 0) = φ0(x) and (*)

S = cR3∆
2

∫
d4xd4x′ φ0(x)φ0(x′)

|x−x′|2∆



Two-Point Function of CFT
for corresponding operator O derived from

〈exp
∫
d4xφ0(x)O(x)〉CFT ≈ e−Ssugra[φ(x,z)|z=0=φ0(x)]

〈O(x)O(x′)〉 = δ2S
δφ0(x) δφ0(x′) = cR3∆

|x−x′|2∆

correct scaling for dimension ∆ in 4D CFT



Dimension ↔ Mass
In AdSd+1:

scalars : ∆± = 1
2 (d±

√
d2 + 4m2R2)

spinors : ∆ = 1
2 (d+ 2|m|R)

vectors : ∆± = 1
2 (d±

√
(d− 2)2 + 4m2R2)

p-forms: ∆± = 1
2 (d±

√
(d− 2p)2 + 4m2R2)

massless spin 2 : ∆ = d

.

for scalar requiring ∆± is real ⇒ Breitenlohner–Freedman bound

−d
2

4 < m2R2



Dimension ↔ Mass
relation is expected to hold for stringy states:

m ∼ 1
ls
↔ ∆ ∼ (g2N)1/4

m ∼ 1
lPl
↔ ∆ ∼ N1/4

large N and large g2N ↔ very large dimension M
neglected in the supergravity approximation



(N + 1) D3-branes
SU(N + 1), N = 4 SUSY gauge theory

pull one of the branes distance u away SU(N + 1)→ SU(N)
stretched string states ↔ massive gauge bosons

mW = u
α′

+ of SU(N)

u→∞ ↔ static quark

consider static quark–antiquark pair at distance r on ∂AdS5

minimum action: string stretching from the quark to the antiquark



Wilson Loops
in AdS5

〈W (C)〉 = e−α(D)

where D is surface of minimal area ∂D = C, surface D ↔ to the world-

sheet of the string

α(D) is a regularized area
subtract a term ∝ the circumference of C ↔ action of the widely sepa-
rated static quarks

If C is a square in Euclidean, width r and height T (along the Eu-
clidean time direction)

〈W (C)〉 = e−TV (r)



Nonperturbative Coulomb potential
Using the conformally flat Euclidean metric

ds2
E = R2

z2

(
dz2 +

∑4
i=1 dx

2
i

)
scale size of C by

xi → ρ xi

keep α(D) fixed by scaling D:

xi → ρ xi z → ρ z

α(D) is independent of ρ, α(D) 6∝ C ∼ ρ2

V (r) ∼ −
√
g2N

r

1/r behavior required by conformal symmetry√
g2N behavior is different from perturbative result



Breaking SUSY: finite temperature
take Euclidean time (tE = −it) to be periodic:

tE ∼ tE + β eitE → e−βE

↔ finite temperature 4D gauge theory
periodic boundary conditions for bosons
antiperiodic boundary conditions for fermions

zero-energy boson modes, no zero-energy fermion modes
→ SUSY is broken
Scalars will get masses from loop effects
gluons are protected by gauge symmetry
low-energy effective theory is pure non-SUSY Yang-Mills

high-temperature limit lose one dimension
→ zero-temperature, non-SUSY, 3D Yang-Mills



AdS Finite Temperature
in AdS there is a at high T partition function dominated by a black

hole metric with a horizon size b = πT

ds2

R2 =
(
u2 − b4

u2

)−1

du2 +
(
u2 − b4

u2

)
dτ2 + u2dxidxi

blackhole horizon ↔ confinement in gauge theory



Finite Temperature and Confinement
〈W (C)〉 = e−α(D)

in black hole metric bounded by the horizon, u = b
minimal area of D is area at the horizon

α(D) = R2b2 area(C)

↔ area law confinement

V (r) = R2b2r

string tension is very large

σ ∼ R2b2 ∼
√
g2N α′b2



Glueballs
massless scalar field Φ in AdS5, dilaton which couples to Tr F 2

Tr F 2 has nonzero overlap with gluon states
Φ ↔ 0++ glueball
with AdS black hole metric:

∂µ
[√
ggµν∂νΦ

]
= 0 , Φ = f(u)eik.x

u−1 d
du

((
u4 − b4

)
u dfdu

)
− k2f = 0

for large u, f(u) ∼ uλ where m2 = 0 = λ(λ+ 4) so as u→∞ either
f(u) ∼ constant or ∼ u−4.
second solution is normalizable solution
need f to be regular at u = b ⇒ df/du is finite
wave guide problem, bc in the direction ⊥ to k



Glueball Mass Gap

no normalizable solutions for k2 ≥ 0
discrete eigenvalues solutions for k2 < 0
3D glueball masses

M2
i = −k2

i > 0

mass gap as expected for confining gauge theory



4D Glueball Masses
M-theory 5-brane wrapped on two circles

one circle is small → Type IIA D4-branes on a circle
problem is that the supergravity limit g → 0, g2N →∞ 6↔ gauge theories
we usually think about.



Strong coupling problem
QCD3 intrinsic scale:

g2
3N = g2NT

hold fixed as T →∞ need g2N → 0

QCD4 intrinsic scale:

ΛQCD = exp
(
−24π2

11 g2N

)
T

hold fixed as T →∞ need g2N → 0
supergravity calculation works when extra SUSY states have masses

∼ glueballs



4D Glueball Masses
consider M5-branes wrapped on two circles where the M5-branes have

some angular momentum a

ds2
IIA = 2πλA

3u0
u3∆1/2

[
4
(
− dx2

0 + dx2
1 + dx2

2 + dx2
3

)
+ 4A2

9u2
0

(1− u6
0

u6∆ )dθ2
2

+ 4 du2

u4(1− a4

u4−
u6

0
u6 )

dθ2 + ∆̃
u2∆ sin2 θdϕ2

+ 1
u2∆ cos2 θdΩ2

2 −
4a2Au2

0
3u6∆ sin2 θdθ2dϕ

]
∆ ≡ 1− a4 cos2 θ

u4 , ∆̃ ≡ 1− a4

u4 ,

A ≡ u4
0

u4
H
− 1

3a
4 , u6

H − a4u2
H − u6

0 = 0

horizon uH , dilaton background e2Φ, temperature TH

e2Φ = 8π
27

A3λ3u3∆1/2

u3
0

1
N2 , R = (2πTH)−1 = A

3u0

when a/u0 � 1 R→ 0 shrinks to zero



4D Glueball Masses
0++ glueballs ↔ TrFF , solve

∂µ
[√
ge−2Φgµν∂νΦ

]
= 0

0−+ glueballs ↔ TrFF̃ , solve

∂ν
[√
ggµρgνσ(∂ρAσ − ∂σAρ)

]
= 0

discrete sets of eigenvalues, functions of a



4D Glueball Masses: a→∞
state lattice N = 3 SUGRA a = 0 SUGRA a→∞
0++ 1.61± 0.15 1.61 (input) 1.61 (input)
0++∗ 2.48± 0.23 2.55 2.56
0−+ 2.59 ±0.13 2.00 2.56
0−+∗ 3.64 ±0.18 2.98 3.49

circle KK modes decouple ⇒ real 4D gauge theory
0++ glueball mass ratios change only slightly
S4 KK modes do not decouple

a/u0 � 1, approaches a SUSY limit



4D Glueball Mass

++

0

0 0++

0−+

0−+ 0−+

0−+* *

++ ++** 0

0.5

1

1.5

2

2.5

Lattice Supergravity

SupergravityLattice

masses are within 4% of the lattice results
strong-coupling expansion off by between 7% and 28%
SUGRA results are much better than we have any reason to expect



Breaking SUSY: Orbifolds

Type IIB on AdS5 × S5 ↔ N = 4 CFT
KK mode operator

↓ orbifolding S5 ↓

AdS5 × S5/Γ ↔ N < 4 CFT
invariant KK mode invariant operator

construct N = 1 SUSY CFTs by orbifolding N = 4with discrete
group Γ embedded in SU(N) using an N -fold copy of the regular repre-
sentation
↔ Type IIB string theory on orbifold AdS5 × S5/Γ

For N = 1, the SO(6) ' SU(4)R isometry of S5 is broken to U(1)R × Γ



Z3 Orbifold
X1,2,3 → e2πi/3X1,2,3 ,

Xi parameterize the R6⊥ to the D3-branes

SU(N) SU(N) SU(N) U(1)R
U i 1 2

3

V i 1 2
3

W i 1 2
3

,

where i = 1, 2, 3, SU(3) global symmetry is broken by the superpotential
orbifold fixed point Xi = 0
volume of S5 is nonzero, manifold is non-singular
supergravity description still applicable



Z3 Orbifold
KK modes of supergravity on AdS5 × S5/Z3 are Z3 invariant

for example, the KK mode
Spin SU(4)R ∼ SO(6) m2R2 Operator

0 , , , . . . k(k − 4) , k ≥ 2 Tr(ΦI1 ...ΦIk)
with k = 3, = 50 of SU(4)R couples to a dim 3 chiral primary op
SU(4)R → SU(3)× U(1)R gives:

50→ 102 + 10−2 + 152/3 + 15−2/3

Z3 on 3 of SU(3): (x1, x2, x3)→ (e2πi/3x1, e2πi/3x2, e−4πi/3x3)
10 is contained in 3× 3× 3 ⇒ 10 is invariant under the Z3 projection,
10 has correct R-charge
↔10 chiral primary operators TrU i1V i2W i3 symmetric in ik



Z3 Orbifold
Spin SU(4)R ∼ SO(6) m2R2 Operator

0 1, , , . . . k(k + 4) , k ≥ 0 TrφkFµνFµν + ...

k = 0, dilaton transforms as 1 invariant under the Z3 projection
couples to the marginal primary operator

∑3
i=1 TrF 2

i

result is independent of Γ
TrF 2 is marginal in any theory obtained by Γ projection on N = 4


