Introduction to AdS/CFT

D-branes

Type IIA string theory: Dp-branes p even $(0,2,4,6,8)$

Type IIB string theory: Dp-branes p odd (1,3,5,7,9)

10D Type IIB

two parallel D3-branes
low-energy effective description: Higgsed $\mathcal{N}=4$ SUSY gauge theory

Two parallel D3-branes

lowest energy string stretched between D3-branes: $m \propto L T$ $L \rightarrow 0$ massless particle $\subset 4 \mathrm{D}$ effective theory Dirichlet BC's \rightarrow gauge boson and superpartners D3-branes are BPS invariant under half of the SUSY charges \Rightarrow low-energy effective theory is $\mathcal{N}=4$ SUSY gauge theory
six extra dimensions, move branes apart in six different ways moduli space $\leftrightarrow\langle\phi\rangle$ six scalars in the $\mathcal{N}=4$ SUSY gauge multiplet
moduli space is encoded geometrically

N parallel D3-branes

low-energy effective theory is an $\mathcal{N}=4, U(N)$ gauge theory N^{2} ways to connect oriented strings

Moving one of the branes \rightarrow mass for $2 N-1$ of the gauge bosons $\leftrightarrow\langle\phi\rangle$ breaks $U(N) \rightarrow U(N-1)$
gauge coupling related to string coupling g_{s}

$$
g^{2}=4 \pi g_{s}
$$

Type IIA D4-branes

5 D gauge theory, compactify 1 dimension
(a)

(b)

D4-brane shares three spatial directions with the 5 -brane

$$
g_{4}^{2}=\frac{g_{5}^{2}}{L}
$$

Type IIA D4-branes

3 D end of the D 4 -brane has two coordinates on the 5 -brane \leftrightarrow two real scalars
two sets of parallel BPS states: D4-branes and 5-branes each set invariant under one half of the SUSYs low-energy effective theory has $\mathcal{N}=2$ SUSY
two real scalars \leftrightarrow scalar component of $\mathcal{N}=2$ vector supermultiplet
moduli space is reproduced by the geometry

D-brane constructions

(b)

(a) $\mathcal{N}=2$ SUSY (b) non-parallel NS5-branes $\leftrightarrow \mathcal{N}=1$ SUSY
rotate one of the NS5-branes \rightarrow D4-branes can't move \leftrightarrow massive scalar breaks $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ SUSY
the non-parallel NS5-branes preserve different SUSYs

Adding Flavors

F D6-branes || one of NS5-branes along 2D of the NS5 \perp D4-branes

(a) $S U(N) \mathcal{N}=1, F$ flavors. (b) Higgsing the gauge group
strings between D4 and D6 have $S U(N)$ color index and $S U(F)$ flavor index, two orientations \rightarrow chiral supermultiplet and conjugate

Adding Flavors

Moving D6 in \perp direction, string between D6 and D4 has finite length \leftrightarrow adding a mass term for flavor
break the D4-branes at D6-brane and move section of the D4 between || NS5 and D6-brane \leftrightarrow squark VEV $\langle\phi\rangle \neq 0,\langle\bar{\phi}\rangle \neq 0 \leftrightarrow$ Higgsing
counting \# of ways of moving segments
\rightarrow dimension of the the moduli space $=2 N F-N^{2}$
correct result for classical $U(N)$ gauge theory

Seiberg Duality

(a) move NS5' through the D6 (b) move NS5' around the NS5
(a)

(b)

N D4s between NS5s join up, leaving $(F-N) \mathrm{D} 4 \mathrm{~s}$, \#R-\#L fixed $\leftrightarrow S U(F-N) \mathcal{N}=1$ SUSY gauge theory with F flavors
D4s between || NS5 and D6-branes move without Higgsing $S U(F-N)$ \# ways of moving $=F^{2}$ complex dof \leftrightarrow meson in classical limit dual quarks \leftrightarrow strings from $(F-N) \mathrm{D} 4$ s to $F \mathrm{D} 4$ s stretched to finite length \leftrightarrow meson VEV \rightarrow dual quark mass

Lift to M-theory

to get quantum corrections
Type IIA string theory \leftrightarrow compactification of M-theory on a circle

$$
g_{s}=\left(R_{10} M_{\mathrm{Pl}}\right)^{3 / 2}
$$

finite string coupling $g_{s} \leftrightarrow$ to a finite radius R_{10} eg. $\mathcal{N}=2 S U(2)$ gauge theory \leftrightarrow two D4-branes between || NS5s NS5 is low-energy description of M5-brane
D4 is low-energy description of M5-brane wrapped on circle

Lift to M-theory

D4s ending on NS5s \rightarrow single M5

M-theory curve describes a 6 D space, 4 D spacetime remaining 2D given by the elliptic curve of Seiberg-Witten larger gauge groups, more D4-branes, surface has more handles

M-theory brane bending

M5s not ||, bend toward or away from each other depending on the \# branes "pulling" on either side move one D $4 \leftrightarrow$ Higgsing by a $v=\langle\phi\rangle$ probe $g(v)$

$$
g_{4}^{2}=\frac{g_{5}^{2}}{L}
$$

bending of M5-brane \leftrightarrow to running coupling at large v bending reproduces β

M-theory not completely developed
not understood:
get quantum moduli space for $\mathcal{N}=1 S U(N)$ rather than $U(N)$ dimension of dual quantum moduli space reduced from F^{2} to $F^{2}-\left((F-N)^{2}-1\right)$

N D3 branes of Type IIB

$E \ll 1 / \sqrt{\alpha^{\prime}}$, effective theory:

$$
S_{\mathrm{eff}}=S_{\mathrm{brane}}+S_{\mathrm{bulk}}+S_{\mathrm{int}}
$$

$S_{\text {brane }}=$ gauge theory
$S_{\text {bulk }}=$ closed string loops $=$ Type IIB sugra + higher dimension ops 10D graviton fluctuations h :

$$
g_{M N}=\eta_{M N}+\kappa_{\mathrm{IIB}} h_{M N}
$$

where $\kappa_{\text {IIB }} \sim g_{s} \alpha^{\prime 2}, 10 \mathrm{D}$ Newton's constant, has mass dimension -4

$$
S_{\mathrm{bulk}}=\frac{1}{2 \kappa_{\mathrm{IIB}}^{2}} \int \sqrt{g} R \sim \int(\partial h)^{2}+\kappa_{\mathrm{IIB}}(\partial h)^{2} h+\ldots
$$

$E \rightarrow 0 \equiv$ drop terms with positive powers of $\kappa_{\text {IIB }}$, leaves kinetic term all terms in $S_{\text {int }}$ can be neglected \rightarrow free graviton

Equivalently, hold E, g_{s}, N fixed take $\alpha^{\prime} \rightarrow 0\left(\kappa_{\text {IIB }} \rightarrow 0\right)$
\rightarrow free IIB sugra and 4D $\operatorname{SU}(N), \mathcal{N}=4$ SUSY gauge theory

Supergravity Approximation

low-energy effective theory: Type IIB supergravity with N D3-branes, source for gravity, warps the 10D space solution for the metric:

$$
\begin{aligned}
d s^{2} & =f^{-1 / 2}\left(-d t^{2}+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)+f^{1 / 2}\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right) \\
f & =1+\left(\frac{R}{r}\right)^{4}, \quad R^{4}=4 \pi g_{s} \alpha^{\prime 2} N
\end{aligned}
$$

where r is radial distance from branes, and R is curvature radius observer at r measures red-shifted E_{r}, observer at $r=\infty$ measures

$$
E=\sqrt{g_{t t}} E_{r}=f^{-1 / 4} E_{r}
$$

$E \rightarrow 0 \leftrightarrow$ keep states with $r \rightarrow 0$ or bulk states with $\lambda \rightarrow \infty$
two sectors decouple since long wavelengths cannot probe short-distances agreement with previous analysis
states with $r \rightarrow 0 \leftrightarrow$ gauge theory, bulk states \leftrightarrow free Type IIB sugra

Near-Horizon Limit

study the states near D-branes, $r \rightarrow 0$, by change of coordinate

$$
u=\frac{r}{\alpha^{\prime}}
$$

hold finite as $\alpha^{\prime} \rightarrow 0$
low-energy (near-horizon) limit:

$$
\frac{d s^{2}}{\alpha^{\prime}}=\frac{u^{2}}{\sqrt{4 \pi g_{s} N}}\left(d t^{2}+d x_{i}^{2}\right)+\sqrt{4 \pi g_{s} N}\left(\frac{d u^{2}}{u^{2}}+d \Omega_{5}^{2}\right)
$$

metric of $\mathrm{AdS}_{5} \times S^{5}$
identify the gauge theory with supergravity near horizon limit Maldacena's conjecture: Type IIB string theory on $\mathrm{AdS}_{5} \times S^{5} \equiv 4 \mathrm{D}$ $\operatorname{SU}(N)$ gauge theory with $\mathcal{N}=4$ SUSY, a CFT
so much circumstantial evidence, called AdS/CFT correspondence

Supergravity Approximation

Sugra on $\operatorname{AdS}_{5} \times S^{5}$ is good approximation string theory when g_{s} is weak and $R / \alpha^{1 / 2}$ is large:

$$
g_{s} \ll 1, g_{s} N \gg 1
$$

Perturbation theory is a good description of a gauge theory when

$$
g^{2} \ll 1, g^{2} N \ll 1
$$

AdS/CFT correspondence: weakly coupled gravity \leftrightarrow large N, strongly coupled gauge theory
hard to prove but also potentially quite useful

$\operatorname{AdS}_{5} \times S^{5}$

S^{5} can be embedded in a flat 6 D space with constraint:

$$
R^{2}=\sum_{i=1}^{6} Y_{i}^{2}
$$

S^{5} space with constant positive curvature,
$S O(6)$ isometry $\leftrightarrow S U(4)_{R}$ symmetry of $\mathcal{N}=4$ gauge theory
AdS_{5} can be embedded in 6 D :

$$
d s^{2}=-d X_{0}^{2}-d X_{5}^{2}+\sum_{i=1}^{4} d X_{i}^{2}
$$

with the constraint:

$$
R^{2}=X_{0}^{2}+X_{5}^{2}-\left(\sum_{i=1}^{4} X_{i}^{2}\right)
$$

AdS_{5} space with a constant negative curvature and $\Lambda<0$ isometry is $S O(4,2) \leftrightarrow$ conformal symmetry in $3+1 \mathrm{D}$

AdS Space

hyperboloid embedded in a higher dimensional space

AdS_{5}

change to "global" coordinates:

$$
\begin{aligned}
X_{0} & =R \cosh \rho \cos \tau \quad X_{5}=R \cosh \rho \sin \tau \\
X_{i} & =R \sinh \rho \Omega_{i}, i=1, \ldots, 4, \quad \sum_{i} \Omega_{i}^{2}=1 \\
d s^{2} & =R^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega^{2}\right)
\end{aligned}
$$

periodic coordinate τ going around the "waist" at $\rho=0$ while $\rho \geq 0$ is the \perp coordinate in the horizontal direction
to get causal (rather than periodic) structure cut hyperboloid at $\tau=0$, paste together an infinite number of copies so that τ runs from $-\infty$ to $+\infty$ causal universal covering spacetime

$$
\begin{gathered}
\text { AdS }_{5}: \text { "Poincaré coordinates" } \\
\begin{array}{c}
X_{0}=\frac{1}{2 u}\left(1+u^{2}\left(R^{2}+\vec{x}^{2}-t^{2}\right)\right), X_{5}=R u t \\
X_{i}=R u x_{i}, i=1, \ldots, 3 ; X_{4}=\frac{1}{2 u}\left(1-u^{2}\left(R^{2}-\vec{x}^{2}+t^{2}\right)\right) \\
d s^{2}=R^{2}\left(\frac{d u^{2}}{u^{2}}+u^{2}\left(-d t^{2}+d \vec{x}^{2}\right)\right)
\end{array} .
\end{gathered}
$$

cover half of the space covered by the global coordinates Wick rotate to Euclidean

$$
\begin{aligned}
& \tau \rightarrow \tau_{E}=-i \tau, \text { or } t \rightarrow t_{E}=-i t \\
d s_{E}^{2} & =R^{2}\left(\cosh ^{2} \rho d \tau_{E}^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega^{2}\right) \\
& =R^{2}\left(\frac{d u^{2}}{u^{2}}+u^{2}\left(d t_{E}^{2}+d \vec{x}^{2}\right)\right)
\end{aligned}
$$

AdS $_{5}$: "Poincaré coordinates"

another coordinate choice (also referred to as Poincaré coordinates)

$$
u=\frac{1}{z}, \quad x_{4}=t_{E}
$$

metric is conformally flat:

$$
d s_{E}^{2}=\frac{R^{2}}{z^{2}}\left(d z^{2}+\sum_{i=1}^{4} d x_{i}^{2}\right)
$$

boundary of this space is R^{4} at $z=0$, Wick rotation of 4D Minkowski, and a point $z=\infty$

AdS/CFT correspondence

partition functions of CFT and the string theory are related

$$
\left\langle\exp \int d^{4} x \phi_{0}(x) \mathcal{O}(x)\right\rangle_{\mathrm{CFT}}=Z_{\text {string }}\left[\left.\phi(x, z)\right|_{z=0}=\phi_{0}(x)\right]
$$

$\mathcal{O} \subset \mathrm{CFT} \leftrightarrow \phi \mathrm{AdS}_{5}$ field, $\phi_{0}(x)$ is boundary value

For large N and $g^{2} N$, use the supergravity approximation

$$
Z_{\text {string }} \approx e^{-S_{\text {sugra }}\left[\left.\phi(x, z)\right|_{z=0}=\phi_{0}(x)\right]}
$$

CFT Operators

$\mathcal{O} \subset \mathrm{CFT} \leftrightarrow \phi \mathrm{AdS}_{5}$ field
scaling dimensions of chiral operators can be calculated from R-charge
primary operators annihilated by lowering operators S_{α} and K_{μ} descendant operators obtained by raising operators Q_{α} and P_{μ} interested in the mapping of chiral primary operators
$\mathcal{N}=4$ multiplet $S U(4)_{R}$ representations:
$\left(A_{\mu}, \mathbf{1}\right),\left(\lambda_{\alpha}, \square\right),(\phi, \boxminus)$

Chiral Primary Operators

Operator	$S U(4)_{R}$	Dimension
$T^{\mu \nu}$	$\mathbf{1}$	4
J_{R}^{μ}	\square	3
$\operatorname{Tr}\left(\Phi^{I_{1}} \ldots \Phi^{I_{k}}\right), k \geq 2$	$(0, k, 0) \square, \square, \square, \ldots$	k
$\operatorname{Tr}\left(W^{\alpha} W_{\alpha} \Phi^{I_{1}} \ldots \Phi^{I_{k}}\right)$	$(2, k, 0) \square, \square \square, \square \square, \ldots$	$k+3$
$\operatorname{Tr} \phi^{k} F^{\mu \nu} F_{\mu \nu}+\ldots$	$(0, k, 0) \mathbf{1}, \square, \square, \ldots$	$k+4$

Corresponding Type IIB KK modes

harmonics on S^{5}, masses determined by $S U(4)_{R}$ irrep

Spin	$S U(4)_{R} \sim S O(6)$	$m^{2} R^{2}$	Operator
2	$\mathbf{1}, \square, \square, \ldots$	$k(k+4), k \geq 0$	$\mathrm{k}=0, T^{\mu \nu}$
1	$\square, \square, \square, \ldots$	$(k-1)(k+1), k \geq 1$	$k=1, J_{R}^{\mu}$
0	$\square, \square, \square, \ldots$	$k(k-4), k \geq 2$	$\operatorname{Tr}\left(\Phi^{I_{1}} \ldots \Phi^{I_{k}}\right)$
0	$\square, \square \square, \square \square, \ldots$	$(k-1)(k+3), k \geq 0$	$\operatorname{Tr}\left(W^{\alpha} W_{\alpha} \Phi^{I_{1}} \ldots \Phi^{I_{k}}\right)$
0	$\mathbf{1}, \square, \square, \ldots$	$k(k+4), k \geq 0$	$\operatorname{Tr} \phi^{k} F^{\mu \nu} F_{\mu \nu}+\ldots$

lowest states form graviton supermultiplet of $D=5$, gauged sugra

Waves on AdS_{5}

massive scalar field in AdS_{5} :

$$
S=\frac{1}{2} \int d^{4} x d z \sqrt{g}\left(g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+m^{2} \phi^{2}\right)
$$

Using the conformally flat Euclidean metric

$$
d s_{E}^{2}=\frac{R^{2}}{z^{2}}\left(d z^{2}+\sum_{i=1}^{4} d x_{i}^{2}\right)
$$

and assuming a factorized solution:

$$
\phi(x, z)=e^{i p . x} f(p z)
$$

eqm reduces to

$$
z^{5} \partial_{z}\left(\frac{1}{z^{3}} \partial_{z} f\right)-z^{2} p^{2} f-m^{2} R^{2} f=0
$$

Waves on AdS_{5}

Writing $y=p z$ the solutions are modified Bessel functions:

$$
f(y)=\left\{\begin{array}{cc}
y^{2} I_{\Delta-2}(y) & \sim y^{\Delta}, \text { as } y \rightarrow 0 \\
y^{2} K_{\Delta-2}(y) & \sim y^{4-\Delta}, \text { as } y \rightarrow 0
\end{array}\right.
$$

Δ is determined by the mass

$$
\Delta=2+\sqrt{4+m^{2} R^{2}}
$$

$y^{2} I_{\Delta-2}(y)$ blows up as $y \rightarrow \infty$: not normalizable

$$
x \rightarrow \frac{x}{\rho}, \quad p \rightarrow \rho p
$$

then the scalar field transforms as

$$
\phi(x, z) \rightarrow \rho^{4-\Delta} e^{i p . x} f(p z)
$$

conformal weight $4-\Delta, \leftrightarrow \operatorname{CFT} \mathcal{O}$ must have dimension Δ
bulk mass, $m \leftrightarrow$ scaling dimension, Δ

Propagators on AdS_{5}

propagate boundary ϕ_{0} into the interior:

$$
\phi(x, z)=c \int d^{4} x^{\prime} \frac{z^{\Delta}}{\left(z^{2}+\left|x-x^{\prime}\right|^{2}\right)^{\Delta}} \phi_{0}\left(x^{\prime}\right)
$$

for small z the bulk field scales as $z^{4-\Delta} \phi_{0}(x)$

$$
\begin{equation*}
\partial_{z} \phi(x, z)=c \Delta \int d^{4} x^{\prime} \frac{z^{\Delta-1}}{\left|x-x^{\prime}\right|^{2 \Delta}} \phi_{0}\left(x^{\prime}\right)+\mathcal{O}\left(z^{\Delta+1}\right) \tag{*}
\end{equation*}
$$

integrating action by parts + eqm yields:

$$
S=\frac{1}{2} \int d^{4} x d z \partial_{5}\left(\frac{R^{3}}{z^{3}} \phi \partial_{5} \phi\right)=\left.\frac{1}{2} \int d^{4} x\left(\frac{R^{3}}{z^{3}} \phi \partial_{5} \phi\right)\right|_{z=0}
$$

Using the boundary condition $\phi(x, 0)=\phi_{0}(x)$ and $\left(^{*}\right)$

$$
S=\frac{c R^{3} \Delta}{2} \int d^{4} x d^{4} x^{\prime} \frac{\phi_{0}(x) \phi_{0}\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|^{2} \Delta}
$$

Two-Point Function of CFT

for corresponding operator \mathcal{O} derived from

$$
\begin{gathered}
\left\langle\exp \int d^{4} x \phi_{0}(x) \mathcal{O}(x)\right\rangle_{\mathrm{CFT}} \approx e^{-S_{\mathrm{sugra}}\left[\left.\phi(x, z)\right|_{z=0}=\phi_{0}(x)\right]} \\
\left\langle\mathcal{O}(x) \mathcal{O}\left(x^{\prime}\right)\right\rangle=\frac{\delta^{2} S}{\delta \phi_{0}(x) \delta \phi_{0}\left(x^{\prime}\right)}=\frac{c R^{3} \Delta}{\left|x-x^{\prime}\right|^{2 \Delta}}
\end{gathered}
$$

correct scaling for dimension Δ in 4D CFT

Dimension \leftrightarrow Mass

In AdS_{d+1} :

$$
\begin{array}{ll}
\text { scalars : } & \Delta_{ \pm}=\frac{1}{2}\left(d \pm \sqrt{d^{2}+4 m^{2} R^{2}}\right) \\
\text { spinors : } & \Delta=\frac{1}{2}(d+2|m| R) \\
\text { vectors : } & \Delta_{ \pm}=\frac{1}{2}\left(d \pm \sqrt{(d-2)^{2}+4 m^{2} R^{2}}\right) \\
p \text {-forms: } & \Delta_{ \pm}=\frac{1}{2}\left(d \pm \sqrt{(d-2 p)^{2}+4 m^{2} R^{2}}\right)
\end{array}
$$

massless spin 2: $\Delta=d$
for scalar requiring $\Delta_{ \pm}$is real \Rightarrow Breitenlohner-Freedman bound

$$
-\frac{d^{2}}{4}<m^{2} R^{2}
$$

Dimension \leftrightarrow Mass

relation is expected to hold for stringy states:

$$
\begin{array}{r}
m \sim \frac{1}{l_{s}} \leftrightarrow \Delta \sim\left(g^{2} N\right)^{1 / 4} \\
m \sim \frac{1}{l_{\mathrm{P} 1}} \leftrightarrow \Delta \sim N^{1 / 4}
\end{array}
$$

large N and large $g^{2} N \leftrightarrow$ very large dimension \mathcal{M} neglected in the supergravity approximation

$(N+1)$ D3-branes

$S U(N+1), \mathcal{N}=4$ SUSY gauge theory
pull one of the branes distance u away $S U(N+1) \rightarrow S U(N)$ stretched string states \leftrightarrow massive gauge bosons

$$
m_{W}=\frac{u}{\alpha^{\prime}}
$$

$\square+\bar{\square}$ of $S U(N)$
$u \rightarrow \infty \leftrightarrow$ static quark
consider static quark-antiquark pair at distance r on $\partial \mathrm{AdS}_{5}$ minimum action: string stretching from the quark to the antiquark

Wilson Loops

in AdS_{5}

$$
\langle W(C)\rangle=e^{-\alpha(D)}
$$

where D is surface of minimal area $\partial D=C$, surface $D \leftrightarrow$ to the world-
sheet of the string
$\alpha(D)$ is a regularized area
subtract a term \propto the circumference of $C \leftrightarrow$ action of the widely separated static quarks

If C is a square in Euclidean, width r and height T (along the Euclidean time direction)

$$
\langle W(C)\rangle=e^{-T V(r)}
$$

Nonperturbative Coulomb potential

Using the conformally flat Euclidean metric

$$
d s_{E}^{2}=\frac{R^{2}}{z^{2}}\left(d z^{2}+\sum_{i=1}^{4} d x_{i}^{2}\right)
$$

scale size of C by

$$
x_{i} \rightarrow \rho x_{i}
$$

keep $\alpha(D)$ fixed by scaling D :

$$
x_{i} \rightarrow \rho x_{i} \quad z \rightarrow \rho z
$$

$\alpha(D)$ is independent of $\rho, \alpha(D) \not \propto C \sim \rho^{2}$

$$
V(r) \sim-\frac{\sqrt{g^{2} N}}{r}
$$

$1 / r$ behavior required by conformal symmetry
$\sqrt{g^{2} N}$ behavior is different from perturbative result

Breaking SUSY: finite temperature

take Euclidean time $\left(t_{E}=-i t\right)$ to be periodic:

$$
t_{E} \sim t_{E}+\beta \quad e^{i t E} \rightarrow e^{-\beta E}
$$

\leftrightarrow finite temperature 4D gauge theory periodic boundary conditions for bosons antiperiodic boundary conditions for fermions
zero-energy boson modes, no zero-energy fermion modes
\rightarrow SUSY is broken
Scalars will get masses from loop effects gluons are protected by gauge symmetry low-energy effective theory is pure non-SUSY Yang-Mills
high-temperature limit lose one dimension
\rightarrow zero-temperature, non-SUSY, 3D Yang-Mills

AdS Finite Temperature

in AdS there is a at high T partition function dominated by a black hole metric with a horizon size $b=\pi T$

$$
\frac{d s^{2}}{R^{2}}=\left(u^{2}-\frac{b^{4}}{u^{2}}\right)^{-1} d u^{2}+\left(u^{2}-\frac{b^{4}}{u^{2}}\right) d \tau^{2}+u^{2} d x^{i} d x^{i}
$$

blackhole horizon \leftrightarrow confinement in gauge theory

Finite Temperature and Confinement
 $$
\langle W(C)\rangle=e^{-\alpha(D)}
$$

in black hole metric bounded by the horizon, $u=b$ minimal area of D is area at the horizon

$$
\alpha(D)=R^{2} b^{2} \operatorname{area}(C)
$$

\leftrightarrow area law confinement

$$
V(r)=R^{2} b^{2} r
$$

string tension is very large

$$
\sigma \sim R^{2} b^{2} \sim \sqrt{g^{2} N} \alpha^{\prime} b^{2}
$$

Glueballs

massless scalar field Φ in AdS_{5}, dilaton which couples to $\operatorname{Tr} F^{2}$ $\operatorname{Tr} F^{2}$ has nonzero overlap with gluon states
$\Phi \leftrightarrow 0^{++}$glueball
with AdS black hole metric:

$$
\begin{gathered}
\partial_{\mu}\left[\sqrt{g} g^{\mu \nu} \partial_{\nu} \Phi\right]=0, \quad \Phi=f(u) e^{i k \cdot x} \\
u^{-1} \frac{d}{d u}\left(\left(u^{4}-b^{4}\right) u \frac{d f}{d u}\right)-k^{2} f=0
\end{gathered}
$$

for large $u, f(u) \sim u^{\lambda}$ where $m^{2}=0=\lambda(\lambda+4)$ so as $u \rightarrow \infty$ either $f(u) \sim$ constant or $\sim u^{-4}$.
second solution is normalizable solution need f to be regular at $u=b \Rightarrow d f / d u$ is finite wave guide problem, bc in the direction \perp to k

Glueball Mass Gap

no normalizable solutions for $k^{2} \geq 0$
discrete eigenvalues solutions for $k^{2}<0$
3D glueball masses

$$
M_{i}^{2}=-k_{i}^{2}>0
$$

mass gap as expected for confining gauge theory

4D Glueball Masses

M-theory 5-brane wrapped on two circles one circle is small \rightarrow Type IIA D4-branes on a circle problem is that the supergravity limit $g \rightarrow 0, g^{2} N \rightarrow \infty \nrightarrow$ gauge theories we usually think about.

Strong coupling problem

QCD_{3} intrinsic scale:

$$
g_{3}^{2} N=g^{2} N T
$$

hold fixed as $T \rightarrow \infty$ need $g^{2} N \rightarrow 0$
QCD_{4} intrinsic scale:

$$
\Lambda_{\mathrm{QCD}}=\exp \left(\frac{-24 \pi^{2}}{11 g^{2} N}\right) T
$$

hold fixed as $T \rightarrow \infty$ need $g^{2} N \rightarrow 0$
supergravity calculation works when extra SUSY states have masses \sim glueballs

4D Glueball Masses

consider M5-branes wrapped on two circles where the M5-branes have some angular momentum a

$$
\begin{gathered}
d s_{\text {IIA }}^{2}=\frac{2 \pi \lambda A}{3 u_{0}} u^{3} \Delta^{1 / 2}\left[\begin{array}{l}
4\left(-d x_{0}^{2}+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)+\frac{4 A^{2}}{9 u_{0}^{2}}\left(1-\frac{u_{0}^{6}}{u^{6} \Delta}\right) d \theta_{2}^{2} \\
\\
+\frac{4 d u^{2}}{u^{4}\left(1-\frac{a^{4}}{u^{4}}-\frac{u_{6}^{6}}{u^{6}}\right)} d \theta^{2}+\frac{\tilde{\Delta}}{u^{2} \Delta} \sin ^{2} \theta d \varphi^{2} \\
\\
\left.\quad+\frac{1}{u^{2} \Delta} \cos ^{2} \theta d \Omega_{2}^{2}-\frac{4 a^{2} A u_{0}^{2}}{3 u^{6} \Delta} \sin ^{2} \theta d \theta_{2} d \varphi\right] \\
\\
\Delta \equiv 1-\frac{a^{4} \cos ^{2} \theta}{u^{4}}, \quad \tilde{\Delta} \equiv 1-\frac{a^{4}}{u^{4}}, \\
A \equiv \frac{u_{0}^{4}}{u_{H}^{4}-\frac{1}{3} a^{4}}, \quad u_{H}^{6}-a^{4} u_{H}^{2}-u_{0}^{6}=0
\end{array}\right.
\end{gathered}
$$

horizon u_{H}, dilaton background $e^{2 \Phi}$, temperature T_{H}

$$
e^{2 \Phi}=\frac{8 \pi}{27} \frac{A^{3} \lambda^{3} u^{3} \Delta^{1 / 2}}{u_{0}^{3}} \frac{1}{N^{2}}, \quad R=\left(2 \pi T_{H}\right)^{-1}=\frac{A}{3 u_{0}}
$$

when $a / u_{0} \gg 1 R \rightarrow 0$ shrinks to zero

4D Glueball Masses

0^{++}glueballs $\leftrightarrow \operatorname{Tr} F F$, solve

$$
\partial_{\mu}\left[\sqrt{g} e^{-2 \Phi} g^{\mu \nu} \partial_{\nu} \Phi\right]=0
$$

0^{-+}glueballs $\leftrightarrow \operatorname{Tr} F \tilde{F}$, solve

$$
\partial_{\nu}\left[\sqrt{g} g^{\mu \rho} g^{\nu \sigma}\left(\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}\right)\right]=0
$$

discrete sets of eigenvalues, functions of a

4D Glueball Masses: $a \rightarrow \infty$

state	lattice $N=3$	SUGRA $a=0$	SUGRA $a \rightarrow \infty$
0^{++}	1.61 ± 0.15	1.61 (input)	1.61 (input)
0^{++*}	2.48 ± 0.23	2.55	2.56
0^{-+}	2.59 ± 0.13	2.00	2.56
0^{-+*}	3.64 ± 0.18	2.98	3.49

circle KK modes decouple \Rightarrow real 4D gauge theory 0^{++}glueball mass ratios change only slightly $S^{4} \mathrm{KK}$ modes do not decouple
$a / u_{0} \gg 1$, approaches a SUSY limit

4D Glueball Mass

masses are within 4% of the lattice results strong-coupling expansion off by between 7% and 28% SUGRA results are much better than we have any reason to expect

Breaking SUSY: Orbifolds

construct $\mathcal{N}=1$ SUSY CFTs by orbifolding $\mathcal{N}=4$ with discrete group Γ embedded in $S U(N)$ using an N-fold copy of the regular representation
\leftrightarrow Type IIB string theory on orbifold $\operatorname{AdS}_{5} \times S^{5} / \Gamma$
For $\mathcal{N}=1$, the $S O(6) \simeq S U(4)_{R}$ isometry of S^{5} is broken to $U(1)_{R} \times \Gamma$

$$
\begin{aligned}
& Z_{3} \text { Orbifold } \\
& X^{1,2,3} \rightarrow e^{2 \pi i / 3} X^{1,2,3}
\end{aligned}
$$

X^{i} parameterize the $R^{6} \perp$ to the D 3 -branes

	$S U(N)$	$S U(N)$	$S U(N)$	$U(1)_{R}$
U^{i}	\square	\square	$\mathbf{1}$	$\frac{2}{3}$
V^{i}	$\mathbf{1}$	\square	\square	$\frac{2}{3}$
W^{i}	\square	$\mathbf{1}$	\square	$\frac{2}{3}$

where $i=1,2,3, S U(3)$ global symmetry is broken by the superpotential orbifold fixed point $X^{i}=0$
volume of S^{5} is nonzero, manifold is non-singular supergravity description still applicable

Z_{3} Orbifold

KK modes of supergravity on $\operatorname{AdS}_{5} \times S^{5} / Z_{3}$ are Z_{3} invariant for example, the KK mode

Spin	$S U(4)_{R} \sim S O(6)$	$m^{2} R^{2}$	Operator
0	$\square, \square, \square, \ldots$	$k(k-4), k \geq 2$	$\operatorname{Tr}\left(\Phi^{I_{1}} \ldots \Phi^{I_{k}}\right)$

with $k=3, \square=\mathbf{5 0}$ of $S U(4)_{R}$ couples to a dim 3 chiral primary op $S U(4)_{R} \rightarrow S U(3) \times U(1)_{R}$ gives:

$$
\mathbf{5 0} \rightarrow \mathbf{1 0}_{2}+\overline{\mathbf{1 0}}_{-2}+\mathbf{1 5}_{2 / 3}+\overline{\mathbf{1 5}}_{-2 / 3}
$$

Z_{3} on $\mathbf{3}$ of $S U(3):\left(x^{1}, x^{2}, x^{3}\right) \rightarrow\left(e^{2 \pi i / 3} x^{1}, e^{2 \pi i / 3} x^{2}, e^{-4 \pi i / 3} x^{3}\right)$
$\mathbf{1 0}$ is contained in $\mathbf{3} \times \mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1 0}$ is invariant under the Z_{3} projection, 10 has correct R-charge $\leftrightarrow 10$ chiral primary operators $\operatorname{Tr} U^{i_{1}} V^{i_{2}} W^{i_{3}}$ symmetric in i_{k}

Z_{3} Orbifold

Spin	$S U(4)_{R} \sim S O(6)$	$m^{2} R^{2}$	Operator
0	$\mathbf{1}, \boxminus, \boxplus, \ldots$	$k(k+4), k \geq 0$	$\operatorname{Tr} \phi^{k} F^{\mu \nu} F_{\mu \nu}+\ldots$

$k=0$, dilaton transforms as $\mathbf{1}$ invariant under the Z_{3} projection couples to the marginal primary operator $\sum_{i=1}^{3} \operatorname{Tr} F_{i}^{2}$
result is independent of Γ
$\operatorname{Tr} F^{2}$ is marginal in any theory obtained by Γ projection on $\mathcal{N}=4$

