Supergravity

Gravity: on-shell

Einstein gravity \leftrightarrow gauge theory of local Lorentz/translation symmetry generators $M_{a b}, P_{a} \leftrightarrow$ "gauge fields" $\omega_{\mu}^{a b}$, spin connection, e_{μ}^{a} vierbein where $a, b=0, \ldots, 3$ are Lorentz gauge group indices $\mu, \nu=0, \ldots, 3$ are spacetime indices
e_{μ}^{a} and $\omega_{\mu}^{a b}$ transform as collections of vectors
gauge fields \leftrightarrow feld strengths $R_{\mu \nu}^{a b}$, (Riemann curvature), $C_{\mu \nu}^{a}$, (torsion) $C_{\mu \nu}^{a}=0$, solve for $\omega_{\mu}^{a b}$ in terms of e_{μ}^{a}
counting: $e_{\mu}^{a} 16$ components
subtract 4 (equations of motion)
subtract 4 (local translation invariance)
subtract 6 (local Lorentz invariance)
leaves 2 degrees of freedom: massless spin- 2 particle

Gravity: on-shell

Couplings to matter:

$$
\nabla_{\mu}=\partial_{\mu}-e_{\mu}^{a} P_{a}-\omega_{\mu}^{a b} M_{a b}
$$

feld strengths can be obtained from

$$
\nabla_{\mu} \nabla_{\nu}-\nabla_{\nu} \nabla_{\mu}
$$

Writing

$$
e=\left|\operatorname{det} e_{\mu}^{m}\right|
$$

invariant action with only two derivatives is linear in the field strength:

$$
S_{\mathrm{GR}}=\frac{M_{\mathrm{P1}}^{2}}{2} \int d^{4} x e \epsilon^{\mu \nu \rho \lambda} \epsilon_{a b c d} e_{\mu}^{a} e_{\nu}^{b} R_{\rho \lambda}^{c d}=\frac{M_{\mathrm{P}}^{2}}{2} \int d^{4} x e R
$$

where R is the curvature scalar

Supergravity: on-shell

$e_{\mu}^{a} \leftrightarrow$ helicity 2 particle, $\mathcal{N}=1$ SUSY requires helicity $3 / 2 \psi_{\nu}^{\alpha}$ (gravitino)
on-shell each has two degrees of freedom
gravitino is gauge field $\leftrightarrow Q_{\alpha} \leftrightarrow$ field strength $D_{\mu \nu \alpha}$ $C_{\mu \nu}^{a}=0$, solve for $\omega_{\mu}^{a b}$ find on-shell supergravity action:

$$
S=\frac{M_{\mathrm{P}}^{2}}{2} \int d^{4} x e R+\frac{i}{4} \int d^{4} x \epsilon^{\mu \nu \rho \sigma} \bar{\psi}_{\mu} \gamma_{5} \gamma_{\nu} D_{\rho \sigma}
$$

call second term $S_{\text {gravitino }}$
metric:

$$
g_{\mu \nu}=e_{\mu}^{a} e_{\nu}^{b} \eta_{a b}
$$

in terms of a local inertial coordinate system ξ^{a} at the point X

$$
e_{\mu}^{a}(X)=\frac{\partial \xi^{a}}{\partial x^{\mu}}
$$

Brans-Dicke Gravity

first consider toy example, scale-invariant Brans-Dicke theory:

$$
S_{\mathrm{BD}}=\int d^{4} x\left[\frac{e}{2} \sigma^{2} R+\frac{e}{12} \partial^{\mu} \sigma \partial_{\mu} \sigma\right]
$$

treat scalar σ as a spurion field and set

$$
\sigma=M_{\mathrm{Pl}}
$$

break local conformal invariance to local Poincaré invariance \Rightarrow Einstein gravity

Superconformal Gravity

in addition to the "gauge" fields e_{μ}^{a} and $\psi_{\nu \alpha}$ we have $A_{\mu} \leftrightarrow \operatorname{local} U(1)_{R}$ symmetry, and $b_{\mu} \leftrightarrow$ local conformal boosts
Counting degrees of freedom off-shell (subtracting gauge invariances):

field			d.o.f.
$e_{\mu}^{a}:$	16	$-4-6-1$	$=5$
$\psi_{\nu}^{\alpha}:$	16	$-4-4$	$=8$
$A_{\mu}:$	4	-1	$=3$
$b_{\mu}:$	4	-4	$=0$

e_{μ}^{a} subtract 4 (translation), 6 (Lorentz), 1 (dilations)
ψ_{ν}^{α} subtract 4 (SUSY $Q_{\alpha}, \bar{Q}_{\dot{\alpha}}$), 4 (conformal SUSY S_{β} and $\bar{S}_{\dot{\beta}}$)
A_{μ} subtract 1 (local R-symmetry)
b_{μ} subtract 4 (four conformal boost generators)
no auxiliary fields for the superconformal graviton multiplet
"gauge" fields, couple with gauge covariant derivatives

Supergravity: off-shell

spurion chiral superfield to break the conformal symmetry:

$$
\Sigma=\left(\sigma, \chi, \mathcal{F}_{\Sigma}\right)
$$

in global $\mathcal{N}=1, \Sigma$ is a chiral superfield here it contains part of the off-shell graviton superfield Σ called conformal compensator
assign conformal weight 1 to the lowest component of Σ (x^{μ} and θ have conformal weight -1 and $-1 / 2$)
full superconformal gravity action is

$$
S_{\mathrm{scg}}=\int d^{4} x \frac{e}{2} \sigma^{*} \sigma R+e \int d^{4} \theta \Sigma^{\dagger} \Sigma+S_{\text {gravitino }}
$$

derivatives are covariant in "gauge" fields $\left(e_{\mu}^{a}, \psi_{\nu \alpha}, A_{\mu}, b_{\mu}\right)$ a superconformal Brans-Dicke theory

Supergravity: off-shell

Treat σ, χ, and b_{μ} as spurion fields

$$
\sigma=M_{\mathrm{Pl}}, \chi=0, \quad b_{\mu}=0
$$

local superconformal invariance \rightarrow local super-Poincaré invariance resulting action is:

$$
S_{\mathrm{sg}}=\int d^{4} x e\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R+\mathcal{F}_{\Sigma} \mathcal{F}_{\Sigma}^{\dagger}-\frac{2 M_{\mathrm{Pl}}^{2}}{9} A_{\mu} A^{\mu}\right]+S_{\text {gravitino }}
$$

\mathcal{F}_{Σ} and A_{μ} are auxiliary fields, counting:

field			d.o.f.
$e_{\mu}^{a}:$	16	$-4-6$	$=6$
$\psi_{\nu}^{\alpha}:$	16	-4	$=12$
$A_{\mu}:$	4		$=4$
$\mathcal{F}_{\Sigma}:$	2		$=2$

6 bosonic degrees of freedom from \mathcal{F}_{Σ} and A_{μ} are just what is required to have $\mathcal{N}=1$ SUSY manifest off-shell

Superspace

eight-dimensional space $z^{M}=\left(x^{\mu}, \theta^{\alpha}, \bar{\theta}^{\dot{\alpha}}\right)$ require super-general coordinate invariance

$$
z^{M} \rightarrow z^{M}=z^{M}+\xi^{M}
$$

where $\xi^{M}\left(z^{M}\right)$
Superspace scalars transform

$$
\phi^{\prime}\left(z^{\prime}\right)=\phi(z)
$$

while fields with a superspace index

$$
\psi_{M}=\frac{\partial \phi}{\partial z^{M}}
$$

transform as

$$
\psi_{M}^{\prime}\left(z^{\prime}\right)=\frac{\partial z^{N}}{\partial z^{\prime M}} \psi_{N}(z)
$$

Superspace

construct a vielbein E_{M}^{A}
relates the superspace world coordinate to a locally Lorentz covariant (tangent space) coordinate
contains the off-shell multiplet $\left(e_{\mu}^{a}, \psi_{\nu \alpha}, A_{\mu}, \mathcal{F}_{\Sigma}\right)$
we can choose a coordinate system where, for $\theta=0$,

$$
E_{\mu}^{a}=e_{\mu}^{a}, \quad E_{\mu}^{\alpha}=\frac{1}{2} \psi_{\mu}^{\alpha}, \quad E_{\mu}^{\dot{\alpha}}=\frac{1}{2} \bar{\psi}_{\mu}^{\dot{\alpha}}
$$

Coupling to matter

arbitrary global SUSY theory:

$$
\mathcal{L}_{\mathrm{gl}}=\int d^{4} \theta K\left(\Phi^{\dagger}, e^{V} \Phi\right)+\int d^{2} \theta\left(W(\Phi)-\frac{i \tau}{16 \pi} W^{\alpha} W_{\alpha}\right)+h . c .
$$

define conformal weight 0 fields and mass parameters by

$$
\begin{aligned}
\Phi^{\prime} & =\Sigma \Phi \\
m^{\prime} & =\Sigma m
\end{aligned}
$$

dropping the primes, local superconformal-Poincaré invariant Lagrangian:

$$
\begin{aligned}
\mathcal{L}= & \int d^{4} \theta f\left(\Phi^{\dagger}, e^{V} \Phi\right) \frac{\Sigma^{\dagger} \Sigma}{M_{\mathrm{Pl}}^{2}}+\int d^{2} \theta \frac{\Sigma^{3}}{M_{\mathrm{P}}^{3}} W(\Phi)-\int d^{2} \theta \frac{i \tau}{16 \pi} W^{\alpha} W_{\alpha}+h . c . \\
& -\frac{1}{6} f\left(\phi^{\dagger}, \phi\right) \sigma^{*} \sigma R+\mathcal{F}_{\Sigma} \mathcal{F}_{\Sigma}^{\dagger}-\frac{2 M_{\mathrm{Pl}}^{2}}{9} A_{\mu} A^{\mu}+\mathcal{L}_{\text {gravitino }}
\end{aligned}
$$

action:

$$
S=\int d^{4} x e \mathcal{L}
$$

Coupling to matter

$M_{\mathrm{Pl}} \rightarrow \infty$ (global SUSY) limit, choose

$$
f\left(\Phi^{\dagger}, e^{V} \Phi\right)=-3 M_{\mathrm{Pl}}^{2} e^{-K\left(\Phi^{\dagger}, e^{V} \Phi\right) / 3 M_{\mathrm{Pl}}^{2}}
$$

rescaling the vierbein by a Weyl (local scale) transformation

$$
e_{\mu}^{a} \rightarrow e^{-K / 12 M_{\mathrm{Pl}}^{2}} e_{\mu}^{a}
$$

one finds bosonic piece of the action:

$$
\begin{aligned}
S_{\mathrm{B}}= & \int d^{4} x e\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R+K_{j}^{i}\left(\phi^{\dagger}, \phi\right)\left(\nabla^{\mu} \phi^{i}\right)^{\dagger} \nabla_{\mu} \phi_{j}\right. \\
& \left.-\mathcal{V}\left(\phi^{\dagger}, \phi\right)+\frac{i \tau}{16 \pi}\left(F_{\mu \nu} F^{\mu \nu}+i F_{\mu \nu} \widetilde{F}^{\mu \nu}\right)+h . c .\right]
\end{aligned}
$$

where K^{i} and K_{j}^{i} (the Kähler metric) are given by

$$
K^{i}\left(\phi^{\dagger}, \phi\right)=\frac{\partial K}{\partial \phi_{i}}, \quad K_{j}^{i}\left(\phi^{\dagger}, \phi\right)=\frac{\partial^{2} K}{\partial \phi^{j \dagger} \partial \phi_{i}}
$$

Coupling to matter

scalar potential:

$$
\begin{aligned}
\mathcal{V}\left(\phi^{\dagger}, \phi\right)= & e^{K / M_{\mathrm{P} 1}^{2}}\left[\left(K^{-1}\right)_{i}^{j}\left(W^{i}+\frac{W K^{i}}{M_{\mathrm{P} 1}^{2}}\right)\left(W_{j}^{*}+\frac{W^{*} K_{j}}{M_{\mathrm{P} 1}^{2}}\right)-\frac{3|W|^{2}}{M_{\mathrm{P} 1}^{2}}\right] \\
& +\frac{g^{2}}{2}\left(K^{i} T^{a} \phi_{i}\right)^{2}
\end{aligned}
$$

last term is just the D-term potential
in supergravity the energy density can be negative usually tune tree-level vacuum energy to zero by adding the appropriate constant to W

Coupling to matter

auxiliary components of chiral superfields (no fermion bilinear VEVs):

$$
\begin{equation*}
\mathcal{F}_{i}=-e^{K / 2 M_{\mathrm{Pl}}^{2}}\left(K^{-1}\right)_{i}^{j}\left(W_{j}^{*}+\frac{W^{*} K_{j}}{M_{\mathrm{Pl}}^{2}}\right) \tag{*}
\end{equation*}
$$

from fermionic piece of Lagrangian, $\nabla_{\mu} \widetilde{\phi}_{i}$ contains a gravitino term

$$
\frac{1}{M_{\mathrm{Pl}}} \psi_{\mu}^{\alpha} Q_{\alpha} \widetilde{\phi}_{i}=\frac{1}{M_{\mathrm{Pl}}} \psi_{\mu}^{\alpha} \mathcal{F}_{i}+\mathcal{O}\left(\sigma^{\mu} \partial_{\mu} \phi_{i}\right)
$$

so the Kähler function contains a term:

$$
i K_{j}^{i} \frac{1}{M_{\mathrm{Pl}}} \bar{\theta} \overline{\widetilde{\phi}}^{j} \theta^{2} \psi_{\mu} \mathcal{F}_{i} \sigma^{\mu} \bar{\theta}
$$

in analogy to the ordinary Higgs mechanism, that the gravitino eats the goldstino if there is a nonvanishing \mathcal{F} component
in flat spacetime, goldstino adds right number of degrees of freedom to make a massive spin $3 / 2$ particle

Gravitino Mass

in flat spacetime

$$
m_{3 / 2}^{2}=\frac{\mathcal{F}^{* j} K_{j}^{i} \mathcal{F}_{i}}{3 M_{\mathrm{Pl}}^{2}}
$$

use $\left(^{*}\right)$ and $\mathcal{V}=0 \Rightarrow$

$$
m_{3 / 2}^{2}=e^{K / M_{\mathrm{Pl}}^{2}} \frac{|W|^{2}}{M_{\mathrm{Pl}}^{4}}
$$

taking a canonical Kähler function

$$
K=Z \Phi^{i \dagger} \Phi_{i}
$$

and $M_{\mathrm{Pl}} \rightarrow \infty$ reproduces usual global SUSY results

Maximal Supergravity

massless supermultiplet with helicities ≤ 2
SUSY charges change the helicity by $\frac{1}{2} \Rightarrow \mathcal{N} \leq 8$
arbitrary dimension cannot have more than $32=8 \times 4$ real SUSY charges maximal dimension: spinor in 11 dimensions has 32 components
supergravity theory must have e_{μ}^{a} and ψ_{μ}^{α} massless gauge fields
D dimensions:"little" group $S O(D-2)$
graviton: symmetric tensor of $S O(D-2)$ has $(D-1)(D-2) / 2-1$ dof 44 dof for $D=11$
gravitino is a vector-spinor and a vector has $D-2$ dof
spinor of $S O(D)$ has d_{S} components, where

$$
d_{S}=2^{(D-2) / 2}(\text { for } D \text { even }), d_{S}=2^{(D-1) / 2}(\text { for } D \text { odd })
$$

11 dimensions

Majorana spinor has $d_{S}=32$ real components, 16 dof on-shell tracelessness condition $\Gamma^{\mu} \psi_{\mu}^{\alpha}=0$ leaves $(D-3) d_{S} / 2$ degrees of freedom for the vector-spinor
gravitino has 128 real on-shell dof
gravitino - gaviton $=84$ more fermionic dof than bosonic difference made up by three index antisymmetric tensor $A_{\mu \nu \rho}$ antisymmetric tensor with p indices (i.e. rank p) has

$$
\frac{1}{p!}(D-2) \ldots(D-p-1)
$$

dof on-shell, also called a p-form field

$$
\frac{(11-2)(11-3)(11-4)}{6}=3 \cdot 4 \cdot 7=84
$$

11 dimensions: BPS solitons

The SUSY algebra of 11-D supergravity has two central charges two Lorentz indices, five Lorentz indices \leftrightarrow BPS solitons central charge acts as a topological charge, spatial integral at fixed t preserve index structure, solitons extend in two and five spatial directions called p-branes for p spatial directions e.g. monopole is a 0 -brane, couples to a 1 -form gauge field A_{μ} p-brane couples to a $(p+1)$-form gauge field 2-brane couples to 3 -form gauge field $A_{\mu \nu \rho}$ a p-form gauge field has a $(D-p-2)$-form dual gauge field field strength $\leftrightarrow A_{\mu \nu \rho}$ is a 4 -form: $F_{\mu \nu \rho \lambda}$ contract with ϵ tensor gives dual 7-form $\leftrightarrow 6$-form dual gauge field couples to the 5 -brane

10 dimensions

compactify 1 dimension on a circle
decompose $D=11$ fields into massless $D=10$ fields (constant on circle)

$$
\begin{aligned}
e_{\mu}^{a}(44) & \rightarrow e_{\mu}^{a}(35), B_{\mu}(8), \sigma(1) \\
A_{\mu \nu \rho}(84) & \rightarrow A_{\mu \nu \rho}(56), A_{\mu \nu}(28) \\
\psi_{\mu}^{\alpha}(128) & \rightarrow \psi_{\mu}^{+\alpha}(56), \psi_{\mu}^{-\alpha}(56), \lambda^{+\alpha}(8), \lambda^{-\alpha}(8)
\end{aligned}
$$

32 supercharges of $D=11 \rightarrow$ two $D=10$ spinors
spinors have opposite chirality
gravitino splits into states of opposite chirality, labeled by + and this is Type IIA supergravity two other supergravity theories in $D=10$
Type I: single spinor of supercharges
Type IIB: supercharges are two spinors with the same chirality

Low-Energy Effective Theories

Type IIA \leftrightarrow Type IIA string theory
Type IIB \leftrightarrow Type IIB string theory
Type I with $E_{8} \times E_{8}$ or $S O(32) \leftrightarrow$ heterotic string theory
$D=11$ supergravity \leftrightarrow M-theory

4D helicities

massless vector \rightarrow massless 4D vector and $D-4$ massless scalars
\leftrightarrow two components with helicity 1 and -1 and $D-4$ helicity 0 states
$\Leftrightarrow D-4$ lowering operators
e.g. 5 D , the little group is $S O(3)$, one lowering operator $\sigma^{-}=\frac{1}{2}\left(\sigma^{1}-i \sigma^{2}\right)$
traceless symmetric tensor field, $e_{\mu}^{a}, \Leftrightarrow$ symmetric product of two vectors:

helicity	degeneracy $D=11$	degeneracy $D=10$
2	1	1
1	$7=1 \cdot(11-4)$	$6=1 \cdot(10-4)$
0	$28=7 \cdot 8 / 2-1+1$	$21=6 \cdot 7 / 2-1+1$
-1	$7=1 \cdot(11-4)$	$6=1 \cdot(10-4)$
-2	1	1

4D helicities: 2-form

2-form field \Leftrightarrow antisymmetric product of two vectors:

helicity	degeneracy $D=11$	degeneracy $D=10$
1	7	6
0	$7(7-1) / 2+1=22$	$6(6-1) / 2+1=16$
-1	7	6

where the $7(7-1) / 2$ comes from antisymmetrizing the helicity 0 components, and the +1 corresponds to combining the helicity 1 and -1 components of the two vectors

4D helicities: 3-form

helicity	degeneracy $D=11$	degeneracy $D=10$
1	21	15
0	$35+7=42$	$20+6=26$
-1	21	15

35 comes from antisymmetrizing three helicity 0 components, and the +7 corresponds to the combining helicity 1 and -1 components and one helicity 0 component of the three vectors

4D helicities: gravitino

$D=11$ spinor has 8 helicity $\frac{1}{2}$ components and 8 helicity $-\frac{1}{2}$ components, while for $D=10$ these components correspond to two opposite chirality spinors, we can reconstruct the gravitino by combining a vector and a spinor (remembering the tracelessness condition)

helicity	degeneracy $D=11$	degeneracy $D=10$
$\frac{3}{2}$	8	8
$\frac{1}{2}$	$56=8 \cdot 7$	$48=8 \cdot 6$
$-\frac{1}{2}$	$56=8 \cdot 7$	$48=8 \cdot 6$
$-\frac{3}{2}$	8	8

$D=11$ Supermultiplet

starting with a helicity -2 state and raising the helicity repeatedly by acting with 8 SUSY generators (and remembering to antisymmetrize)

11D sugra. state	helicity	degeneracy	e_{μ}^{a}	$A_{\mu \nu \rho}$	ψ_{μ}^{α}
$\bar{Q}^{8}\left\|\Omega_{-2}\right\rangle$	2	1	1		
$\bar{Q}^{7}\left\|\Omega_{-2}\right\rangle$	$\frac{3}{2}$	8			8
$\bar{Q}^{6}\left\|\Omega_{-2}\right\rangle$	1	28	7	21	
$\bar{Q}^{5}\left\|\Omega_{-2}\right\rangle$	$\frac{1}{2}$	56			56
$\bar{Q}^{4}\left\|\Omega_{-2}\right\rangle$	0	70	28	42	
$\bar{Q}^{3}\left\|\Omega_{-2}\right\rangle$	$-\frac{1}{2}$	56			56
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	-1	28	7	21	
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	$-\frac{3}{2}$	8			8
$\left\|\Omega_{-2}\right\rangle$	-2	1	1		

$D=10$ Type IIA Supermultiplet

IIA state	helicity	degen.	e_{μ}^{a}	$A_{\mu \nu \rho}$	$A_{\mu \nu}$	B_{μ}	σ	$\psi_{\mu}^{ \pm \alpha}$	$\lambda^{ \pm \alpha}$
$\bar{Q}^{8}\left\|\Omega_{-2}\right\rangle$	2	1	1						
$\bar{Q}^{7}\left\|\Omega_{-2}\right\rangle$	$\frac{3}{2}$	8					8		
$\bar{Q}^{6}\left\|\Omega_{-2}\right\rangle$	1	28	6	15	6	1			
$\bar{Q}^{5}\left\|\Omega_{-2}\right\rangle$	$\frac{1}{2}$	56						48	8
$\bar{Q}^{4}\left\|\Omega_{-2}\right\rangle$	0	70	21	26	16	6	1		
$\bar{Q}^{3}\left\|\Omega_{-2}\right\rangle$	$-\frac{1}{2}$	56						48	8
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	-1	28	6	15	6	1			
$\bar{Q}\left\|\Omega_{-2}\right\rangle$	$-\frac{3}{2}$	8						8	
$\left\|\Omega_{-2}\right\rangle$	-2	1	1						

10D: BPS branes

SUSY algebra of Type IIA, central charges of rank $0,1,2,4,5,6,8$ \leftrightarrow p-branes
gauge fields of rank 1,2 , and 3
dual gauge fields of rank $5,6,7$
1-brane \leftrightarrow fundamental string of Type IIA string theory

Type IIA supergravity \leftrightarrow compactified 11D supergravity
2-brane of 11D $\leftrightarrow 2$-brane of Type IIA when \perp circle
2 -brane of 11D $\leftrightarrow 1$-brane when wraps circle
5 -brane of 11D supergravity $\leftrightarrow 5$-brane and 4 -brane of Type IIA

Brane Tensions

11D supergravity has one coupling constant, $\kappa, 11 \mathrm{D}$ Newton's constant

$$
\mathcal{L}=\frac{1}{2 \kappa^{2}} e R
$$

11D Planck mass by $\kappa=M_{\mathrm{Pl}}^{-9 / 2}$
tension (energy per unit volume) of branes given powers of M_{Pl} energy per unit area of the 2-brane is $T_{2}=M_{\mathrm{Pl}}^{3}$
5 -brane we have $T_{5}=M_{\mathrm{Pl}}^{6}$
2-brane and 5 -brane of Type IIA have same tensions as 11D theory 1-brane and 4-brane have $T_{1}=R_{10} M_{\mathrm{Pl}}^{3}$ and $T_{4}=R_{10} M_{\mathrm{Pl}}^{6}$ 1-brane is the fundamental string of Type IIA string theory \Rightarrow identify tension with string tension or string mass squared:

$$
T_{1}=R_{10} M_{\mathrm{Pl}}^{3} \equiv \frac{1}{4 \pi \alpha^{\prime}} \equiv m_{s}^{2}
$$

String Coupling

express the tensions in terms of m_{s} and Type IIA string coupling

$$
\begin{gathered}
g_{s}=\left(R_{10} M_{\mathrm{Pl}}\right)^{3 / 2} \\
T_{2}=\frac{m_{s}^{3}}{g_{s}}, T_{4}=\frac{m_{s}^{5}}{g_{s}}, T_{5}=\frac{m_{s}^{6}}{g_{s}^{2}}
\end{gathered}
$$

branes are nonperturbative BPS solitons not surprising to see inverse powers of the coupling
$1 / g_{s}$ dependence of the 2-brane and 4-brane significant universal feature of what are now called D-branes

$D=10$ Type IIB Supermultiplet

SUSY algebra has central charges of rank 1, 3, 5, 7
expect the corresponding p-branes to couple to gauge fields of rank 2 and $4, A_{\mu \nu}$ and $B_{\mu \nu \rho \lambda}$, and their duals
$e_{\mu}^{a}, \psi_{\mu}^{\alpha}, \lambda^{\alpha}$ have same dof as the Type IIA, difference being that ψ_{μ}^{α} and λ^{α} have opposite chirality in the IIB theory
it turns out that $A_{\mu \nu}$ is complex, twice as many dof $=56$
so far the fermions have 37 more dof than the e_{μ}^{a} and $A_{\mu \nu}$ combined, while an unconstrained 4 -form field has 70 dof
5 -form field strength corresponding to $B_{\mu \nu \rho \lambda}$ constrained to be self-dual, reduces dof to 35
need a complex scalar, a, to balance out the multiplet:

$$
\begin{gathered}
e_{\mu}^{a}(35), a(2), A_{\mu \nu}(56), B_{\mu \nu \rho \lambda}(35) \\
\psi_{\mu}^{\alpha}(112), \lambda^{\alpha}(16)
\end{gathered}
$$

$D=10$ Type IIB Supermultiplet

two SUSY spinor charges of the Type IIB theory have same chirality transform as vector under an $S O(2)$ group, i.e. R-charges ± 1 single Clifford vacuum state with helicity -2 must have $S O(2)$ charge 0 gravitino splits into two parts with charges ± 1
to antisymmetrize SUSY charges:
antisymmetrize $S O(2)$, symmetrize remaining four spinor indices
or
symmetrize $S O(2)$, antisymmetrize the remaining four spinor indices

$D=10$ Type IIB Supermultiplet

IIB state	helicity	degeneracy	e_{μ}^{a}	$B_{\mu \nu \rho \lambda}$	$A_{\mu \nu}$	a	ψ_{μ}^{α}	λ^{α}
$\bar{Q}^{8}\left\|\Omega_{-2}\right\rangle$	2	1	1					
$\bar{Q}^{\mid}\left\|\Omega_{-2}\right\rangle$	$\frac{3}{2}$	8					8	
$\bar{Q}^{6}\left\|\Omega_{-2}\right\rangle$	1	28	6	10	12			
$\bar{Q}^{5}\left\|\Omega_{-2}\right\rangle$	$\frac{1}{2}$	56					48	8
$\bar{Q}^{4}\left\|\Omega_{-2}\right\rangle$	0	70	21	15	32	2		
$\bar{Q}^{3}\left\|\Omega_{-2}\right\rangle$	$-\frac{1}{2}$	56					48	8
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	-1	28	6	10	12			
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	$-\frac{3}{2}$	8				8		
$\left\|\Omega_{-2}\right\rangle$	-2	1	1					

$D=10$ Type IIB Supermultiplet

symmetric combination of 4×4 is 10 , antisymmetric under $S O(2)$
$\Rightarrow B_{\mu \nu \rho \lambda}$ has $S O(2)$ charge 0
antisymmetric combination of 4×4 is 6 and graviton has $S O(2)$ charge 0
\Rightarrow two 6 's corresponding to $A_{\mu \nu}$ must have charges ± 2.
λ^{α} has $S O(2)$ charge ± 3
scalar a has $S O(2)$ charge ± 4

$D=10$ Type I Supermultiplet

parity in Type IIB: 4-form, half of 2-form, half of scalar are odd truncate by keeping only the even fields.
Majorana condition on the fermions reduces dof by one half

$$
\begin{gathered}
e_{\mu}^{a}(35), \sigma(1), A_{\mu \nu}(28) \\
\psi_{\mu}^{\alpha}(56), \lambda^{\alpha}(8)
\end{gathered}
$$

construction of multiplet has a further complication: only four SUSY raising operators, starting with $\left|\Omega_{-2}\right\rangle$ yields a maximum helicity of 0 adding CPT conjugate \rightarrow two helicity 0 components and four helicity $\frac{1}{2}$ graviton requires 21 helicity 0 components gravitino and spinor require 28 helicity $\frac{1}{2}$ components need to add 6 copies of a multiplet based on $\left|\Omega_{-1}\right\rangle$

$D=10$ Type I Supermultiplet

Type I state	helicity	degen.	e_{μ}^{a}	$A_{\mu \nu}$	σ	ψ_{μ}^{α}
$\bar{Q}^{4}\left\|\Omega_{0}\right\rangle$	2	1	1			
$\bar{Q}^{3}\left\|\Omega_{0}\right\rangle$	$\frac{3}{2}$	4				4
$\bar{Q}^{2}\left\|\Omega_{0}\right\rangle+6 \times \bar{Q}^{4}\left\|\Omega_{-1}\right\rangle$	1	12	6	6		
$\bar{Q}\left\|\Omega_{0}\right\rangle+6 \times \bar{Q}^{3}\left\|\Omega_{-1}\right\rangle$	$\frac{1}{2}$	28				24
$\bar{Q}^{4}\left\|\Omega_{-2}\right\rangle+6 \times \bar{Q}^{2}\left\|\Omega_{-1}\right\rangle+\left\|\Omega_{0}\right\rangle$	0	38	21	16	1	
$\bar{Q}^{3}\left\|\Omega_{-2}\right\rangle+6 \times \bar{Q}\left\|\Omega_{-1}\right\rangle$	$-\frac{1}{2}$	28				24
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle+6 \times\left\|\Omega_{-1}\right\rangle$	-1	12	6	6		
$\bar{Q}\left\|\Omega_{-2}\right\rangle$	$-\frac{3}{2}$	4				4
$\left\|\Omega_{-2}\right\rangle$	-2	1	1			

$D=10$ Type I and Yang-Mills

$D=10, \mathcal{N}=1$ (16 real supercharges) Yang-Mills contains a vector and spinor with eight dof each couple to Type I supergravity anomaly cancellation allows for the gauge group $E_{8} \times E_{8}$ or $S O(32)$ two low-energy effective theories for the two heterotic string theories
$D=10, \mathcal{N}=1$ Yang-Mills is low-energy effective theory for Type I string theory

$D=5, \mathcal{N}=8$, gauged supergravity

consider Type IIB supergravity compactified on S^{5}
integrate out nonzero modes on S^{5}
$S O(6) \sim S U(4)$ isometry \rightarrow gauge symmetry in the effective theory
5 D little group is $S O(3)$
each massless field has one component for each helicity massless 5D have the same dof as the corresponding massive 4D
graviton has helicities: $2,1,0,-1$, and -2 : five dof vector and 2 -form have three helicity components 1,0 , and -1 gravitino has four helicity components: $3 / 2,1 / 2,-1 / 2$, and $-3 / 2$ spinor has helicity components $1 / 2$ and $-1 / 2$
in addition to the $S U(4)$ gauge symmetry, there is $S O(2) R$-symmetry from Type IIB theory
SUSY generators transform as $(\square,+1)+(\square,-1)$

5D Graviton Supermultiplet

5D sugra. state	helicity	degeneracy	e_{μ}^{a}	A_{μ}	$B_{\mu \nu}$	ϕ	ψ_{μ}^{α}	λ^{α}
$\bar{Q}^{8}\left\|\Omega_{-2}\right\rangle$	2	1	1					
$\bar{Q}^{7}\left\|\Omega_{-2}\right\rangle$	$\frac{3}{2}$	8					8	
$\bar{Q}^{6}\left\|\Omega_{-2}\right\rangle$	1	28	1	15	12			
$\bar{Q}^{5}\left\|\Omega_{-2}\right\rangle$	$\frac{1}{2}$	56					8	48
$\bar{Q}^{4}\left\|\Omega_{-2}\right\rangle$	0	70	1	15	12	42		
$\bar{Q}^{3}\left\|\Omega_{-2}\right\rangle$	$-\frac{1}{2}$	56					8	48
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	-1	28	1	15	12			
$\bar{Q}^{2}\left\|\Omega_{-2}\right\rangle$	$-\frac{3}{2}$	8					8	
$\left\|\Omega_{-2}\right\rangle$	-2	1	1					

5D Graviton Supermultiplet

representations of $S U(4) \times S O(2)$

graviton	e_{μ}^{a}	$(1,0)$
vector	A_{μ}	$(\square, 0)$
2-form	$B_{\mu \nu}$	$(\square, 2)+(\square,-2)$
scalars	ϕ	$(1, \pm 1),(\square, 2)+(\square,-2)+(\square, 0)$
gravitino	ψ_{μ}^{α}	$(\square, 1)+(\square,-1)$
"gauginos"	λ^{α}	$(\square, 3),+(\square,-3)+(\square, 1)+(\bar{\square},-1)$

