Superconformal field theories

classically the trace of the energy–momentum tensor for a scale-invariant theory vanishes.

trace anomaly. r:

$$T^{\mu}_{\mu} = \frac{1}{g^3} \tilde{\beta}(F^b_{\mu\nu})^2 - a(\tilde{R}_{\mu\nu\rho\sigma})^2 + \dots ,$$

central charge a $\tilde{\beta}$ is the numerator of the exact NSVZ β function $R_{\mu\nu\rho\sigma}$ is the curvature tensor

Cardy conjectured that a satisfies:

```
a_{IR} < a_{UV}
```

in SCFT a can determined by 't Hooft anomalies of SC R-charge $a = \frac{3}{32} \left(3 \text{Tr} R^3 - \text{Tr} R \right)$

 $T_{\mu\nu}$ and the *R*-current $(J_{R\mu})$ in the same supermultiplet In superspace, super-energy-momentum tensor $T_{\alpha\dot{\alpha}}(x,\theta,\bar{\theta})$ contains: $J_{R\mu}, J_{\alpha\mu}$ in the θ and $\bar{\theta}$ components and $T_{\mu\nu}$ in the θ^2 component

superconformal *R*-charge:

$$R = R_0 + \sum_i c_i Q_i$$

superconformal symmetry relates different triangle anomalies $\langle J_R J_R J_i \rangle$ related to $\langle TT J_i \rangle$ by

 $9\operatorname{Tr} R^2 Q_i = \operatorname{Tr} Q_i$

two-point function

$$\langle J_i(x)J_k(0)\rangle \propto \tau_{ik} \frac{1}{x^4}$$

Unitarity $\Rightarrow \tau_{ik}$ to have positive definite eigenvalues Superconformal symmetry \Rightarrow

$$\mathrm{Tr}RQ_iQ_k = -\frac{\tau_{ik}}{3}$$

 $\Rightarrow \operatorname{Tr} RQ_iQ_k$ is negative definite

Intriligator and Wecht: correct choice of the R-charge

$$R = R_0 + \sum_i c_i Q_i$$

maximizes *a*-charge:

$$\frac{\partial a}{\partial c_i} = \frac{3}{32} \left(9 \operatorname{Tr} R^2 Q_i - \operatorname{Tr} Q_I \right) = 0$$

$$\frac{\partial^2 a}{\partial c_i \partial c_k} = \frac{27}{16} \operatorname{Tr} R Q_i Q_k < 0$$

The simplest chiral SCFT

F = 0, breaks SUSY

F = 1, 2, runaway vacua

F = 3, quantum deformed moduli space

F = 4, s-confining

F = 5, splits into an IR free and IR fixed point sectors

F > 5 ?

Moduli Space

parameterized by mesons $M = Q\bar{Q}, H = \bar{Q}A\bar{Q}$ and baryons:

where $k \leq \min(N, F)$

R-charge

anomaly cancellation for large F,N \Rightarrow

$$R(\mathbf{A}) = \frac{F}{N} \left(2 - R(Q) - \left(\frac{N}{F} + 1\right) R(\overline{Q}) \right)$$

In general

$$R(Q) = 2 - \frac{6}{N} + b(N - F) + c$$

$$R(\overline{Q}) = \frac{6}{N} + bF - c\frac{F}{F + N - 4}$$

$$R(A) = -\frac{12}{N} - 2bF$$

$$a = 3(N^{2} - 1 + FN(R(Q) - 1)^{3} + N(F + N - 4)(R(\overline{Q}) - 1)^{3} + N(N - 1)/2(R(A) - 1)^{3}) - (N^{2} - 1) - NF(R(Q) - 1) - N(F + N - 4)(R(\overline{Q}) - 1) - N(N - 1)\frac{1}{2}(R(A) - 1))$$

R-charge

a-maximization gives for F, N:

$$R(Q) = R(\overline{Q}) = -\frac{12 - 9\left(\frac{N}{F}\right)^2 + \sqrt{\left(\frac{N}{F}\right)^2 \left(-4 + \frac{N}{F}\left(73\frac{N}{F} - 4\right)\right)}}{3\left(-4 + \left(\frac{N}{F} - 4\right)\frac{N}{F}\right)}$$

even though theory is chiral

(a) The *R*-charges of the fundamental fields, with $R(Q) = R(\overline{Q})$ (b) The corresponding dimensions of the meson operators.

Two Free Mesons

reduce F from the Banks–Zaks fixed point at $F\sim 2N$ meson $M=Q\bar{Q}$ goes free at

$$F = F_1 = \frac{9N}{4(4+\sqrt{7})} \approx 0.3386 \, N$$

meson $H = \bar{Q}A\bar{Q}$ is still interacting

Kutasov: assume only one accidental U(1) for the free meson M then

$$a_{\text{int}} = a - a(R(M))$$

= $a - \frac{3}{32}F(F + N - 4)(3(R(Q) + R(\overline{Q}) - 1)^3)$
 $-(R(Q) + R(\overline{Q}) - 1))$

meson $H = \bar{Q}A\bar{Q}$ goes free at $F = F_2 \approx 0.2445N$

Two Free Mesons

- (a) The R-charges of the fundamental fields
- (b) The corresponding dimensions of the meson operators

Dual Description

for N odd and $F \geq 5$:

	SU(F-3)	Sp(2F-8)	SU(F)	SU(N+F-4)
\widetilde{y}			1	1
\overline{p}		1	1	1
q		1		1
a		1	1	1
l	1		1	
B_1	1	1		1
M	1	1		
H	1	1	1	

with a superpotential

$$W = c_1 M q l \tilde{y} + c_2 H l l + B_1 q \overline{p} + a \tilde{y} \tilde{y}$$

 $M=Q\bar{Q}$ and $H=\bar{Q}A\bar{Q}$ are mapped to elementary fields

Dual Description

with a superpotential

$$W = c_1 M q l \tilde{y} + c_2 H l l + S q \overline{p} + a \tilde{y} \tilde{y} + B_0 a \overline{p}^2$$

Dual Description

M goes free at $F = F_1, c_1 \rightarrow 0$ chiral operator $q l \tilde{y}$ has dimension 2

H goes free at $F = F_2$, $c_2 \rightarrow 0$ chiral operator *ll* has dimension 2 corresponding to *R*-charge 4/3*l* has *R*-charge 2/3 and dimension 1? is *l* free?

self-consistent if l is a gauge-invariant operator recall SUSY QCD:

$$W = c \, M \phi \overline{\phi}$$

when M goes free, the coupling $c \to 0$ the chiral operator $\phi \overline{\phi}$ has dimension 2

 $a\text{-maximization} \Rightarrow \phi, \, \overline{\phi}$ are free if we assume accidental axial symmetry for dual quarks

accidental axial symmetry only if dual gauge group is IR-free dual β function \Rightarrow dual looses asymptotic freedom for F < 3N/2 dual quarks are free

Dual β function

with c_1 and c_2 set to zero

$$W = B_1 q \overline{p} + a \tilde{y} \tilde{y}$$

Sp(2F-8) has \tilde{y} and l with gauge interactions

$$\beta(g) = -\frac{g^3}{16\pi^2} \left[3(2F-6) - (F-3)(1-\gamma_{\tilde{y}|_{g=0}}) - (N+F-4) \right] + \mathcal{O}(g^5),$$

nonperturbative SU(F-3) and superpotential corrections through anomalous dimension $\gamma_{\tilde{y}}$ Sp(2F-8) is IR free if

$$N - 4F + 11 - (F - 3)\gamma_{\tilde{y}|_{g=0}} > 0$$

Dual β function

superpotential has dimension $3 \Rightarrow$

$$\gamma_a + 2\gamma_{\tilde{y}} = 0 \qquad (*)$$

 $a^{(F-3)/2}$ is a gauge-invariant operator \Rightarrow

$$\frac{F-3}{2} + \frac{F-3}{4}\gamma_a \ge 1$$
 (**)

Combining eqns (*) and (**) we have that for large F, $\gamma_{\tilde{y}} \leq 1$ large F and large N limit with F < N/5:

$$\beta \propto N - 4F + 11 - (F - 3)\gamma_{\tilde{y}} > 0 ,$$

Sp(2F-8) is IR free

assuming l is free for $F < F_2$ we can check that Sp(2F - 8) becomes IR free at $F = F_2$

$F < F_2$: Mixed Phase

theory splits into two sectors in the IR, free magnetic sector:

	Sp(2F-8)	SU(F)	SU(N+F-4)
l		1	
M	1		
H	1	1	

interacting superconformal sector: is

$\mathcal{N} = 1$: Open Questions

- how nonperturbative effects make $\gamma_Q \neq \gamma_{\bar{Q}}$ only for $F < F_1$
- mixed-phase first conjectured in theories with an adjoint, still not proven
- SO with spinors

 $\mathcal{N}=2$

SU(N) with $\mathcal{N} = 2$ SUSY and F hypermultiplets in \Box

$$\beta(g) = -\frac{g^3}{16\pi^2} \frac{(3N - N(1 - 2\beta(g)/g) - F)}{1 - Ng^2/8\pi^2}$$

adjoint in supermultiplet with gluon and gluino $\Rightarrow Z = 1/g^2 \Rightarrow \gamma(g) = 2\beta(g)/g$ $\gamma_Q = 0, \text{ non-renormalization of the superpotential} \Rightarrow \text{ non-renormalization}$ of the Kähler function, both related to a prepotential solving for $\beta(g)$

$$\beta(g) = -\frac{g^3}{16\pi^2}(2N - F)$$

exact at one-loop

$$\mathcal{N} = 2 \text{ SCFT}$$

$$\beta(g) = -\frac{g^3}{16\pi^2}(2N - F)$$

vanishes for F = 2N

 β vanishes independent of $g \Rightarrow$ line of fixed points

Seiberg–Witten analysis $\Rightarrow a_D^i$ have no logarithmic corrections classical relations between a^i and a_D^j are exact theory with F = 2N hypermultiplets is nonperturbatively conformal

Argyres–Douglas fixed points

massless electrically and magnetically charged particles at the same point in the moduli space

electric charge: $g_{\text{IR}} \rightarrow 0$, magnetic charge: $g_{\text{IR}} \rightarrow \infty$ IR fixed point? Argyres and Douglas: yes!

 $\mathcal{N}=2~SU(2)$ with one flavor adjust mass and VEV so monopole and dyon points coincide for $m=3\Lambda_1/4$ and $u=3\Lambda_1^2/4$

$$y^2 = \left(x - \frac{\Lambda_1^2}{4}\right)^3$$

all three roots coincide

Seiberg–Witten analysis shows that a_D has no logarithmic corrections, theory is conformal

Argyres–Douglas fixed points

charges in U(1) theories with IR fixed points do not produce long-range fields .

using

$$d \ge \frac{1}{2} [C_2(\mathbf{r}) + C_2(V) - C_2(\mathbf{r}')]$$
.

 $F_{\mu\nu}$, is in a (1,0) + (0,1) of SO(4), has a scaling dimension $d \ge 2$ at an interacting IR fixed point generically d > 2conformal symmetry and dimensional analysis \Rightarrow fields fall off as $1/x^d$

Other SCFTs

have several different interactions and are superconformal lines (or manifolds) of fixed points if there are n interactions and only p independent β functions then n - p dimensional manifold of fixed points

moving in manifold \leftrightarrow changing coupling of an exactly marginal operator operator in \mathcal{L} has scaling dimension 4, independent of couplings

can also happen in $\mathcal{N} = 1$ theories

$\mathcal{N} = 4$ SUSY gauge theory

 $\mathcal{N} = 1$ SUSY gauge theory with three chiral supermultiplets in the adjoint with a particular superpotential $\equiv \mathcal{N} = 2$ SUSY gauge theory with an adjoint hypermultiplet

In general $\mathcal{N} = 4$ theories have a global $SU(4)_R \times U(1)_R$ *R*-symmetry restricted to vector supermultiplet does not transform under the $U(1)_R$

 λ , and the three adjoint fermions, ψ , transform as a **4** of the $SU(4)_R$ real adjoint scalars ϕ transform as a **6** of $SU(4)_R$

in terms of $\mathcal{N} = 1$ fields, the $SU(4)_R$ symmetry is not manifest only $SU(3) \times U(1)$ subgroup is apparent

for canonically normalized $\mathcal{N} = 1$ superfields the superpotential is

$$W_{\mathcal{N}=4} = -i\sqrt{2} Y \operatorname{Tr} \Phi_1 \left[\Phi_2, \Phi_3 \right] = \frac{Y}{3\sqrt{2}} \epsilon_{ijk} f^{abc} \Phi_i^c \Phi_j^a \Phi_k^b$$

where $a, \ldots, e = 1, \ldots, N^2 - 1$ are the adjoint gauge indices $i, \ldots, m = 1, 2, 3$ are SU(3) flavor indices, and $\Phi_i = T^a \Phi_i^a$ for $\mathcal{N} = 4$ SUSY, Y = g

$\mathcal{N} = 4$ SUSY gauge theory

Lagrangian is given by

$$\mathcal{L}_{\mathcal{N}=4} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} - i\bar{\lambda}^{a}\sigma^{\mu}D_{\mu}\lambda^{a} - i\bar{\psi}^{a}_{i}\sigma^{\mu}D_{\mu}\psi^{a}_{i} + D^{\mu}\phi^{\dagger a}_{i}D_{\mu}\phi^{a}_{i} -\sqrt{2}gf^{abc}(\phi^{\dagger c}_{i}\lambda^{a}\psi^{b}_{i} - \bar{\psi}^{c}_{i}\bar{\lambda}^{a}\phi^{b}_{i}) - \frac{Y}{\sqrt{2}}\epsilon_{ijk}f^{abc}(\phi^{c}_{i}\psi^{a}_{j}\psi^{b}_{k} + \bar{\psi}^{c}_{i}\bar{\psi}^{a}_{j}\phi^{\dagger b}_{k}) + \frac{g^{2}}{2}(f^{abc}\phi^{b}_{i}\phi^{\dagger c}_{i})(f^{ade}\phi^{d}_{j}\phi^{\dagger e}_{j}) - \frac{Y^{2}}{2}\epsilon_{ijk}\epsilon_{ilm}(f^{abc}\phi^{b}_{j}\phi^{c}_{k})(f^{ade}\phi^{\dagger d}_{l}\phi^{\dagger e}_{m})$$

SU(N) gauge theory with $\mathcal{N} = 2$ SUSY and A adjoint hypermultiplets has

$$\beta(g) = -\frac{g^3}{16\pi^2} (2 - 2A)N$$

 $\Rightarrow \mathcal{N} = 4$ gauge theory has $\beta = 0 \leftrightarrow \text{SCFT}$

Quivers and Mooses

Theories with gauge groups connected by bifundamentals called "quiver" theories and "mooses" matter content can be represented by a quiver/moose diagram in certain cases a quiver/moose theory can be considered as a latticization (a.k.a "deconstruction") along a discretized extra dimension

$\mathcal{N} = 4$ and orbifolds

mod-out by a discrete subgroup Γ of the gauge and global symmetries \rightarrow "daughter" theory

\rightarrow quiver/moose

large N limit of an SU(N) dominated by planar diagrams if Γ embedded in gauge group using regular representation N times then the planar diagrams of daughter \propto planar diagrams of full theory (up to a rescaling of the gauge coupling)

large N limit, daughters of the $\mathcal{N} = 4$ gauge theory are conformal orbifolding in different ways break different amounts of SUSY:

$SU(4)_R \supset \Gamma,$	$SU(3) \not\supset \Gamma$	$\Rightarrow \mathcal{N} = 0$
$SU(3) \supset \Gamma,$	$SU(2) \not\supset \Gamma$	$\Rightarrow \mathcal{N} = 1$
$SU(2) \supset \Gamma,$		$\Rightarrow \mathcal{N} = 2$.

unbroken SUSY \leftrightarrow size of the $R\mbox{-symmetry}$ subgroup invariant under Γ

$\mathcal{N} = 4$ and orbifolds

simplest case: permutation group $\Gamma = Z_k$ embedded in the gauge group regular representation of Z_k :

$$\gamma^{\mathbf{a}} = \operatorname{diag}(\omega^0, \omega^a, \omega^{2a}, \dots, \omega^{(k-1)a})$$

where $\omega = e^{2\pi i/k}$ and $a = 0, 1, \dots, k-1$, embed Z_k in SU(kN) by defining

$$\gamma_{\mathbf{N}}^{\mathbf{a}} = \operatorname{diag}(\mathbf{1}_{\mathbf{N}}, \mathbf{1}_{\mathbf{N}}\omega^{a}, \mathbf{1}_{\mathbf{N}}\omega^{2a}, \dots, \mathbf{1}_{\mathbf{N}}\omega^{(k-1)a})$$

so adjoint transforms as

$$\mathbf{Ad} \to \gamma_{\mathbf{N}}^{\mathbf{a}} \mathbf{Ad} (\gamma_{\mathbf{N}}^{\mathbf{a}})^{\dagger}$$

$\mathcal{N} = 4$ and orbifolds

parts of the $kN \times kN$ matrix of gauge fields left invariant are

$$A_{inv} = \operatorname{diag}(\mathbf{A_1}, \mathbf{A_2}, \mathbf{A_3}, \dots, \mathbf{A_k}) ,$$

where $\mathbf{A}_{\mathbf{i}}$ t adjoint under the *i*th SU(N) subgroup of SU(kN)orbifolded gauge group is $\prod_{i=1}^{k} SU(N)_i$

Orbifold example

example the Z_6 orbifold where the embedding of Z_6 in the global SU(4)*R*-symmetry is such that the four fermion fields transform as:

 $(\psi_1, \psi_2, \psi_3, \psi_4) \rightarrow (\omega^a \psi_1, \omega^{-2a} \psi_2, \omega^{3a} \psi_3, \omega^{4a} \psi_4)$

under a global transformation adjoint fermion ψ_3 that transforms as

$$\psi_3 \to \omega^{3a} \gamma_{\mathbf{N}}^{\mathbf{a}} \psi_3 (\gamma_{\mathbf{N}}^{\mathbf{a}})^{\dagger}$$

Orbifold example

invariant pieces of ψ_3 :

0	0	0	ψ_{14}	0	0
0	0	0	0	ψ_{25}	0
0	0	0	0	0	ψ_{36}
ψ_{41}	0	0	0	0	0
0	ψ_{52}	0	0	0	0
0	0	ψ_{63}	0	0	0

bifundamentals transforming as $(\Box, \overline{\Box})$ under $SU(N)_i \times SU(N)_j$ similar analysis for the remaining fermion and scalar fields

Orbifolds and the Hierarchy Problem

proposed that orbifold theories solve the hierarchy problem if physics was conformal above 1 TeV exactly conformal theory has no quadratic divergences

consider the effective theory below some scale μ calculate the one-loop β functions, set the $\beta = 0$ in daughter theories where matter fields are distinct bifundamentals, fixed points for Y, and λ_i , approach $\mathcal{N} = 4$ SUSY: $Y = \lambda_i = g$ as $N \to \infty$

Orbifolds and the Hierarchy Problem

at fixed point the one-loop scalar mass is given by

$$m_{\phi}^{2} = \left[Nc_{i}\lambda_{i} + 3\frac{N^{2}-1}{N}g^{2} - 8NY^{2} \right] \frac{\mu^{2}}{16\pi^{2}}$$

large N limit $\sum_i c_i = 5$: no quadratic divergence leading order in 1/N:

$$m_{\phi}^2 = \frac{3g^2}{N} \frac{\mu^2}{16\pi^2}$$

to get $m_{\phi} = 1$ TeV, with $\mu = M_{\rm Pl}$ we need $N = 10^{28}$

if scalar mass term is relevant operator in low-energy effective theory below SUSY breaking scale, a large mass is generated