
Superconformal field theories



A-Maximization
classically the trace of the energy–momentum tensor for a scale-

invariant theory vanishes.
trace anomaly. r:

Tµµ = 1
g3 β̃(F bµν)2 − a(R̃µνρσ)2 + . . . ,

central charge a
β̃ is the numerator of the exact NSVZ β function
Rµνρσ is the curvature tensor

Cardy conjectured that a satisfies:

aIR < aUV



A-Maximization
in SCFT a can determined by ‘t Hooft anomalies of SC R-charge

a = 3
32

(
3TrR3 − TrR

)
Tµν and the R-current (JRµ) in the same supermultiplet
In superspace, super-energy–momentum tensor Tαα̇(x, θ, θ̄) contains:
JRµ, Jαµ in the θ and θ̄ components and Tµν in the θ2 component

superconformal R-charge:

R = R0 +
∑
i ciQi



A-Maximization
superconformal symmetry relates different triangle anomalies

〈JRJRJi〉 related to 〈TTJi〉 by

9 TrR2Qi = TrQi

two-point function

〈Ji(x)Jk(0)〉 ∝ τik 1
x4

Unitarity ⇒ τik to have positive definite eigenvalues
Superconformal symmetry ⇒

TrRQiQk = − τik

3

⇒ TrRQiQk is negative definite



A-Maximization
Intriligator and Wecht: correct choice of the R-charge

R = R0 +
∑
i ciQi

maximizes a-charge:

∂a
∂ci

= 3
32

(
9 TrR2Qi − TrQI

)
= 0

∂2a
∂ci∂ck

= 27
16TrRQiQk < 0



The simplest chiral SCFT

SU(N) SU(F ) SU(F +N − 4) U(1)R
Q 1 R(Q)
Q 1 R(Q)

A 1 1 R(A)

F = 0, breaks SUSY
F = 1, 2, runaway vacua
F = 3, quantum deformed moduli space
F = 4, s-confining
F = 5, splits into an IR free and IR fixed point sectors

F > 5 ?



Moduli Space
parameterized by mesons M = QQ̄, H = Q̄AQ̄ and baryons:

N even N odd
Q̄N Q̄N

AN/2 QAN−1/2

Q2A(N−2)/2 Q3A(N−3)/2

...
...

QkA(N−k)/2 QkA(N−k)/2

where k ≤ min(N,F )



R-charge
anomaly cancellation for large F,N ⇒

R(A) = F
N

(
2−R(Q)−

(
N
F + 1

)
R(Q)

)
In general

R(Q) = 2− 6
N + b(N − F ) + c

R(Q) = 6
N + bF − c F

F+N−4

R(A) = − 12
N − 2bF

a = 3(N2 − 1 + FN(R(Q)− 1)3 +N(F +N − 4)(R(Q)− 1)3

+N(N − 1)/2(R(A)− 1)3)− (N2 − 1)−NF (R(Q)− 1)
−N(F +N − 4)(R(Q)− 1)−N(N − 1) 1

2 (R(A)− 1)



R-charge
a-maximization gives for F,N :

R(Q) = R(Q) = − 12−9( N
F )2

+
√

( N
F )2

(−4+ N
F (73 N

F −4))

3(−4+( N
F −4) N

F )

even though theory is chiral



R-charge
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(a) The R-charges of the fundamental fields, with R(Q) = R(Q)
(b) The corresponding dimensions of the meson operators.



Two Free Mesons
reduce F from the Banks–Zaks fixed point at F ∼ 2N

meson M = QQ̄ goes free at

F = F1 = 9N
4(4+

√
7)
≈ 0.3386N

meson H = Q̄AQ̄ is still interacting
Kutasov: assume only one accidental U(1) for the free meson M then

aint = a− a(R(M))
= a− 3

32F (F +N − 4)
(
3(R(Q) +R(Q)− 1)3

−(R(Q) +R(Q)− 1))

meson H = Q̄AQ̄ goes free at F = F2 ≈ 0.2445N



Two Free Mesons
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(a) The R-charges of the fundamental fields
(b) The corresponding dimensions of the meson operators



Dual Description
for N odd and F ≥ 5:

SU(F − 3) Sp(2F − 8) SU(F ) SU(N + F − 4)
ỹ 1 1
p 1 1 1
q 1 1

a 1 1 1
l 1 1
B1 1 1 1
M 1 1

H 1 1 1

with a superpotential

W = c1Mqlỹ + c2Hll +B1qp+ aỹỹ

M = QQ̄ and H = Q̄AQ̄ are mapped to elementary fields



Dual Description
even N and F ≥ 5:

SU(F − 3) Sp(2F − 8) SU(F ) SU(N + F − 4) SU(2)
ỹ 1 1 1
p 1 1 1
q 1 1 1

a 1 1 1 1
l 1 1 1
S 1 1 1
B0 1 1 1 1 1
M 1 1 1

H 1 1 1 1

with a superpotential

W = c1Mqlỹ + c2Hll + Sqp+ aỹỹ +B0ap
2



Dual Description
M goes free at F = F1, c1 → 0 chiral operator qlỹ has dimension 2

H goes free at F = F2, c2 → 0 chiral operator ll has dimension 2
corresponding to R-charge 4/3
l has R-charge 2/3 and dimension 1? is l free?

self-consistent if l is a gauge-invariant operator
recall SUSY QCD:

W = cMφφ

when M goes free, the coupling c→ 0 the chiral operator φφ has dimen-
sion 2
a-maximization ⇒ φ, φ are free if we assume accidental axial symmetry
for dual quarks
accidental axial symmetry only if dual gauge group is IR-free
dual β function ⇒ dual looses asymptotic freedom for F < 3N/2
dual quarks are free



Dual β function
with c1 and c2 set to zero

W = B1qp+ aỹỹ

Sp(2F − 8) has ỹ and l with gauge interactions

β(g) = − g3

16π2

[
3(2F − 6)− (F − 3)(1− γỹ|g=0)− (N + F − 4)

]
+O(g5),

nonperturbative SU(F−3) and superpotential corrections through anoma-
lous dimension γỹ
Sp(2F − 8) is IR free if

N − 4F + 11− (F − 3)γỹ|g=0 > 0



Dual β function
superpotential has dimension 3 ⇒

γa + 2γỹ = 0 (∗)

a(F−3)/2 is a gauge-invariant operator ⇒
F−3

2 + F−3
4 γa ≥ 1 (∗∗)

Combining eqns (*) and (**) we have that for large F , γỹ ≤ 1
large F and large N limit with F < N/5:

β ∝ N − 4F + 11− (F − 3)γỹ > 0 ,

Sp(2F − 8) is IR free

assuming l is free for F < F2 we can check that Sp(2F − 8) becomes
IR free at F = F2



F < F2: Mixed Phase
theory splits into two sectors in the IR, free magnetic sector:

Sp(2F − 8) SU(F ) SU(N + F − 4)
l 1
M 1

H 1 1

interacting superconformal sector: is

SU(F − 3) Sp(2F − 8) SU(F )
ỹ 1
p 1 1
q 1

a 1 1
B1 1 1

W = B1qp+ aỹỹ



N = 1: Open Questioins
• how nonperturbative effects make γQ 6= γQ̄ only for F < F1

• mixed-phase first conjectured in theories with an adjoint, still not
proven

• SO with spinors



N = 2
SU(N) with N = 2 SUSY and F hypermultiplets in

β(g) = − g3

16π2
(3N−N(1−2β(g)/g)−F )

1−Ng2/8π2

adjoint in supermultiplet with gluon and gluino
⇒ Z = 1/g2 ⇒ γ(g) = 2β(g)/g
γQ = 0, non-renormalization of the superpotential⇒ non-renormalization
of the Kähler function, both related to a prepotential

solving for β(g)

β(g) = − g3

16π2 (2N − F )

exact at one-loop



N = 2 SCFT

β(g) = − g3

16π2 (2N − F )

vanishes for F = 2N
β vanishes independent of g ⇒ line of fixed points
Seiberg–Witten analysis ⇒ aiD have no logarithmic corrections

classical relations between ai and ajD are exact
theory with F = 2N hypermultiplets is nonperturbatively conformal



Argyres–Douglas fixed points
massless electrically and magnetically charged particles at the same

point in the moduli space
electric charge: gIR → 0, magnetic charge: gIR →∞

IR fixed point? Argyres and Douglas: yes!

N = 2 SU(2) with one flavor
adjust mass and VEV so monopole and dyon points coincide

for m = 3Λ1/4 and u = 3Λ2
1/4

y2 =
(
x− Λ2

1
4

)3

all three roots coincide
Seiberg–Witten analysis shows that aD has no logarithmic corrections,
theory is conformal



Argyres–Douglas fixed points
charges in U(1) theories with IR fixed points do not produce long-

range fields
using

d ≥ 1
2 [C2(r) + C2(V )− C2(r′)] .

Fµν , is in a (1, 0) + (0, 1) of SO(4), has a scaling dimension d ≥ 2
at an interacting IR fixed point generically d > 2
conformal symmetry and dimensional analysis ⇒ fields fall off as 1/xd



Other SCFTs
have several different interactions and are superconformal
lines (or manifolds) of fixed points
if there are n interactions and only p independent β functions
then n− p dimensional manifold of fixed points

moving in manifold↔ changing coupling of an exactly marginal operator
operator in L has scaling dimension 4, independent of couplings

can also happen in N = 1 theories



N = 4 SUSY gauge theory
N = 1 SUSY gauge theory with three chiral supermultiplets in the

adjoint with a particular superpotential
≡ N = 2 SUSY gauge theory with an adjoint hypermultiplet
In general N = 4 theories have a global SU(4)R × U(1)R R-symmetry
restrictted to vector supermultiplet does not transform under the U(1)R

λ, and the three adjoint fermions, ψ, transform as a 4 of the SU(4)R
real adjoint scalars φ transform as a 6 of SU(4)R
in terms of N = 1 fields, the SU(4)R symmetry is not manifest
only SU(3)× U(1) subgroup is apparent
for canonically normalized N = 1 superfields the superpotential is

WN=4 = −i
√

2Y TrΦ1 [Φ2,Φ3] = Y
3
√

2
εijkf

abc ΦciΦ
a
jΦbk

where a, . . . , e = 1, . . . , N2 − 1 are the adjoint gauge indices
i, . . . ,m = 1, 2, 3 are SU(3) flavor indices, and Φi = T aΦai
for N = 4 SUSY, Y = g



N = 4 SUSY gauge theory
Lagrangian is given by

LN=4 = − 1
4F

a
µνF

aµν − iλ̄aσµDµλ
a − iψ̄ai σµDµψ

a
i +Dµφ†ai Dµφ

a
i

−
√

2gfabc(φ†ci λ
aψbi − ψ̄ci λ̄aφbi )− Y√

2
εijkf

abc(φciψ
a
jψ

b
k + ψ̄ci ψ̄

a
j φ
† b
k )

+ g2

2 (fabcφbiφ
† c
i )(fadeφdjφ

† e
j )− Y 2

2 εijkεilm(fabcφbjφ
c
k)(fadeφ†dl φ

†e
m)

SU(N) gauge theory with N = 2 SUSY and A adjoint hypermulti-
plets has

β(g) = − g3

16π2 (2− 2A)N

⇒ N = 4 gauge theory has β = 0 ↔ SCFT



Quivers and Mooses

Theories with gauge groups connected by bifundamentals
called “quiver” theories and “mooses”
matter content can be represented by a quiver/moose diagram
in certain cases a quiver/moose theory can be considered as a latticiza-
tion (a.k.a “deconstruction”) along a discretized extra dimension



N = 4 and orbifolds
mod-out by a discrete subgroup Γ of the gauge and global symmetries
→ “daughter” theory
→ quiver/moose

large N limit of an SU(N) dominated by planar diagrams
if Γ embedded in gauge group using regular representation N times then
the planar diagrams of daughter ∝ planar diagrams of full theory (up to
a rescaling of the gauge coupling)
large N limit, daughters of the N = 4 gauge theory are conformal
orbifolding in different ways break different amounts of SUSY:

SU(4)R ⊃ Γ, SU(3) 6⊃ Γ ⇒ N = 0
SU(3) ⊃ Γ, SU(2) 6⊃ Γ ⇒ N = 1
SU(2) ⊃ Γ, ⇒ N = 2 .

unbroken SUSY ↔ size of the R-symmetry subgroup invariant under Γ



N = 4 and orbifolds
simplest case: permutation group Γ = Zk embedded in the gauge group
regular representation of Zk:

γa = diag(ω0, ωa, ω2a, . . . , ω(k−1)a)

where ω = e2πi/k and a = 0, 1, . . . , k − 1, embed Zk in SU(kN) by
defining

γa
N = diag(1N,1Nω

a,1Nω
2a, . . . ,1Nω

(k−1)a)

so adjoint transforms as

Ad→ γa
NAd(γa

N)†



N = 4 and orbifolds
parts of the kN × kN matrix of gauge fields left invariant are

Ainv = diag(A1,A2,A3, . . . ,Ak) ,

where Ai t adjoint under the ith SU(N) subgroup of SU(kN)
orbifolded gauge group is Πk

i=1 SU(N)i



Orbifold example
example the Z6 orbifold where the embedding of Z6 in the global SU(4)
R-symmetry is such that the four fermion fields transform as:

(ψ1, ψ2, ψ3, ψ4)→ (ωaψ1, ω
−2aψ2, ω

3aψ3, ω
4aψ4)

under a global transformation
adjoint fermion ψ3 that transforms as

ψ3 → ω3aγa
Nψ3(γa

N)†



Orbifold example
invariant pieces of ψ3:

0 0 0 ψ14 0 0
0 0 0 0 ψ25 0
0 0 0 0 0 ψ36

ψ41 0 0 0 0 0
0 ψ52 0 0 0 0
0 0 ψ63 0 0 0

bifundamentals transforming as ( , ) under SU(N)i × SU(N)j
similar analysis for the remaining fermion and scalar fields



Orbifolds and the Hierarchy Problem
proposed that orbifold theories solve the hierarchy problem if physics

was conformal above 1 TeV
exactly conformal theory has no quadratic divergences

consider the effective theory below some scale µ
calculate the one-loop β functions, set the β = 0
in daughter theories where matter fields are distinct bifundamentals,
fixed points for Y , and λi, approach N = 4 SUSY:
Y = λi = g as N →∞



Orbifolds and the Hierarchy Problem
at fixed point the one-loop scalar mass is given by

m2
φ =

[
Nciλi + 3N

2−1
N g2 − 8NY 2

]
µ2

16π2

large N limit
∑
i ci = 5: no quadratic divergence

leading order in 1/N :

m2
φ = 3g2

N
µ2

16π2

to get mφ = 1 TeV, with µ = MPl we need N = 1028

if scalar mass term is relevant operator in low-energy effective theory
below SUSY breaking scale, a large mass is generated


