Superconformal field theories

A-Maximization

classically the trace of the energy-momentum tensor for a scaleinvariant theory vanishes.
trace anomaly. r:

$$
T_{\mu}^{\mu}=\frac{1}{g^{3}} \tilde{\beta}\left(F_{\mu \nu}^{b}\right)^{2}-a\left(\tilde{R}_{\mu \nu \rho \sigma}\right)^{2}+\ldots
$$

central charge a
$\tilde{\beta}$ is the numerator of the exact NSVZ β function
$R_{\mu \nu \rho \sigma}$ is the curvature tensor

Cardy conjectured that a satisfies:

$$
a_{I R}<a_{U V}
$$

A-Maximization

in SCFT a can determined by 't Hooft anomalies of SC R-charge

$$
a=\frac{3}{32}\left(3 \operatorname{Tr} R^{3}-\operatorname{Tr} R\right)
$$

$T_{\mu \nu}$ and the R-current ($J_{R \mu}$) in the same supermultiplet In superspace, super-energy-momentum tensor $T_{\alpha \dot{\alpha}}(x, \theta, \bar{\theta})$ contains: $J_{R \mu}, J_{\alpha \mu}$ in the θ and $\bar{\theta}$ components and $T_{\mu \nu}$ in the θ^{2} component
superconformal R-charge:

$$
R=R_{0}+\sum_{i} c_{i} Q_{i}
$$

A-Maximization

superconformal symmetry relates different triangle anomalies $\left\langle J_{R} J_{R} J_{i}\right\rangle$ related to $\left\langle T T J_{i}\right\rangle$ by

$$
9 \operatorname{Tr} R^{2} Q_{i}=\operatorname{Tr} Q_{i}
$$

two-point function

$$
\left\langle J_{i}(x) J_{k}(0)\right\rangle \propto \tau_{i k} \frac{1}{x^{4}}
$$

Unitarity $\Rightarrow \tau_{i k}$ to have positive definite eigenvalues Superconformal symmetry \Rightarrow

$$
\operatorname{Tr} R Q_{i} Q_{k}=-\frac{\tau_{i k}}{3}
$$

$\Rightarrow \operatorname{Tr} R Q_{i} Q_{k}$ is negative definite

A-Maximization

Intriligator and Wecht: correct choice of the R-charge

$$
R=R_{0}+\sum_{i} c_{i} Q_{i}
$$

maximizes a-charge:

$$
\begin{aligned}
\frac{\partial a}{\partial c_{i}} & =\frac{3}{32}\left(9 \operatorname{Tr} R^{2} Q_{i}-\operatorname{Tr} Q_{I}\right)=0 \\
\frac{\partial^{2} a}{\partial c_{i} \partial c_{k}} & =\frac{27}{16} \operatorname{Tr} R Q_{i} Q_{k}<0
\end{aligned}
$$

The simplest chiral SCFT

	$S U(N)$	$S U(F)$	$S U(F+N-4)$	$U(1)_{R}$
\bar{Q}	\square	\square	$\mathbf{1}$	$R(Q)$
\bar{Q}	\square	$\mathbf{1}$	\square	$R(\bar{Q})$
A	\square	$\mathbf{1}$	$\mathbf{1}$	$R(\mathrm{~A})$

$$
\begin{aligned}
& F=0, \text { breaks SUSY } \\
& F=1,2 \text {, runaway vacua } \\
& F=3 \text {, quantum deformed moduli space } \\
& F=4, \text { s-confining } \\
& F=5, \text { splits into an IR free and IR fixed point sectors }
\end{aligned}
$$

$$
F>5 ?
$$

Moduli Space

parameterized by mesons $M=Q \bar{Q}, H=\bar{Q} A \bar{Q}$ and baryons:

$$
\begin{array}{cc}
N \text { even } & N \text { odd } \\
\bar{Q}^{N} & \bar{Q}^{N} \\
A^{N / 2} & Q A^{N-1 / 2} \\
Q^{2} A^{(N-2) / 2} & Q^{3} A^{(N-3) / 2} \\
\vdots & \vdots \\
Q^{k} A^{(N-k) / 2} & Q^{k} A^{(N-k) / 2}
\end{array}
$$

where $k \leq \min (N, F)$

R-charge

anomaly cancellation for large $F, N \Rightarrow$

$$
R(\mathrm{~A})=\frac{F}{N}\left(2-R(Q)-\left(\frac{N}{F}+1\right) R(\bar{Q})\right)
$$

In general

$$
\begin{gathered}
R(Q)=2-\frac{6}{N}+b(N-F)+c \\
R(\bar{Q})=\frac{6}{N}+b F-c \frac{F}{F+N-4} \\
R(\mathrm{~A})=-\frac{12}{N}-2 b F \\
a=3\left(N^{2}-1+F N(R(Q)-1)^{3}+N(F+N-4)(R(\bar{Q})-1)^{3}\right. \\
\left.+N(N-1) / 2(R(A)-1)^{3}\right)-\left(N^{2}-1\right)-N F(R(Q)-1) \\
-N(F+N-4)(R(\bar{Q})-1)-N(N-1) \frac{1}{2}(R(A)-1)
\end{gathered}
$$

R-charge

a-maximization gives for F, N :

$$
R(Q)=R(\bar{Q})=-\frac{12-9\left(\frac{N}{F}\right)^{2}+\sqrt{\left(\frac{N}{F}\right)^{2}\left(-4+\frac{N}{F}\left(73 \frac{N}{F}-4\right)\right)}}{3\left(-4+\left(\frac{N}{F}-4\right) \frac{N}{F}\right)}
$$

even though theory is chiral

R -charge

(a) The R-charges of the fundamental fields, with $R(Q)=R(\bar{Q})$
(b) The corresponding dimensions of the meson operators.

Two Free Mesons

reduce F from the Banks-Zaks fixed point at $F \sim 2 N$ meson $M=Q \bar{Q}$ goes free at

$$
F=F_{1}=\frac{9 N}{4(4+\sqrt{7})} \approx 0.3386 N
$$

meson $H=\bar{Q} A \bar{Q}$ is still interacting
Kutasov: assume only one accidental $U(1)$ for the free meson M then

$$
\begin{aligned}
a_{\mathrm{int}}= & a-a(R(M)) \\
= & a-\frac{3}{32} F(F+N-4)\left(3(R(Q)+R(\bar{Q})-1)^{3}\right. \\
& -(R(Q)+R(\bar{Q})-1))
\end{aligned}
$$

meson $H=\bar{Q} A \bar{Q}$ goes free at $F=F_{2} \approx 0.2445 N$

Two Free Mesons

(a) The R-charges of the fundamental fields
(b) The corresponding dimensions of the meson operators

Dual Description

for N odd and $F \geq 5$:

	$S U(F-3)$	$S p(2 F-8)$	$S U(F)$	$S U(N+F-4)$
\tilde{y}	\square	\square	$\mathbf{1}$	$\mathbf{1}$
\bar{p}	\square	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
q	\square	$\mathbf{1}$	\square	$\mathbf{1}$
a	\square	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
l	$\mathbf{1}$	\square	$\mathbf{1}$	\square
B_{1}	$\mathbf{1}$	$\mathbf{1}$	\square	$\mathbf{1}$
M	$\mathbf{1}$	$\mathbf{1}$	\square	\square
H	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	\square

with a superpotential

$$
W=c_{1} M q l \tilde{y}+c_{2} H l l+B_{1} q \bar{p}+a \tilde{y} \tilde{y}
$$

$M=Q \bar{Q}$ and $H=\bar{Q} A \bar{Q}$ are mapped to elementary fields

Dual Description

even N and $F \geq 5$:

	$S U(F-3)$	$S p(2 F-8)$	$S U(F)$	$S U(N+F-4)$	$S U(2)$
\tilde{y}	\square	\square	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
\bar{p}	\square	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	\square
q	\square	$\mathbf{1}$	\square	$\mathbf{1}$	$\mathbf{1}$
a	\square	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
l	\square	\square	$\mathbf{1}$	\square	$\mathbf{1}$
S	$\mathbf{1}$	$\mathbf{1}$	\square	$\mathbf{1}$	\square
B_{0}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
M	$\mathbf{1}$	$\mathbf{1}$	\square	\square	$\mathbf{1}$
H	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	\square	$\mathbf{1}$

with a superpotential

$$
W=c_{1} M q l \tilde{y}+c_{2} H l l+S q \bar{p}+a \tilde{y} \tilde{y}+B_{0} a \bar{p}^{2}
$$

Dual Description

M goes free at $F=F_{1}, c_{1} \rightarrow 0$ chiral operator $q l \tilde{y}$ has dimension 2
H goes free at $F=F_{2}, c_{2} \rightarrow 0$ chiral operator $l l$ has dimension 2 corresponding to R-charge $4 / 3$
l has R-charge $2 / 3$ and dimension 1? is l free?
self-consistent if l is a gauge-invariant operator recall SUSY QCD:

$$
W=c M \phi \bar{\phi}
$$

when M goes free, the coupling $c \rightarrow 0$ the chiral operator $\phi \bar{\phi}$ has dimension 2
a-maximization $\Rightarrow \phi, \bar{\phi}$ are free if we assume accidental axial symmetry for dual quarks
accidental axial symmetry only if dual gauge group is IR-free dual β function \Rightarrow dual looses asymptotic freedom for $F<3 N / 2$ dual quarks are free

Dual β function

with c_{1} and c_{2} set to zero

$$
W=B_{1} q \bar{p}+a \tilde{y} \tilde{y}
$$

$S p(2 F-8)$ has \tilde{y} and l with gauge interactions

$$
\begin{aligned}
\beta(g)= & -\frac{g^{3}}{16 \pi^{2}}\left[3(2 F-6)-(F-3)\left(1-\gamma_{\tilde{y} \mid g=0}\right)-(N+F-4)\right] \\
& +\mathcal{O}\left(g^{5}\right),
\end{aligned}
$$

nonperturbative $S U(F-3)$ and superpotential corrections through anomalous dimension $\gamma_{\tilde{y}}$
$S p(2 F-8)$ is IR free if

$$
N-4 F+11-(F-3) \gamma_{\left.\tilde{y}\right|_{g=0}}>0
$$

Dual β function

superpotential has dimension $3 \Rightarrow$

$$
\begin{equation*}
\gamma_{a}+2 \gamma_{\tilde{y}}=0 \tag{*}
\end{equation*}
$$

$a^{(F-3) / 2}$ is a gauge-invariant operator \Rightarrow

$$
\frac{F-3}{2}+\frac{F-3}{4} \gamma_{a} \geq 1
$$

Combining eqns $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we have that for large $F, \gamma_{\tilde{y}} \leq 1$ large F and large N limit with $F<N / 5$:

$$
\beta \propto N-4 F+11-(F-3) \gamma_{\tilde{y}}>0
$$

$S p(2 F-8)$ is IR free
assuming l is free for $F<F_{2}$ we can check that $S p(2 F-8)$ becomes
IR free at $F=F_{2}$

$F<F_{2}$: Mixed Phase

theory splits into two sectors in the IR, free magnetic sector:

	$S p(2 F-8)$	$S U(F)$	$S U(N+F-4)$
l	\square	$\mathbf{1}$	\square
M	$\mathbf{1}$	\square	\square
H	$\mathbf{1}$	$\mathbf{1}$	\square

interacting superconformal sector: is

	$S U(F-3)$	$S p(2 F-8)$	$S U(F)$
\tilde{y}	\square	\square	$\mathbf{1}$
\bar{p}	\square	$\mathbf{1}$	$\mathbf{1}$
q	\square	$\mathbf{1}$	\square
a	\square	$\mathbf{1}$	$\mathbf{1}$
B_{1}	$\mathbf{1}$	$\mathbf{1}$	\square
$W=B_{1} q \bar{p}+a \tilde{y} \tilde{y}$			

$\mathcal{N}=1$: Open Questioins

- how nonperturbative effects make $\gamma_{Q} \neq \gamma_{\bar{Q}}$ only for $F<F_{1}$
- mixed-phase first conjectured in theories with an adjoint, still not proven
- $S O$ with spinors

$\mathcal{N}=2$

$S U(N)$ with $\mathcal{N}=2$ SUSY and F hypermultiplets in \square

$$
\beta(g)=-\frac{g^{3}}{16 \pi^{2}} \frac{(3 N-N(1-2 \beta(g) / g)-F)}{1-N g^{2} / 8 \pi^{2}}
$$

adjoint in supermultiplet with gluon and gluino
$\Rightarrow Z=1 / g^{2} \Rightarrow \gamma(g)=2 \beta(g) / g$
$\gamma_{Q}=0$, non-renormalization of the superpotential \Rightarrow non-renormalization of the Kähler function, both related to a prepotential solving for $\beta(g)$

$$
\beta(g)=-\frac{g^{3}}{16 \pi^{2}}(2 N-F)
$$

exact at one-loop

$\mathcal{N}=2$ SCFT

$$
\beta(g)=-\frac{g^{3}}{16 \pi^{2}}(2 N-F)
$$

vanishes for $F=2 N$
β vanishes independent of $g \Rightarrow$ line of fixed points
Seiberg-Witten analysis $\Rightarrow a_{D}^{i}$ have no logarithmic corrections classical relations between a^{i} and a_{D}^{j} are exact theory with $F=2 N$ hypermultiplets is nonperturbatively conformal

Argyres-Douglas fixed points

massless electrically and magnetically charged particles at the same point in the moduli space
electric charge: $g_{\mathrm{IR}} \rightarrow 0$, magnetic charge: $g_{\mathrm{IR}} \rightarrow \infty$
IR fixed point? Argyres and Douglas: yes!
$\mathcal{N}=2 S U(2)$ with one flavor
adjust mass and VEV so monopole and dyon points coincide
for $m=3 \Lambda_{1} / 4$ and $u=3 \Lambda_{1}^{2} / 4$

$$
y^{2}=\left(x-\frac{\Lambda_{1}^{2}}{4}\right)^{3}
$$

all three roots coincide
Seiberg-Witten analysis shows that a_{D} has no logarithmic corrections, theory is conformal

Argyres-Douglas fixed points

charges in $U(1)$ theories with IR fixed points do not produce longrange fields
using

$$
d \geq \frac{1}{2}\left[C_{2}(\mathbf{r})+C_{2}(V)-C_{2}\left(\mathbf{r}^{\prime}\right)\right]
$$

$F_{\mu \nu}$, is in a $(1,0)+(0,1)$ of $S O(4)$, has a scaling dimension $d \geq 2$
at an interacting IR fixed point generically $d>2$
conformal symmetry and dimensional analysis \Rightarrow fields fall off as $1 / x^{d}$

Other SCFTs

have several different interactions and are superconformal lines (or manifolds) of fixed points
if there are n interactions and only p independent β functions then $n-p$ dimensional manifold of fixed points
moving in manifold \leftrightarrow changing coupling of an exactly marginal operator operator in \mathcal{L} has scaling dimension 4 , independent of couplings
can also happen in $\mathcal{N}=1$ theories

$\mathcal{N}=4$ SUSY gauge theory

$\mathcal{N}=1$ SUSY gauge theory with three chiral supermultiplets in the adjoint with a particular superpotential
$\equiv \mathcal{N}=2$ SUSY gauge theory with an adjoint hypermultiplet In general $\mathcal{N}=4$ theories have a global $S U(4)_{R} \times U(1)_{R} R$-symmetry restrictted to vector supermultiplet does not transform under the $U(1)_{R}$
λ, and the three adjoint fermions, ψ, transform as a 4 of the $S U(4)_{R}$ real adjoint scalars ϕ transform as a $\mathbf{6}$ of $S U(4)_{R}$
in terms of $\mathcal{N}=1$ fields, the $S U(4)_{R}$ symmetry is not manifest only $S U(3) \times U(1)$ subgroup is apparent for canonically normalized $\mathcal{N}=1$ superfields the superpotential is

$$
W_{\mathcal{N}=4}=-i \sqrt{2} Y \operatorname{Tr} \Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]=\frac{Y}{3 \sqrt{2}} \epsilon_{i j k} f^{a b c} \Phi_{i}^{c} \Phi_{j}^{a} \Phi_{k}^{b}
$$

where $a, \ldots, e=1, \ldots, N^{2}-1$ are the adjoint gauge indices
$i, \ldots, m=1,2,3$ are $S U(3)$ flavor indices, and $\Phi_{i}=T^{a} \Phi_{i}^{a}$ for $\mathcal{N}=4 \operatorname{SUSY}, Y=g$

$\mathcal{N}=4$ SUSY gauge theory

Lagrangian is given by

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{N}=4}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}-i \bar{\lambda}^{a} \sigma^{\mu} D_{\mu} \lambda^{a}-i \bar{\psi}_{i}^{a} \sigma^{\mu} D_{\mu} \psi_{i}^{a}+D^{\mu} \phi_{i}^{\dagger a} D_{\mu} \phi_{i}^{a} \\
& -\sqrt{2} g f^{a b c}\left(\phi_{i}^{\dagger c} \lambda^{a} \psi_{i}^{b}-\bar{\psi}_{i}^{c} \bar{\lambda}^{a} \phi_{i}^{b}\right)-\frac{Y}{\sqrt{2}} \epsilon_{i j k} f^{a b c}\left(\phi_{i}^{c} \psi_{j}^{a} \psi_{k}^{b}+\bar{\psi}_{i}^{c} \bar{\psi}_{j}^{a} \phi_{k}^{\dagger b}\right) \\
& +\frac{g^{2}}{2}\left(f^{a b c} \phi_{i}^{b} \phi_{i}^{\dagger c}\right)\left(f^{a d e} \phi_{j}^{d} \phi_{j}^{\dagger e}\right)-\frac{Y^{2}}{2} \epsilon_{i j k} \epsilon_{i l m}\left(f^{a b c} \phi_{j}^{b} \phi_{k}^{c}\right)\left(f^{a d e} \phi_{l}^{\dagger d} \phi_{m}^{\dagger e}\right)
\end{aligned}
$$

$S U(N)$ gauge theory with $\mathcal{N}=2$ SUSY and A adjoint hypermultiplets has

$$
\beta(g)=-\frac{g^{3}}{16 \pi^{2}}(2-2 A) N
$$

$\Rightarrow \mathcal{N}=4$ gauge theory has $\beta=0 \leftrightarrow$ SCFT

Quivers and Mooses

Theories with gauge groups connected by bifundamentals called "quiver" theories and "mooses" matter content can be represented by a quiver/moose diagram in certain cases a quiver/moose theory can be considered as a latticization (a.k.a "deconstruction") along a discretized extra dimension

$\mathcal{N}=4$ and orbifolds

mod-out by a discrete subgroup Γ of the gauge and global symmetries \rightarrow "daughter" theory
\rightarrow quiver/moose
large N limit of an $S U(N)$ dominated by planar diagrams
if Γ embedded in gauge group using regular representation N times then the planar diagrams of daughter \propto planar diagrams of full theory (up to a rescaling of the gauge coupling)
large N limit, daughters of the $\mathcal{N}=4$ gauge theory are conformal orbifolding in different ways break different amounts of SUSY:

$$
\begin{array}{rll}
S U(4)_{R} \supset \Gamma, & S U(3) \not \supset \Gamma & \Rightarrow \mathcal{N}=0 \\
S U(3) \supset \Gamma, & S U(2) \not \supset \Gamma & \Rightarrow \mathcal{N}=1 \\
S U(2) \supset \Gamma, & & \Rightarrow \mathcal{N}=2 .
\end{array}
$$

unbroken SUSY \leftrightarrow size of the R-symmetry subgroup invariant under Γ

$\mathcal{N}=4$ and orbifolds

simplest case: permutation group $\Gamma=Z_{k}$ embedded in the gauge group regular representation of Z_{k} :

$$
\gamma^{\mathbf{a}}=\operatorname{diag}\left(\omega^{0}, \omega^{a}, \omega^{2 a}, \ldots, \omega^{(k-1) a}\right)
$$

where $\omega=e^{2 \pi i / k}$ and $a=0,1, \ldots, k-1$, embed Z_{k} in $S U(k N)$ by defining

$$
\gamma_{\mathbf{N}}^{\mathbf{a}}=\operatorname{diag}\left(\mathbf{1}_{\mathbf{N}}, \mathbf{1}_{\mathbf{N}} \omega^{a}, \mathbf{1}_{\mathbf{N}} \omega^{2 a}, \ldots, \mathbf{1}_{\mathbf{N}} \omega^{(k-1) a}\right)
$$

so adjoint transforms as

$$
\mathbf{A d} \rightarrow \gamma_{\mathbf{N}}^{\mathbf{a}} \mathbf{A d}\left(\gamma_{\mathbf{N}}^{\mathbf{a}}\right)^{\dagger}
$$

$\mathcal{N}=4$ and orbifolds

parts of the $k N \times k N$ matrix of gauge fields left invariant are

$$
A_{i n v}=\operatorname{diag}\left(\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{\mathbf{3}}, \ldots, \mathbf{A}_{\mathbf{k}}\right)
$$

where $\mathbf{A}_{\mathbf{i}} \mathrm{t}$ adjoint under the i th $S U(N)$ subgroup of $S U(k N)$ orbifolded gauge group is $\Pi_{i=1}^{k} S U(N)_{i}$

Orbifold example

example the Z_{6} orbifold where the embedding of Z_{6} in the global $S U(4)$ R-symmetry is such that the four fermion fields transform as:

$$
\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right) \rightarrow\left(\omega^{a} \psi_{1}, \omega^{-2 a} \psi_{2}, \omega^{3 a} \psi_{3}, \omega^{4 a} \psi_{4}\right)
$$

under a global transformation adjoint fermion ψ_{3} that transforms as

$$
\psi_{3} \rightarrow \omega^{3 a} \gamma_{\mathbf{N}}^{\mathbf{a}} \psi_{3}\left(\gamma_{\mathbf{N}}^{\mathbf{a}}\right)^{\dagger}
$$

Orbifold example

invariant pieces of ψ_{3} :

0	0	0	ψ_{14}	0	0
0	0	0	0	ψ_{25}	0
0	0	0	0	0	ψ_{36}
ψ_{41}	0	0	0	0	0
0	ψ_{52}	0	0	0	0
0	0	ψ_{63}	0	0	0

bifundamentals transforming as $(\square, \bar{\square})$ under $S U(N)_{i} \times S U(N)_{j}$ similar analysis for the remaining fermion and scalar fields

Orbifolds and the Hierarchy Problem

proposed that orbifold theories solve the hierarchy problem if physics was conformal above 1 TeV exactly conformal theory has no quadratic divergences
consider the effective theory below some scale μ calculate the one-loop β functions, set the $\beta=0$
in daughter theories where matter fields are distinct bifundamentals, fixed points for Y, and λ_{i}, approach $\mathcal{N}=4$ SUSY: $Y=\lambda_{i}=g$ as $N \rightarrow \infty$

Orbifolds and the Hierarchy Problem

at fixed point the one-loop scalar mass is given by

$$
m_{\phi}^{2}=\left[N c_{i} \lambda_{i}+3 \frac{N^{2}-1}{N} g^{2}-8 N Y^{2}\right] \frac{\mu^{2}}{16 \pi^{2}}
$$

large N limit $\sum_{i} c_{i}=5$: no quadratic divergence leading order in $1 / N$:

$$
m_{\phi}^{2}=\frac{3 g^{2}}{N} \frac{\mu^{2}}{16 \pi^{2}}
$$

to get $m_{\phi}=1 \mathrm{TeV}$, with $\mu=M_{\mathrm{Pl}}$ we need $N=10^{28}$
if scalar mass term is relevant operator in low-energy effective theory below SUSY breaking scale, a large mass is generated

