
The Seiberg–Witten theory



Coulomb phase of N = 1 SO(N)
N = 1, SO(N) F = N − 2:

SO(N) SU(F = N − 2) U(1)R

Φ 0

generic point in the classical moduli space SO(N)→ SO(2) ≈ U(1)
homomorphic U(1) coupling

τ = θYM
2π + 4πi

g2 ,

transforms under electric–magnetic duality (Ei → Bi, Bi → −Ei) as:

S : τ → − 1
τ

not a symmetry, exchanges two equivalent descriptions
one weakly coupled, one strongly coupled



Coulomb phase of N = 1 SO(N)
shifting θYM by 2π is a symmetry

T : τ → τ + 1

in general

τ → ατ+β
γτ+δ

where α, β, γ, δ are integers (α, β, γ, δ ∈ Z) and αδ − βγ = 1
S and T generate SL(2,Z)
gives a set of equivalent U(1) gauge theories
different holomorphic couplings



Coulomb phase of N = 1 SO(N)
as a function on the moduli space, τ depends on flavor invariant

z = det ΦΦ

for large z the theory is weakly coupled and we know that the holomor-
phic SO(N) gauge coupling is

τSO ≈ i
2π ln

(
z

Λb

)
where b = 3(N − 2)− F = 2(N − 2)
SO(N)→ SO(4) ≈ SU(2)× SU(2)→ SU(2)D → U(1)
so the U(1) gauge coupling g is related to the SO(N) coupling by

1
g2 = 1

g2
SO

+ 1
g2
SO

τ ≈ i
π ln

(
z

Λb

)



Coulomb phase of N = 1 SO(N)
τ has a singularity in the complex variable z at z =∞

as z → e2πiz, τ is shifted by −2
called a monodromy
monodromy of τ at z =∞

M∞ = T−2

considerΦiΦj → e2πiΦiΦj z → eF ·2πiz

τ → τ − 2F

and the the monodromy of τ at ∞ on moduli space is

MF
∞ = T−2F

τ is not a single-valued function on the moduli space
even at weak coupling



Coulomb phase of N = 1 SO(N)
4π
g2 = Im τ

is invariant under M∞ (single-valued at weak coupling)
single-valued everywhere ⇒ derivatives would be well-defined, by holo-
morphy (

d2

dx2 + d2

dy2

)
Im τ = 0

where z = x+ iy
⇒ Im τ harmonic function, < 0 somewhere, ⇒ g is imaginary
Im τ is not single-valued everywhere

moduli space has complicated topology or additional singular points



Singular points
some particles become massless
singular points have their own monodromies

at least two monodromies that do not commute with M∞
otherwise Im τ single-valued and g2 < 0

with only one other monodromy, circling one is equivalent to circling
around the other, and hence the two monodromies commute

monodromy is determined by the perturbative β function



Singular points
imagine a weakly coupled dual U(1) gauge theory near a singular

point with k light flavors

Wi = (z − zi)
∑k
j=1 cjφ

+jφ−j +O(z − zi)2

perturbative holomorphic dual coupling is

τ̃i ≈ ib̃
2π ln(z − zi) + const.

b̃ = −∑j
4
3Q

2
fj + 2

3Q
2
sj

if all k light flavors have unit charges b̃ = −2k
monodromy in τ̃i is T 2k

“duality transformation” τ̃i = Dziτ
monodromy in τ at the singularity zi is

Mzi = D−1
zi T

2kDzi



Singular points
we need

[M0,Mzi ] 6= 0

Dzi must be nontrivial, and thus contain an odd power of S (and possibly
some power of T ).

S interchanges electric and magnetic fields
the dual quarks must have magnetic charge!



Dual with one more Flavor
dual of SO(N) with N − 1 flavors is (for N > 3)

SO(3) SU(F = N − 1) U(1)R

φ N−2
N−1

M ′ 1 2
N−1

with a superpotential

W = M ′ji
2µ φ

jφi − 1
64Λ2N−5

N,N−1
detM ′

integrate out one flavor with a mass term 1
2mM

′
N−1,N−1

M : mesons composed of the remaining light flavors
eqm give

φN−1φN−1 = µ detM

32Λ2N−5
N,N−1

− µm

near detM = 0, SO(3)→ U(1)



Dual with F = N − 2
effective superpotential is:

Weff = 1
2µ f

(
detM

Λ2N−4
N,N−2

)
Mij φ

+iφ−j .

dual holomorphic gauge coupling is

τ̃ = − i
π ln (detM) + const.

at strong coupling for large detM



Monodromy at detM = 0
r = rank(M), F − r = N − 2− r massless flavors at detM = 0

Consider M0 such that detM0 = 0, and take

M0 → e2πiM0

then

τ̃ → τ̃ + 2(F − r)
a shift for each zero eigenvalue

monodromy of τ at the singular point M0 is

MF−r
0 = D−1

0 T 2(F−r)D0

corresponding to a monodromy in τ on the z-plane

M0 = D−1
0 T 2D0 ,

because of the electric–magnetic duality, φ± are magnetically charged
τ̃ → 0 ⇒ τ →∞
strong and weak coupling interchanged



Dual of the Dual
magnetic dual of SO(N) with F = N − 1 is SO(3)

To get the correct dual of the dual, the SO(F + 1) dual of SO(3) with
F flavors must have a dual superpotential

W̃ = Mji

2µ φ
jφi + εα det(φjφi)

α determined by consistency
ε = ±1 since SO(3) theory has a discrete axial Z4F symmetry

Q→ e
2πi
4F Q

while SO(F + 1) theory only has a Z2F symmetry (for F > 2). Under
the full Z4F the det(φjφi) term changes sign, and θYM is shifted

θYM → θYM + π



Dual of the Dual of SO(N)
with F = N − 1, dual dual superpotential˜̃

W = MjiN
ij

2µ + Nij

2µ̃
djdi − detM

64Λ2N−5
N,N−1

+ εα det(djdi)

couples the dual meson N ij = φiφj to the dual–dual quarks dj .
with µ̃ = −µ, the eqm for N ij sets Mji = djdi as we expect

for ε = 1, ˜̃W = 0 if

α = 1
64Λ2N−5

N,N−1

dual of the dual is the original theory for ε = 1, what about ε = −1?



The dyonic dual: ε = −1

SO(N) SU(F = N − 1) U(1)R

d 1
F

Wdyonic = − det(didj)

32Λ2N−5
N,N−1

d = (di, dF ), i = 1, . . . , N − 2

add a mass term 1
2mdF dF , integrate out one flavor

eqm for di gives didF = 0
For det(didj) 6= 0, SO(N)⇒ U(1)
we have (using Λ2N−4

N,N−2 = mΛ2N−5
N,N−1)

Weff = 1
2m

(
1− det(didj)

16Λ2N−4
N,N−2

)
d+
F d
−
F



The dyonic dual: ε = −1
Near

det(didj) = 16Λ2N−4
N,N−2 ≡ zd ,

the fields d+
F and d−F are light

duals of monopoles with θYM → θYM + π, are dyons
electric and magnetic charge
one light field, monodromy of the dyonic coupling must be˜̃Mzd = T 2

charges are such that

φ±iΦi ∼ d±F
m→ 0⇒ ΛN,N−2 → 0, light dyon point → light monopole point
at m = 0 SO(3) dual with IR fixed point



Monodromies
assuming two singular points in the interior of the moduli space
monodromy of τ at zd is determined

M0Mzd =M∞

∞

0 z
d

M

M M
0 zd



Web of Three Dualities: mass term
three points where different particles are light and weakly interacting

Integrating out a flavor in electric theory gives SO(N) with F = N−3
two branches: runaway vacuum and confinement

magnetic dual: monopole VEV, dual Meissner effect ↔ confinement
light monopoles ↔ hybrids hi = WαW

αQN−4.
dyonic dual: dyon VEV ↔ “oblique” confinement
(in terms of light meson M ′′)

〈d+
F d
−
F 〉 =

16m2Λ2N−4
N,N−2

m detM ′′ =
16 Λ2N−3

N,N−3
m detM ′′

yields a runaway superpotential

Weff =
8 Λ2N−3

N,N−3
detM ′′

similar to N = 2 Seiberg–Witten theory
difference is that the N = 1 monopoles, dyons are not BPS states



Elliptic curves
τ not a single-valued function, transforms under SL(2,Z)
τ is a section of an SL(2,Z) bundle
SL(2,Z) is the modular symmetry group of a torus
section ↔ modular parameter of a torus

torus is the solution of a cubic (elliptic) complex equation in two
complex dimensions:

y2 = x3 +Ax2 +Bx+ C ≡ (x− x1)(x− x2)(x− x3)

where x, y ∈ C, A, B, C single-valued functions of the moduli and pa-
rameters of the gauge theory



Modular parameter of a torus
making a lattice of points in C using τ and 1 as basis vectors

b

1

τ

a

a

b

identify opposite sides → torus with modular parameter τ



Equivalent Lattice
using new basis vectors ατ + β and γτ + δ
If α, β, γ, δ ∈ Z and αδ − βγ = 1 then the new lattice contained in old
transformation is invertible with another set of integers
αδ− βγ = 1 ensures new parallelogram encloses one basic parallelogram

Rescaling second basis vector to 1, the rescaled first basis vector is

τ → ατ+β
γτ+δ

SL(2,Z) of torus ↔ SL(2,Z) of the U(1) gauge theory



Elliptic Curve and the Torus
y2 = x3 +Ax2 +Bx+ C ≡ (x− x1)(x− x2)(x− x3)

y is square root, x plane two sheets that meet along branch cuts
cubic has three zeroes, one branch cut between two of the zeroes,

other branch cut between the third zero and ∞
 

a

b

x

x

x
1 2

3

∞

 

including point at ∞ , cut plane is topologically ∼ two spheres con-
nected by two tubes ∼ torus, a and b cycles of torus



Modular Parameter of the Torus
given by the ratio of the periods, ω1 and ω2, of the torus:

ω1 =
∫
a
dx
y , ω2 =

∫
b
dx
y , τ(A,B,C) = ω2

ω1

where a and b are basis of cycles around the torus
cycles ↔ two sides of the parallelogram

holomorphic coupling τ is singular when a cycle shrinks to zero, i.e.
when two roots meet or one roots goes to ∞, branch cuts disappears,
torus is singular



Singular Tori
Two roots are equal if the discriminant vanishes

∆ = Πi<j(xi − xj)2 = 4A3C −B2A2 − 18ABC + 4B3 + 27C2 = 0

single-valued A, B, C easier to determine than the multi-valued τ
given A, B, and C we can calculate τ



SO(N) with F = N − 2
singular points in the z = detM plane at z = 0 and z = 16Λ2N−4

N,N−2

at these points the charged massless particles drive the dual photon cou-
pling to zero
dual holomorphic coupling is singular

y2 = x(x− 16Λ2N−4
N,N−2)(x− z)

weak coupling limit ΛN,N−2 → 0 the curve becomes

y2 = x2(x− z)
which is singular for all z = detM as required by the fact that in an
asymptotically free theory the gauge coupling runs to zero in the UV



Consistency Checks
A, B, and C must be holomorphic functions of the moduli and ΛN,N−2

so that τ is holomorphic

curve must be compatible with the global symmetries for example,
detM and ΛbN,N−2 have R-charge and anomalous axial charge (0, 2F )
which is consistent with charge assignments for x and y of (0, 2F ) and
(0, 3F )



Consistency Checks: Monodromies
near a singularity z0, z = z0 + ε, two roots approach each other:
x0 ± aεn/2 ↔ ∆ ∼ εn

y2 = (x− x1)(x− x0 − aεn/2)(x− x0 + aεn/2)

After shifting x by x0 and rescaling x and y

y2 = (x− x̃)(x2 − εn)

ω1 =
∫ εn/2
−εn/2

dx
y ≈

∫ εn/2

−εn/2
dx

i
√
x̃
√
x2−εn ≈ − π√

x̃

ω2 =
∫ x̃
εn/2

dx
y ≈

∫ x̃
εn/2

dx√
(x−x̃)(x2−εn)

≈ i√
x̃

ln εn/2

τ = ω2
ω1
≈ 1

2πi ln εn

monodromy at the singular point z0 is Tn



SO(N) with F = N − 2
z = detM , near zero ∆ ∼ z2↔M0 ∼ T 2 (up to a duality transformation
D−1T 2D)
monodromy in τ on moduli space, with rankM = r, is M0 ∼ T 2(F−r)

since we encircle a singular point for each zero eigenvalue (ln det = Tr ln)

near z = zd, ∆ ∼ (z − zd)2 corresponding to Mzd ∼ T 2, and the
monodromy over M is also Mzd



SO(N) with F = N − 2
monodromy at ∞ have to be more careful since for large z the roots
are approximately (0, 16Λ4N−8

N,N−2/z, z), so two sets of singular points are
approaching each other simultaneously
rescale the coordinates so that only two roots approach each other

x→ x′(8Λ2N−4
N,N−2 − z), y → y′(8Λ2N−4

N,N−2 − z)3/2

which gives the curve

y′2 = x′3 + x′2 +
16Λ4N−8

N,N−2

(8Λ2N−4
N,N−2−z)2x

′

near z = ∞, ∆ ∼ z−2 ↔ M∞ ∼ T−2 while the monodromy in the
moduli space is M∞ ∼ T−2F

back in original x−y plane the change of variables gives a factor ∼ 1/
√
z

in dx/y ⇒ an additional sign flip in τ
M∞ = −T−2



SO(N) with F = N − 2
Assuming M0 = S−1T 2S, then the simplest solution of

M0Mzd =M∞
gives Mzd = (ST−1)−1T 2ST−1

Aside from popping up in the analysis of U(1) theories with monopoles,
elliptic curves are also now used for factoring large numbers and for en-
cryption in cell phones.

proof of Fermat’s last theorem crucially involved proof of conjecture
relating elliptic curves over rationals to modular forms



N = 2: Seiberg–Witten
consider N = 1 SUSY SO(3) gauge theory with one flavor

since the adjoint = vector, theory has N = 2 SUSY
classical D-term potential:

V = 1
g2 Tr

[
φ, φ†

]2
where φ is the scalar component of the adjoint chiral superfield
classical moduli space where

[
φ, φ†

]
= 0

parameterize the moduli space by gauge invariant u = Trφ2

up to gauge transformations take φ = 1
2aσ

3, classically u = 1
2a

2

generic point in the moduli space SO(3)→ U(1)
SU(2)R × U(1)R R-symmetry, fermion superpartner of φ must have the
same U(1)R charge as the λa, R-charge of φ is 2
⇒ U(1)R is anomalous and instantons break U(1)R → Z4

VEV for u breaks Z4 → Z2 which acts on u by taking u→ −u



N = 2: Seiberg–Witten
N = 2 SUSY⇒ superpotential and the leading (up to two-derivative, or
four fermion) terms from the Kähler function are related to a prepotential
low-energy effective U(1) theory can be written as

L = 1
8πi

∫
d4θ ∂P∂AA+ 1

16πi

∫
d2θ ∂2P

∂A∂AW
αWα + h.c.

where the N = 2 supermultiplet contains the N = 1 chiral supermulti-
plet A with scalar component a

τ = ∂2P
∂A∂A

Perturbatively, the prepotential is completely determined by the anomaly
(or equivalently the β function) however, it can receive nonperturbative
corrections from instantons

P (A) = i
2πA

2 ln A2

Λ2 +A2
∑∞
k=1 pk

(
Λ
A

)4k



N = 2: dual description
Taking Wα in the d2θ term as an independent field we can impose the
superspace Bianchi identity ImDαWα = 0 (the analog of ∂µF̃µν = 0) by
using a vector multiplet VD as a Lagrange multiplier:

1
4π Im

∫
d4xd4θVDD

αWα = 1
4πRe

∫
d4xd4θiDαVDWα

= − 1
4π Im

∫
d4xd2θWα

DWα

Performing the path integral over Wα we arrive at a dual d2θ term:

1
16πi

∫
d2θ

(
− 1
τ(A)

)
Wα
DWDα + h.c.



N = 2: dual description
Defining

AD ≡ h(A) ≡ ∂P
∂A

(with scalar component aD) we can rewrite the d4θ term as

1
8πi

∫
d4θ hD(AD)AD + h.c.

where hD is defined implicitly by its inverse:

hD(−A)−1 = h(A) .

Thus, since τ(A) = h′(A), we have
−1
τ(A) = −1

h′(A) = h′D(AD) ≡ τD(AD)

the duality just implements the S transformation
shift symmetry T is a symmetry of this theory
there is a full SL(2,Z) acting on τ



SL(2,Z)

τ = ∂2P
∂A∂A = ∂aD

∂a

since Tn shifts τ by n we require for consistency that

aD → aD + na , a→ a .

represent the SL(2,Z) generators S and T acting on the scalar fields
(aD, a) as

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)



BPS Central Charge
monopole and dyon states have masses M given by a central charge
M2 = 2|Z|2
classical analysis gives

Zcl = ane + a τcl nm

where ne and nm are the electric and magnetic charges of the soliton
adding an N = 2 hypermultiplet (two conjugate N = 1 chiral multiplets
Q and Q) with U(1) charge ne to the theory requires a superpotential

Whyper =
√

2neAQQ

this state we must have Z = ane, by S-duality a monopole must have a
central charge Z = aDnm, and in general we have

Z = ane + aDnm

invariant under any SL(2,Z) transformation M, since ~s = (aD, a)T

transforms to M~s while ~c = (nm, ne) transforms to ~cM−1



Stability
dyon with charges (nm, ne) that are not relatively prime is only marginally
stable
there are lighter dyons whose charges and masses add up to (nm, ne) and√

2|ane + aDnm|

If nm and ne are relatively prime then dyon is absolutely stable



Weak Coupling
P (A) = i

2πA
2 ln A2

Λ2 + . . .

for large |a|, weak coupling

a =
√

2u , aD = ∂P
∂a = 2ia

π ln
(
a
Λ

)
+ 2ia

π

traversing a loop in u around ∞ where lnu→ lnu+ 2πi

ln a → ln a+ iπ
a → −a

aD → −aD + 2a

monodromy matrix acting on (aD, a)T at ∞ is

M∞ = −T−2 =
( −1 2

0 −1

)



Singular Points
for Im τ = 1/g2 to be positive we need at least two more singular points
with monodromies that do not commute with M∞

suppose there is a singular point uj where a BPS state with electric
charge, (nm, ne) = (0, 1), becomes massless: a(u) ≈ cj(u− uj) near uj
near this point the U(1) gauge coupling flows to zero in the IR, β function
gives

τ(a(u)) ≈ −iπ ln a(u)
Λ

monodromy of (u− uj)→ e2πi(u− uj)
aD(u)→ aD(u) + 2a(u) , a(u)→ a(u)

Muj = T 2



Singular Points
consider a dyon with charge (nm, ne) massless at u = uk
find an SL(2,Z) transformation Duk that converts this to charge (0, 1)(

aD(u)
a(u)

)
= Duk

(
aD
a

)
=
(
αaD + βa
γaD + δa

)
(

0
1

)
=

(
δnm − γne
−βnm + αne

)
monodromy in the original variables is

Muk = D−1
uk
T 2Duk =

(
1 + 2γδ 2δ2

−2γ2 1− 2γδ

)
=

(
1 + 2nenm 2n2

e

−2n2
m 1− 2nenm

)



Two Singular Points
simplest possibility: two singular points at finite u related by the Z2

symmetry u→ −u
consider two singular points u1 and u−1 where BPS states with charges
(m,n) and(p, q), respectively become massless, then we must have

Mu1Mu−1 =M∞
Assuming massless monopole with charge (1, 0) at u1, we have

Mu1 =
(

1 0
−2 1

)
, Mu−1 =

( −1 2
−2 3

)
⇒ massless BPS state at u−1 is a dyon with charge (−1, 1) or (1,−1)
related by the SL(2,Z) transformation −I
sinceM∞ changes the electric charge by 2, we can obtain all the classical
dyons with charge (±1, 2n+ 1) from phase redefinitions of u.
Mu1 = S−1T 2S, and Mu−1 = (ST−1)−1T 2ST−1

same as the monodromies we saw for SO(N) with N − 2 flavors



Consistency Check
consider the point u1, where aD vanishes.
low-energy effective theory has monopoles and dual photon
If we add a mass term mTrφ2, the effective N = 1 superpotential for the
dual adjoint and monopoles:

Weff =
√

2ADMM +mf(AD)

eqm give
√

2MM +mf ′(AD) = 0 , aDM = 0 , aDM = 0

For m = 0 ⇒ N = 2 moduli space: M = 0, M = 0, aD arbitrary
For m 6= 0, aD = 0, M2 = M

2
= −mf ′(0)/

√
2. Since M is charged,

gives a mass to the dual photon and hence electric charge confinement
through the dual Meissner effect

agrees with gaugino condensation and confinement with a mass gap



The Seiberg–Witten curve
gives the complete solution for τ and BPS masses:

y2 = (x− Λ2)(x+ Λ2)(x− u)

singularities at u = ±Λ2, which are related by a Z2 symmetry as required
Near these points ∆ is quadratic in u± Λ2 so the M±Λ2 ∼ T 2

singularity at ∞ is subtle since the roots are approximately given by
(0,Λ4/(4u), u), so two sets of points are approaching; rescale by

x→ x′(Λ2 − u), y → y′(Λ2 − u)3/2

roots at large u given by (±Λ/u,−1), one pair of branch points converge
For large u, ∆ ∼ u−2 so the monodromy is ∼ T−2

back in x− y plane change of variables gives a factor of
√
u to dx/y, odd

under u→ e2πiu, so M∞ = −T−2

curve has the appropriate singularities and associated monodromies



Holomorphic Coupling
τ = ∂aD

∂a = ∂aD/∂u
∂a/∂u = ω2

ω1

identify the derivatives of a and aD with the periods of the torus

∂aD
∂u = f(u)ω2 = f(u)

∫
b
dx
y , ∂a

∂u = f(u)ω1 = f(u)
∫
a
dx
y

f(u) is chosen so as to reproduce the correct weak coupling limit
Defining

dλ
du ≡ f(u)dxy

we have

aD =
∫
b
λ , a =

∫
a
λ (∗)

adding arbitrary constants in (*) would destroy SL(2,Z) transformation
properties of a and aD



Periods
Using∫ 1

0
dx (1− zx)−αxβ−1(1− x)γ−β−1 = Γ(β)Γ(γ−β)

Γ(γ) F (α, β, γ; z)

where F (α, β, γ, z) is the hypergeometric function

ω1 = 2
∫ Λ2

−Λ2
dx√
y = 2π

Λ
√

1+ u
Λ2
F
(

1
2 ,

1
2 , 1; 2

1+ u
Λ2

)
ω2 = 2

∫ Λ2

u
dx√
y = −πi√

2Λ
F
(

1
2 ,

1
2 , 1; 1

2 (1− u
Λ2 )
)

for large |u| periods are approximated by

ω1 = 2π√
u

ω2 = i√
u

ln
(
u

Λ2

)
from weak coupling result we must choose

f(u) =
√

2
2π



Holomorphic Coupling

a(u) = −
√

2
π

∫ Λ2

−Λ2
dx
√
x−u√

(x−Λ2)(x+Λ2)

= −√2(Λ2 + u)F
(
− 1

2 ,
1
2 , 1; 2

1+ u
Λ2

)
aD(u) = −

√
2
π

∫ Λ2

u
dx
√
x−u√

(x−Λ2)(x+Λ2)

= −i 1
2

(
u
Λ − Λ

)
F
(

1
2 ,

1
2 , 2; 1

2

(
1− u

Λ2

))
aD vanishes at u = Λ2 as expected for a vanishing monopole mass, and
at u = −Λ2, a = aD
different choice of cycles yields an SL(2,Z) transformed a and aD



Holomorphic Coupling

1

0

1
1

0

1

3

4

5

1

0

1

3

4

1/Im τ

-

-

gauge coupling g2 over the complex u/Λ2 plane



BPS Masses

Λ

M
Λ

2

u

-4 -2 2 4

0.5

1

1.5

2

2.5

3

The mass (in units of Λ) of the monopole (solid line) and dyon (dashed
line) as a function of real u/Λ2



Donaldson theory
Poincarè knew compact 2-manifolds classified by number of handles
conjectured that the same situation holds in 3D
generalized to n-manifolds and proven for n 6= 3
for n = 3 Thurston conjectured a classification of all 3-manifolds
Perelman seems to have proven Thurston’s conjecture (using RG analog)
⇒ Poincaré conjecture

no proposed classification of 4-manifolds
study topological invariants: different invariants ⇒ different manifolds
Donaldson constructed invariants by studying instantons
Seiberg–Witten theory allows for simpler invariants
monopoles, unlike instantons, cannot shrink to arbitrarily small size



Adding flavors to Seiberg–Witten
hypermultiplets in the spinor representation, SU(2) gauge theory
in N = 1 language, a superpotential is required:

W =
√

2Q̃iAQi

of SU(2) is pseudo-real⇒ “parity” symmetry interchanges Q̃i and Qi
superpotential ⇒ squark U(1)R charge to be zero
U(1)R symmetry is anomalous, assign scale Λ1 a spurious R-charge of 2
u has R-charge 4, weak coupling (Λ1 → 0) limit, where y2 = x2(x− u),
⇒ x has R-charge 4 and y has R-charge 6
one flavor with mass m, assign m a spurious R-charge of 2
n-instanton corrections ∝ Λbn1 = Λ3n

1 ; only n even respects “parity”
m is odd under “parity”, n odd comes with an odd power of m
most general form of the elliptic curve is

y2 = x3 − ux2 + tΛ6
1 +mΛ3

1(ax+ bu) + cm3Λ3
1

a, b, c, and t must be determined



Adding flavors to Seiberg–Witten
theory with doublets now has particles with half-integral electric charge,
rescales ne by 2 and a by 1

2 ⇒ τ by 2.
corresponding elliptic curve

y2 = x3 − ux2 + 1
4Λ4x

decouple the single flavor by taking m large
matching condition Λ4 = mΛ3

1

taking m→∞ with Λ held fixed the curve must reduce to no flavor case
⇒ a = 1

4 , b = c = 0
in this limit see one singularity moves to∞, singularity at u ≈ −m2/(64t)
since there is a singularity when the flavor becomes massless at u = m2

⇒ t = −1/64
correct curve is

y2 = x3 − ux2 + m
4 Λ3

1x− 1
64Λ6

1



Massless flavor
y2 = x3 − ux2 + m

4 Λ3
1x− 1

64Λ6
1

m→ 0 two roots coincide when

u = ewπin/3 3 Λ4/3

4 22/3 ,

so there is a Z3 symmetry on the moduli space
monodromies at these points are conjugate to T



Adding flavors to Seiberg–Witten
curves for arbitrary F obtained similarly
for F flavors the monodromy at ∞ is determined by the β function

M∞ = −TF−4

central charge Z with F 6= 0 is more complicated
depends on the masses of the the flavors as well as on global U(1) charges



Massless Flavors
F monodromies BPS charges (nm, ne)
0 STS−1, D2TD

−1
2 (1, 0), (1, 2)

1 STS−1, D1TD
−1
1 , D2TD

−1
2 (1, 0), (1, 1), (1, 2)

2 ST 2S−1, D1T
2D−1

1 (1, 0), (1, 1)
3 ST 4S−1, (ST 2S)T (ST 2S)−1 (1, 0), (2, 1)

where Dn = TnS
monodromy DnT

kD−1
n ↔ k massless dyons with charge (1, n)

product of the monodromies satisfies

Mu1Mu−1 =M∞


