Seiberg duality for SUSY QCD

Phases of gauge theories

$$
\begin{aligned}
& \text { Coulomb: } \quad V(R) \sim \frac{1}{R} \\
& \text { Free electric: } \quad V(R) \sim \frac{1}{R \ln (R \Lambda)} \\
& \text { Free magnetic: } \quad V(R) \sim \frac{\ln (R \Lambda)}{R} \\
& \text { Higgs: } \quad V(R) \sim \text { constant } \\
& \text { Confining: } \quad V(R) \sim \sigma R \text {. } \\
& \begin{array}{rrll}
& \text { electron } & \leftrightarrow & \text { monopole } \\
\text { electric-magnetic duality: } & \text { free electric } & \leftrightarrow & \text { free magnetic } \\
\text { Coulomb phase } & \leftrightarrow & \text { Coulomb phase }
\end{array}
\end{aligned}
$$

Mandelstam and 't Hooft conjectured duality: Higgs \leftrightarrow confining dual confinement: Meissner effect arising from a monopole condensate
analogous examples occur in SUSY gauge theories

The moduli space for $F \geq N$

	$S U(N)$	$S U(F)$	$S U(F)$	$U(1)$	$U(1)_{R}$
Φ, Q	\square	\square	$\mathbf{1}$	1	$\frac{F-N}{F}$
$\bar{\Phi}, \bar{Q}$	\square	$\mathbf{1}$	\square	-1	$\frac{F-N}{F}$

$\langle\Phi\rangle$ and $\langle\bar{\Phi}\rangle$ in the form

$$
\langle\Phi\rangle=\left(\begin{array}{cccccc}
v_{1} & & & 0 & \ldots & 0 \\
& \ddots & & \vdots & & \vdots \\
& & v_{N} & 0 & \ldots & 0
\end{array}\right),\langle\bar{\Phi}\rangle=\left(\begin{array}{ccc}
\bar{v}_{1} & & \\
& \ddots & \\
& & \\
& & \\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right)
$$

vacua are physically distinct, different VEVs correspond to different masses for the gauge bosons

Classical moduli space for $F \geq N$

VEV for a single flavor: $S U(N) \rightarrow S U(N-1)$ generic point in the moduli space: $S U(N)$ completely broken $2 N F-\left(N^{2}-1\right)$ massless chiral supermultiplets
gauge-invariant description "mesons," "baryons" and superpartners:

$$
\begin{aligned}
M_{i}^{j} & =\bar{\Phi}^{j n} \Phi_{n i} \\
B_{i_{1}, \ldots, i_{N}} & =\Phi_{n_{1} i_{1}} \ldots \Phi_{n_{N} i_{N}} \epsilon_{1}^{n_{1}, \ldots, n_{N}} \\
\bar{B}^{i_{1}, \ldots, i_{N}} & =\bar{\Phi}^{n_{1} i_{1}} \ldots \bar{\Phi}^{n_{N} i_{N}} \epsilon_{n_{1}, \ldots, n_{N}}
\end{aligned}
$$

constraints relate M and B, since the M has F^{2} components, B and \bar{B} each have $\binom{F}{N}$ components, and all three constructed out of the same $2 N F$ underlying squark fields classically

$$
B_{i_{1}, \ldots, i_{N}} \bar{B}^{j_{1}, \ldots, j_{N}}=M_{\left[i_{1}\right.}^{j_{1}} \ldots M_{\left.i_{N}\right]}^{j_{N}}
$$

where [] denotes antisymmetrization

Classical moduli space for $F \geq N$

up to flavor transformations:

$$
\begin{aligned}
\langle M\rangle & =\left(\begin{array}{ccccc}
v_{1} \bar{v}_{1} & & & & \\
& \ddots & & & \\
& & v_{N} \bar{v}_{N} & & \\
& & & 0 & \\
& & & \ddots & \\
& & & & 0
\end{array}\right) \\
\left\langle B_{1, \ldots, N}\right\rangle & =v_{1} \ldots v_{N} \\
\left\langle\bar{B}^{1, \ldots, N}\right\rangle & =\bar{v}_{1} \ldots \bar{v}_{N}
\end{aligned}
$$

all other components set to zero rank $M \leq N$, if less than N, then B or \bar{B} (or both) vanish if the rank of M is k, then $S U(N)$ is broken to $S U(N-k)$ with $F-k$ massless flavors

Quantum moduli space for $F \geq N$

from ADS superpotential

$$
M_{i}^{j}=\left(m^{-1}\right)_{i}^{j}\left(\operatorname{det} m \Lambda^{3 N-F}\right)^{1 / N}
$$

Givir large masses, m_{H}, to flavors N through F matching gauge coupling gives

$$
\Lambda^{3 N-F} \operatorname{det} m_{H}=\Lambda_{N, N-1}^{2 N+1}
$$

low-energy effective theory has $N-1$ flavors and an ADS superpotential. give small masses, m_{L}, to the light flavors:

$$
\begin{aligned}
M_{i}^{j} & =\left(m_{L}^{-1}\right)_{i}^{j}\left(\operatorname{det} m_{L} \Lambda_{N, N-1}^{2 N+1}\right)^{1 / N} \\
& =\left(m_{L}^{-1}\right)_{i}^{j}\left(\operatorname{det} m_{L} \operatorname{det} m_{H} \Lambda^{3 N-F}\right)^{1 / N}
\end{aligned}
$$

masses are holomorphic parameters of the theory, this relationship can only break down at isolated singular points

Quantum moduli space for $F \geq N$

$$
M_{i}^{j}=\left(m^{-1}\right)_{i}^{j}\left(\operatorname{det} m \Lambda^{3 N-F}\right)^{1 / N}
$$

For $F \geq N$ we can take $m_{j}^{i} \rightarrow 0$ with components of M finite or zero vacuum degeneracy is not lifted and there is a quantum moduli space classical constraints between M, B, and \bar{B} may be modified
parameterize the quantum moduli space by M, B, and \bar{B} VEVs $\gg \Lambda$ perturbative regime M, B, and $\bar{B} \rightarrow 0$ strong coupling naively expect a singularity from gluons becoming massless

IR fixed points

$F \geq 3 N$ lose asymptotic freedom: weakly coupled low-energy effective theory

For F just below $3 N$ we have an IR fixed point (Banks-Zaks) exact NSVZ β function:

$$
\beta(g)=-\frac{g^{3}}{16 \pi^{2}} \frac{(3 N-F(1-\gamma))}{1-N g^{2} / 8 \pi^{2}}
$$

where γ is the anomalous dimension of the quark mass term

$$
\begin{gathered}
\gamma=-\frac{g^{2}}{8 \pi^{2}} \frac{N^{2}-1}{N}+\mathcal{O}\left(g^{4}\right) \\
16 \pi^{2} \beta(g)=-g^{3}(3 N-F)-\frac{g^{5}}{8 \pi^{2}}\left(3 N^{2}-2 F N+\frac{F}{N}\right)+\mathcal{O}\left(g^{7}\right)
\end{gathered}
$$

IR fixed points

Large N with $F=3 N-\epsilon N$

$$
16 \pi^{2} \beta(g)=-g^{3} \epsilon N-\frac{g^{5}}{8 \pi^{2}}\left(3\left(N^{2}-1\right)+\mathcal{O}(\epsilon)\right)+\mathcal{O}\left(g^{7}\right)
$$

approximate solution of $\beta=0$ where there first two terms cancel at

$$
g_{*}^{2}=\frac{8 \pi^{2}}{3} \frac{N}{N^{2}-1} \epsilon
$$

$\mathcal{O}\left(g^{7}\right)$ terms higher order in ϵ
without masses, gauge theory is scale-invariant for $g=g_{*}$
scale-invariant theory of fields with spin ≤ 1 is conformally invariant
SUSY algebra \rightarrow superconformal algebra
particular R-charge enters the superconformal algebra, denote by R_{sc} dimensions of scalar component of gauge-invariant chiral and antichiral superfields:

$$
\begin{aligned}
d & =\frac{3}{2} R_{\mathrm{sc}}, \text { for chiral superfields } \\
d & =-\frac{3}{2} R_{\mathrm{sc}}, \text { for antichiral superfields }
\end{aligned}
$$

Chiral Ring

charge of a product of fields is the sum of the individual charges:

$$
R_{\mathrm{sc}}\left[\mathcal{O}_{1} \mathcal{O}_{2}\right]=R_{\mathrm{sc}}\left[\mathcal{O}_{1}\right]+R_{\mathrm{sc}}\left[\mathcal{O}_{2}\right]
$$

so for chiral superfields dimensions simply add:

$$
D\left[\mathcal{O}_{1} \mathcal{O}_{2}\right]=D\left[\mathcal{O}_{1}\right]+D\left[\mathcal{O}_{2}\right]
$$

More formally we can say that the chiral operators form a chiral ring.
ring: set of elements on which addition and multiplication are defined, with a zero and an a minus sign
in general, the dimension of a product of fields is affected by renormalizations that are independent of the renormalizations of the individual fields

Fixed Point Dimensions

R-symmetry of a SUSY gauge theory seems ambiguous since we can always form linear combinations with other $U(1)$'s
for the fixed point of SUSY QCD, R_{sc} is unique since we must have

$$
R_{\mathrm{sc}}[Q]=R_{\mathrm{sc}}[\bar{Q}]
$$

denote the anomalous dimension at the fixed point by γ_{*} then

$$
D[M]=D[\Phi \bar{\Phi}]=2+\gamma_{*}=\frac{3}{2} 2 \frac{(F-N)}{F}=3-\frac{3 N}{F}
$$

and the anomalous dimension of the mass operator at the fixed point is

$$
\gamma_{*}=1-\frac{3 N}{F}
$$

check that the exact β function vanishes:

$$
\beta \propto 3 N-F\left(1-\gamma_{*}\right)=0
$$

Fixed Point Dimensions

For a scalar field in a conformal theory we also have

$$
D(\phi) \geq 1
$$

with equality for a free field Requiring $D[M] \geq 1 \Rightarrow$

$$
F \geq \frac{3}{2} N
$$

IR fixed point (non-Abelian Coulomb phase) is an interacting conformal theory for $\frac{3}{2} N<F<3 N$
no particle interpretation, but anomalous dimensions are physical quantities

Seiberg

Duality

conformal theory global symmetries unbroken
't Hooft anomaly matching should apply to low-energy degrees of freedom anomalies of the M, B, and \bar{B} do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a "dual" $S U(F-N)$ gauge theory with a "dual" gaugino, "dual" quarks and a gauge singlet "dual mesino":

	$S U(F-N)$	$S U(F)$	$S U(F)$	$U(1)$	$U(1)_{R}$
q	\square	\square	$\mathbf{1}$	$\frac{N}{F-N}$	$\frac{N}{F}$
\bar{q}	\square	$\mathbf{1}$	\square	$-\frac{N}{F-N}$	$\frac{N}{F}$
mesino	$\mathbf{1}$	\square	\square	0	$2 \frac{F-N}{F}$

Anomaly Matching

global symmetry	anomaly $=$ dual anomaly
$S U(F)^{3}$	$-(F-N)+F=N$
$U(1)^{2} U(F)^{2}$	$\frac{N}{F-N}(F-N) \frac{1}{2}=\frac{N}{2}$
$U(1)_{R} S U(F)^{2}$	$\frac{N-F}{F}(F-N) \frac{1}{2}+\frac{F-2 N}{F} F \frac{1}{2}=-\frac{N^{2}}{2 F}$
$U(1)^{3}$	$0=0$
$U(1)$	$0=0$
$U(1) U(1)_{R}^{2}$	$0=0$
$U(1)_{R}$	$\left(\frac{N-F}{F}\right) 2(F-N) F+\left(\frac{F-2 N}{F}\right) F^{2}+(F-N)^{2}-1$
$U(1)_{R}^{3}$	$=-N^{2}-1$
	$\left(\frac{N-F}{F}\right)^{3} 2(F-N) F+\left(\frac{F-2 N}{F}\right)^{3} F^{2}+(F-N)^{2}-1$
$U(1)^{2} U(1)_{R}$	$=-\frac{2 N^{4}}{F^{2}}+N^{2}-1$
	$\left(\frac{N}{F-N}\right)^{2} \frac{N-F}{F} 2 F(F-N)=-2 N^{2}$

Dual Superpotential
 $$
W=\lambda \widetilde{M}_{i}^{j} \phi_{j} \bar{\phi}^{i}
$$

where ϕ represents the "dual" squark and \widetilde{M} is the dual meson ensures that the two theories have the same number of degrees of freedom, \widetilde{M} eqm removes the color singlet $\phi \bar{\phi}$ degrees of freedom dual baryon operators:

$$
\begin{aligned}
b^{i_{1}, \ldots, i_{F-N}} & =\phi^{n_{1} i_{1}} \ldots \phi^{n_{F-N} i_{F-N}} \epsilon_{n_{1}, \ldots, n_{F-N}} \\
\bar{b}_{i_{1}, \ldots, i_{F-N}} & =\bar{\phi}_{n_{1} i_{1}} \ldots \bar{\phi}_{n_{F-N} i_{F-N}} \epsilon^{n_{1}, \ldots, n_{F-N}}
\end{aligned}
$$

moduli spaces have a simple mapping

$$
\begin{aligned}
& M \leftrightarrow \widetilde{M} \\
& B_{i_{1}, \ldots, i_{N}} \leftrightarrow \epsilon_{i_{1}, \ldots, i_{N}, j_{1}, \ldots j_{F-N}} b^{j_{1}, \ldots, j_{F-N}} \\
& \bar{B}^{i_{1}, \ldots, i_{N}} \leftrightarrow \epsilon^{i_{1}, \ldots, i_{N}, j_{1}, \ldots j_{F-N}} \bar{b}_{j_{1}, \ldots, j_{F-N}}
\end{aligned}
$$

$$
\begin{gathered}
\text { Dual } \beta \text { function } \\
\beta(\widetilde{g}) \propto-\widetilde{g}^{3}(3 \widetilde{N}-F)=-\widetilde{g}^{3}(2 F-3 N)
\end{gathered}
$$

dual theory loses asymptotic freedom when $F \leq 3 N / 2$ the dual theory leaves the conformal regime to become IR free at exactly the point where the meson of the original theory becomes a free field

$$
\text { strong coupling } \leftrightarrow \text { weak coupling }
$$

$$
\begin{aligned}
& \text { Dual Banks-Zaks } \\
& F=3 \widetilde{N}-\epsilon \widetilde{N}=\frac{3}{2}\left(1+\frac{\epsilon}{6}\right) N
\end{aligned}
$$

perturbative fixed point at

$$
\begin{aligned}
& \widetilde{g}_{*}^{2}=\frac{8 \pi^{2}}{3} \frac{\widetilde{N}}{\widetilde{N}^{2}-1}\left(1+\frac{F}{\widetilde{N}}\right) \epsilon \\
& \lambda_{*}^{2}=\frac{16 \pi^{2}}{3 \widetilde{N}} \epsilon
\end{aligned}
$$

where $D(\widetilde{M} \bar{\phi} \phi)=3$ (marginal) since W has R-charge 2
If $\lambda=0$, then \widetilde{M} is free with dimension 1
If \widetilde{g} near pure Banks-Zaks and $\lambda \approx 0$ then we can calculate the dimension of $\phi \bar{\phi}$ from the $R_{\text {sc }}$ charge for $F>3 N / 2$:

$$
D(\phi \bar{\phi})=\frac{3(F-\widetilde{N})}{F}=\frac{3 N}{F}<2 .
$$

$\widetilde{M} \bar{\phi} \phi$ is a relevant operator, $\lambda=0$ unstable fixed point, flows toward λ_{*}

Duality

SUSY QCD has an interacting IR fixed point for $3 N / 2<F<3 N$ dual description has an interacting fixed point in the same region
theory weakly coupled near $F=3 N$ goes to stronger coupling as $F \downarrow$ dual weakly coupled near $F=3 N / 2$ goes to stronger coupling as $F \uparrow$ For $F \leq 3 N / 2$ asymptotic freedom is lost in the dual:

$$
\begin{aligned}
& \widetilde{g}_{*}^{2}=0 \\
& \lambda_{*}^{2}=0
\end{aligned}
$$

\widetilde{M} has no interactions, dimension 1 , accidental $U(1)$ symmetry in the IR in this range IR is a theory of free massless composite gauge bosons, quarks, mesons, and superpartners
to go below $F=N+2$ requires new considerations since there is no dual gauge group $S U(F-N)$

Integrating out a flavor

give a mass to one flavor

$$
W_{\mathrm{mass}}=m \bar{\Phi}^{F} \Phi_{F}
$$

In dual theory

$$
W_{d}=\lambda \widetilde{M}_{i}^{j} \bar{\phi}^{i} \phi_{j}+m \widetilde{M}_{F}^{F}
$$

common to write

$$
\lambda \widetilde{M}=\frac{M}{\mu}
$$

trade the coupling λ for a scale μ and use the same symbol, M, for fields in the two different theories

$$
W_{d}=\frac{1}{\mu} M_{i}^{j} \bar{\phi}^{i} \phi_{j}+m M_{F}^{F}
$$

Integrating out a flavor

The equation of motion for M_{F}^{F} is:

$$
\frac{\partial W_{d}}{\partial M_{F}^{F}}=\frac{1}{\mu} \bar{\phi}^{F} \phi_{F}+m=0
$$

dual squarks have VEVs:

$$
\bar{\phi}^{F} \phi_{F}=-\mu m
$$

along such a D-flat direction we have a theory with one less color, one less flavor, and some singlets

\[

\]

integrate out $M_{F}^{j}, \phi_{j}^{\prime \prime}, M_{i}^{F}, \bar{\phi}^{\prime \prime i}, M_{F}^{F}$, and S since, leaves just the dual of $S U(N)$ with $F-1$ flavors which has a superpotential

$$
W=\frac{1}{\mu} M^{\prime} \bar{\phi}^{\prime} \phi^{\prime}
$$

Consistency Checks

- global anomalies of the quarks and gauginos match those of the dual quarks, dual gauginos, and "mesons."
- Integrating out a flavor gives $S U(N)$ with $F-1$ flavors, with dual $S U(F-N-1)$ and $F-1$ flavors. Starting with the dual of the original theory, the mapping of the mass term is a linear term for the "meson" which forces the dual squarks to have a VEV and Higgses the theory down to $S U(F-N-1)$ with $F-1$ flavors.
- The moduli spaces have the same dimensions and the gauge invariant operators match.

Classically, the final consistency check is not satisfied

Consistency Checks

moduli space of complex dimension

$$
2 F N-\left(N^{2}-1\right)
$$

$2 F N$ chiral superfields and $N^{2}-1$ complex D-term constraints
dual has F^{2} chiral superfields (M) and the equations of motion set the dual squarks to zero when M has rank F
duality: weak \leftrightarrow strong also classical \leftrightarrow quantum
original theory: $\operatorname{rank}(M) \leq N$ classically
dual theory: $F_{e f f}=F-\operatorname{rank}(M)$ light dual quarks
If $\operatorname{rank}(M)>N$ then $F_{\text {eff }}<\widetilde{N}=F-N, \Rightarrow$ ADS superpotential
\Rightarrow no vacuum with $\operatorname{rank}(M)>N$
in dual, $\operatorname{rank}(M) \leq N$ is enforced by nonperturbative quantum effects

Consistency Checks

rank constraint \Rightarrow number of complex degrees of freedom in M to $F^{2}-\widetilde{N}^{2}$ since $\operatorname{rank} N F \times F$ matrix can be written with an $(F-N) \times(F-N)$ block set to zero.
when M has N large eigenvalues, $F_{\text {eff }}=\widetilde{N}$ light dual quarks $2 F_{e f f} \widetilde{N}-\left(\widetilde{N}^{2}-1\right)=\widetilde{N}^{2}+1$ complex degrees of freedom M eqm removes \widetilde{N}^{2} color singlet degrees of freedom dual quark equations of motion enforce that an $\widetilde{N} \times \widetilde{N}$ corner of M is set to zero
two moduli spaces match:

$$
2 F N-\left(N^{2}-1\right)=F^{2}-\widetilde{N}^{2}+\widetilde{N}^{2}+1-\widetilde{N}^{2}=F^{2}-\widetilde{N}^{2}+1
$$

once nonperturbative effects are taken into account

$F=N:$ confinement with $\chi \mathrm{SB}$

For $F=N$ 't Hooft anomaly matching works with just M, B, and \bar{B} confining: all massless degrees of freedom are color singlet particles

For $F=N$ flavors the baryons are flavor singlets:

$$
\begin{aligned}
B & =\epsilon^{i_{1}, \ldots, i_{F}} B_{i_{1}, \ldots, i_{F}} \\
\bar{B} & =\epsilon_{i_{1}, \ldots, i_{F}} \bar{B}^{i_{1}, \ldots, i_{F}}
\end{aligned}
$$

classical constraint:

$$
\operatorname{det} M=B \bar{B}
$$

With quark masses:

$$
\left\langle M_{i}^{j}\right\rangle=\left(m^{-1}\right)_{i}^{j}\left(\operatorname{det} m \Lambda^{3 N-F}\right)^{1 / N}
$$

Confinement with $\chi \mathrm{SB}$

Taking a determinant of this equation (using $F=N$)

$$
\operatorname{det}\langle M\rangle=\operatorname{det}\left(m^{-1}\right) \operatorname{det} m \Lambda^{2 N}=\Lambda^{2 N}
$$

independent of the masses
$\operatorname{det} m \neq 0$ sets $\langle B\rangle=\langle\bar{B}\rangle=0$, can integrate out all the fields that have baryon number
classical constraint is violated!

Holomorphy and the Symmetries

flavor invariants are:

	$U(1)_{A}$	$U(1)$	$U(1)_{R}$
$\operatorname{det} M$	$2 N$	0	0
B	N	N	0
\bar{B}	N	$-N$	0
$\Lambda^{2 N}$	$2 N$	0	0

R-charge of the squarks, $(F-N) / F$, vanishes since $F=N$ generalized form of the constraint with correct $\Lambda \rightarrow 0$ and $B, \bar{B} \rightarrow 0$ limits is

$$
\operatorname{det} M-\bar{B} B=\Lambda^{2 N}\left(1+\sum_{p q} C_{p q} \frac{\left(\Lambda^{2 N}\right)^{p}(\bar{B} B)^{q}}{(\operatorname{det} M)^{p+q}}\right)
$$

with $p, q>0$. For $\langle\bar{B} B\rangle \gg \Lambda^{2 N}$ the theory is perturbative, but with $C_{p q} \neq 0$ we find solutions of the form

$$
\operatorname{det} M \approx(\bar{B} B)^{(q-1) /(p+q)}
$$

which do not reproduce the weak coupling $\Lambda \rightarrow 0$ limit

Quantum Constraint

$$
\operatorname{det} M-\bar{B} B=\Lambda^{2 N}
$$

correct form to be an instanton effect

$$
e^{-S_{\text {inst }}} \propto \Lambda^{b}=\Lambda^{2 N}
$$

Quantum Constraint

cannot take $M=B=\bar{B}=0$

cannot go to the origin of moduli space ("deformed" moduli space) global symmetries are at least partially broken everywhere

Enhanced Symmetry Points

$$
\begin{aligned}
& \quad M_{i}^{j}=\Lambda^{2} \delta_{i}^{j}, B=\bar{B}=0 \\
& S U(F) \times S U(F) \times U(1) \times U(1)_{R} \rightarrow S U(F)_{d} \times U(1) \times U(1)_{R} \\
& \text { chiral symmetry breaking, as in non-supersymmetric QCD }
\end{aligned}
$$

$$
\begin{aligned}
& \quad M=0, B \bar{B}=-\Lambda^{2 N} \\
& S U(F) \times S U(F) \times U(1) \times U(1)_{R} \rightarrow S U(F) \times S U(F) \times U(1)_{R} \\
& \text { baryon number spontaneously broken }
\end{aligned}
$$

Smooth Moduli Space

For large VEVs : perturbative Higgs phase, squark VEVs give masses to quarks and gauginos

no point in the moduli space where gluons become light
\Rightarrow no singular points
theory exhibits "complementarity": can go smoothly from a Higgs phase (large VEVs) to a confining phase (VEVs of $\mathcal{O}(\Lambda)$) without going through a phase transition

$F=N$: Consistency Checks

with F flavors and $\operatorname{rank}(M)=N$, dual has confinement with $\chi \mathrm{SB}$

$$
\operatorname{det}(\phi \bar{\phi})-\bar{b} b=\widetilde{\Lambda}_{e f f}^{2 \widetilde{N}}
$$

M eqm sets $\phi \bar{\phi}=0$
matching dual gauge coupling:

$$
\widetilde{\Lambda}_{e f f}^{2 \widetilde{N}}=\widetilde{\Lambda}^{3 \widetilde{N}-F} \operatorname{det}^{\prime} M
$$

where $\operatorname{det}^{\prime} M$ is the product of the N nonzero eigenvalues of M combining gives

$$
\bar{B} B \propto \operatorname{det}^{\prime} M
$$

classical constraint of the original theory is reproduced in the dual by a nonperturbative effect

$F=N$: consistency checks

$$
\operatorname{det} M-\bar{B} B=\Lambda^{2 N}
$$

is eqm of

$$
W_{\text {constraint }}=X\left(\operatorname{det} M-\bar{B} B-\Lambda^{2 N}\right)
$$

with Lagrange multiplier field X
add mass for the N th flavor

$$
M=\left(\begin{array}{cc}
\widetilde{M}_{i}^{j} & N^{j} \\
P_{i} & Y
\end{array}\right)
$$

where \widetilde{M} is an $(N-1) \times(N-1)$ matrix

$$
\begin{gathered}
F=N: \text { consistency checks } \\
W=X\left(\operatorname{det} M-\bar{B} B-\Lambda^{2 N}\right)+m Y \\
\frac{\partial W}{\partial B}=-X \bar{B}=0 \quad \frac{\partial W}{\partial N^{j}}=X \operatorname{cof}\left(N^{j}\right)=0 \\
\frac{\partial W}{\partial \bar{B}}=-X B=0 \quad \frac{\partial W}{\partial P_{i}}=X \operatorname{cof}\left(P_{i}\right)=0 \\
\frac{\partial W}{\partial Y}=X \operatorname{det} \widetilde{M}+m=0
\end{gathered}
$$

where $\operatorname{cof}\left(M_{j}^{i}\right)$ is the cofactor of the matrix element M_{j}^{i} solution:

$$
\begin{gathered}
X=-m(\operatorname{det} \widetilde{M})^{-1} \\
B=\bar{B}=N^{j}=P_{i}=0
\end{gathered}
$$

plugging solution into X eqm gives

$$
\frac{\partial W}{\partial X}=Y \operatorname{det} \widetilde{M}-\Lambda^{2 N}=0
$$

Effective Superpotential: $F \rightarrow N-1$
 $$
W_{\mathrm{eff}}=\frac{m \Lambda^{2 N}}{\operatorname{det} \widetilde{M}}
$$

matching relation for the holomorphic gauge coupling:

$$
m \Lambda^{2 N}=\Lambda_{N, N-1}^{2 N+1}
$$

so

$$
W_{\mathrm{eff}}=\frac{\Lambda_{N, N-1}^{2 N+1}}{\operatorname{det} \widetilde{M}}
$$

ADS superpotential for $S U(N)$ with $N-1$ flavors

Enhanced Symmetry Point

$$
M_{i}^{j}=\Lambda^{2} \delta_{i}^{j}, B=\bar{B}=0
$$

Φ and $\bar{\Phi}$ VEVs break $S U(N) \times S U(F) \times S U(F) \rightarrow S U(F)_{d}$ quarks transform as $\square \times \square=\mathbf{1}+\mathbf{A d}$ under $S U(F)_{d}$ gluino transforms as Ad under $S U(F)_{d}$

	$S U(F)_{d}$	$U(1)$	$U(1)_{R}$
$M-\operatorname{Tr} M$	Ad	0	0
$\operatorname{Tr} M$	$\mathbf{1}$	0	0
B	$\mathbf{1}$	N	0
\bar{B}	$\mathbf{1}$	$-N$	0

$\operatorname{Tr} M$ gets a mass with the Lagrange multiplier field X

Enhanced Symmetry Points: Anomalies

global symmetry	elem. anomaly	$=$	comp. anomaly
$U(1)^{2} U(1)_{R}$	$-2 F N$	$=$	$-2 N^{2}$
$U(1)_{R}$	$-2 F N+N^{2}-1$	$=$	$-\left(F^{2}-1\right)-1-1$
$U(1)_{R}^{3}$	$-2 F N+N^{2}-1$	$=$	$-\left(F^{2}-1\right)-1-1$
$U(1)_{R} S U(F)_{d}^{2}$	$-2 N+N$	$=$	$-N$

agree because $F=N$

Enhanced Symmetry Points

At $M=0, B \bar{B}=-\Lambda^{2 N}$ only the $U(1)$ symmetry is broken

	$S U(F)$	$S U(F)$	$U(1)_{R}$
M	\square	\square	0
B	$\mathbf{1}$	$\mathbf{1}$	0
\bar{B}	$\mathbf{1}$	$\mathbf{1}$	0

linear combination $B+\bar{B}$ gets mass with Lagrange multiplier field X

global symmetry	elem. anomaly	$=$	comp. anomaly
$S U(F)^{3}$	N	$=$	F
$U(1)_{R} S U(F)^{2}$	$-N \frac{1}{2}$	$=$	$-F \frac{1}{2}$
$U(1)_{R}$	$-2 F N+N^{2}-1$	$=$	$-F^{2}-1$
$U(1)_{R}^{3}$	$-2 F N+N^{2}-1$	$=$	$-F^{2}-1$

agree because $F=N$

$F=N+1$: s-confinement

For $F=N+1$ 't Hooft anomaly matching works with M, B, and \bar{B} confining
does not require $\chi \mathrm{SB}$, can go to the origin of moduli space
theory develops a dynamical superpotential

	$S U(F)$	$S U(F)$	$U(1)$	$U(1)_{R}$
M	\square	\square	0	$\frac{2}{F}$
B	\square	$\mathbf{1}$	N	$\frac{N}{F}$
\bar{B}	$\mathbf{1}$	\square	$-N$	$\frac{N}{F}$

For $F=N+1$ baryons are flavor antifundamentals since they are antisymmetrized in $N=F-1$ colors:

$$
\begin{aligned}
B^{i} & =\epsilon^{i_{1}, \ldots, i_{N}, i} B_{i_{1}, \ldots, i_{N}} \\
\bar{B}_{i} & =\epsilon_{i_{1}, \ldots, i_{N}, i} \bar{B}^{i_{1}, \ldots, i_{N}}
\end{aligned}
$$

$$
\begin{gathered}
F=N+1: \text { Classical Constraints } \\
\left(M^{-1}\right)_{j}^{i} \operatorname{det} M=B^{i} \bar{B}_{j} \\
M_{i}^{j} B^{i}=M_{i}^{j} \bar{B}_{j}=0
\end{gathered}
$$

with quark masses:

$$
\begin{aligned}
\left\langle M_{i}^{j}\right\rangle & =\left(m^{-1}\right)_{i}^{j}\left(\operatorname{det} m \Lambda^{2 N-1}\right)^{1 / N} \\
\left\langle B^{i}\right\rangle & =\left\langle\bar{B}_{j}\right\rangle=0
\end{aligned}
$$

taking determinant gives

$$
\left(M^{-1}\right)_{j}^{i} \operatorname{det} M=m_{j}^{i} \Lambda^{2 N-1}
$$

Thus, we see that the classical constraint is satisfied as $m_{j}^{i} \rightarrow 0$ taking limit in different ways covers the classical moduli space classical and quantum moduli spaces are the same chiral symmetry remains unbroken at $M=B=\bar{B}=0$

Most General Superpotential $W=\frac{1}{\Lambda^{2 N-1}}\left[\alpha B^{i} M_{i}^{j} \bar{B}_{j}+\beta \operatorname{det} M+\operatorname{det} M f\left(\frac{\operatorname{det} M}{B^{i} M_{i}^{j} \bar{B}_{j}}\right)\right]$

where f is an as yet unknown function only $f=0$ reproduces the classical constraints:

$$
\begin{aligned}
\frac{\partial W}{\partial M_{i}^{j}} & =\frac{1}{\Lambda^{2 N-1}}\left[\alpha B^{i} \bar{B}_{j}+\beta\left(M^{-1}\right)_{j}^{i} \operatorname{det} M\right]=0 \\
\frac{\partial W}{\partial B^{i}} & =\frac{1}{\Lambda^{2 N}-1} \alpha M_{i}^{j} \bar{B}_{j}=0 \\
\frac{\partial W}{\partial \bar{B}_{j}} & =\frac{1}{\Lambda^{2}-1} \alpha B^{i} M_{i}^{j}=0
\end{aligned}
$$

provided that $\beta=-\alpha$

$F=N+1$ Superpotential

to determine α, add a mass for one flavor

$$
\begin{gathered}
W=\frac{\alpha}{\Lambda^{2 N-1}}\left[B^{i} M_{i}^{j} \bar{B}_{j}-\operatorname{det} M\right]+m X \\
M=\left(\begin{array}{cc}
M_{j}^{\prime i} & Z^{i} \\
Y_{j} & X
\end{array}\right), B=\left(U^{i}, B^{\prime}\right), \bar{B}=\binom{\bar{U}_{j}}{\bar{B}^{\prime}} \\
\frac{\partial W}{\partial Y}=\frac{\alpha}{\Lambda^{2 N-1}}\left(B^{\prime} \bar{U}-\operatorname{cof}(Y)\right)=0 \\
\frac{\partial W}{\partial Z}=\frac{\alpha}{\Lambda^{2 N-1}}\left(U^{\prime} \bar{B}^{\prime}-\operatorname{cof}(Z)\right)=0 \\
\frac{\partial W}{\partial U}=\frac{\alpha}{\Lambda^{2 N-1}} Z \bar{B}^{\prime}=0 \\
\frac{\partial W}{\partial \bar{U}}=\frac{\alpha}{\Lambda^{2 N-1}} B^{\prime} \bar{Y}=0 \\
\frac{\partial W}{\partial X}=\frac{\alpha}{\Lambda^{2 N-1}}\left(B^{\prime} \bar{B}^{\prime}-\operatorname{det} M^{\prime}\right)+m=0
\end{gathered}
$$

$F=N+1$ Superpotential

solution of eqms:

$$
\begin{aligned}
Y & =Z=U=\bar{U}=0 \\
\operatorname{det} M^{\prime}-B^{\prime} \bar{B}^{\prime} & =\frac{m \Lambda^{2 N-1}}{\alpha}=\frac{1}{\alpha} \Lambda_{N, N}^{2 N}
\end{aligned}
$$

correct quantum constraint for $F=N$ flavors if and only if $\alpha=1$

Plugging back in superpotential with $m \Lambda^{2 N-1}=\Lambda_{N, N}^{2 N}$:

$$
W_{\mathrm{eff}}=\frac{X}{\Lambda^{2 N-1}}\left(B^{\prime} \bar{B}^{\prime}-\operatorname{det} M^{\prime}+\Lambda_{N, N}^{2 N}\right)
$$

Holding $\Lambda_{N, N}$ fixed as $m \rightarrow \infty \Rightarrow \Lambda \rightarrow 0$
X becomes Lagrange multiplier reproduce the superpotential for $F=N$

$F=N+1$ Superpotential

superpotential for confined SUSY QCD with $F=N+1$ flavors is:

$$
W=\frac{1}{\Lambda^{2 N-1}}\left[B^{i} M_{i}^{j} \bar{B}_{j}-\operatorname{det} M\right]
$$

$M=B=\bar{B}=0$ is on the quantum moduli space, possible singular behavior since naively gluons and gluinos should become massless actually M, B, \bar{B} become massless: confinement without $\chi \mathrm{SB}$

$F=N+1$ Anomalies

global symmetry	elem. anomaly	$=$	comp. anomaly
$S U(F)^{3}$	N	$=$	$F-1$
$U(1) S U(F)^{2}$	$N \frac{1}{2}$	$=$	$N \frac{1}{2}$
$U(1)_{R} S U(F)^{2}$	$-\frac{N}{F} \frac{N}{2}$	$=$	$\frac{2-F}{F} \frac{F}{2}+\frac{N-F}{2 F}$
$U(1)_{R}$	$-\frac{N}{F} 2 N F+N^{2}-1$	$=$	$\frac{2-F}{F} F^{2}+2(N-F)$
$U(1)_{R}^{3}$	$-\left(\frac{N}{F}\right)^{3} 2 N F+N^{2}-1$	$=$	$\left(\frac{2-F}{F}\right)^{3} F^{2}+\left(\frac{N-F}{F}\right)^{3} 2 F$,

agree because $F=N+1$

Connection to $F>N+1$

dual theory for $F=N+2$:

	$S U(2)$	$S U(N+2)$	$S U(N+2)$	$U(1)$	$U(1)_{R}$
q	\square	\square	$\mathbf{1}$	$\frac{N}{2}$	$\frac{N}{N+2}$
\bar{q}	\square	$\mathbf{1}$	\square	$-\frac{N}{2}$	$\frac{N}{N+2}$
M	$\mathbf{1}$	\square	\square	0	$\frac{4}{N+2}$

$$
W=\frac{1}{\mu} M \bar{\phi} \phi
$$

mass for one flavor produces adual squark VEV

$$
\left\langle\bar{\phi}^{F} \phi_{F}\right\rangle=-\mu m
$$

completely breaks the $S U(2)$

$$
F=N+2 \rightarrow F=N+1
$$

massless spectrum of the low-energy effective theory:

	$S U(N+1)$	$S U(N+1)$	$U(1)$	$U(1)_{R}$
q^{\prime}	\square	$\mathbf{1}$	N	$\frac{N}{N+1}$
$\overline{q^{\prime}}$	$\mathbf{1}$	\square	$-N$	$\frac{N}{N+1}$
M^{\prime}	\square	\square	0	$\frac{2}{N+1}$

Comparing with the confined spectrum we identify

$$
q^{\prime i}=c B^{i},{\overline{q^{\prime}}}_{j}=\bar{c} \bar{B}_{j}
$$

where c and \bar{c} are rescalings

$$
W_{\text {tree }}=\frac{c \bar{c}}{\mu} B^{i} M_{i}^{\prime j} \bar{B}_{j}
$$

$$
F=N+2 \rightarrow F=N+1
$$

broken $S U(2) \Rightarrow$ instantons generate superpotential

$$
W_{\text {inst. }}=\frac{\widetilde{\Lambda_{N, N+2}}}{\left\langle\widetilde{\phi}^{F} \phi_{F}\right\rangle} \operatorname{det}\left(\frac{M^{\prime}}{\mu}\right)=-\frac{\widetilde{\Lambda}_{N, N+2}^{4-N}}{m} \frac{\operatorname{det} M^{\prime}}{\mu^{N+2}}
$$

two mesinos (external straight lines) and $N-1$ mesons (dash-dot lines). instanton has 4 gaugino legs (internal wavy lines) and $N+2$ quark and antiquark legs (internal straight lines)

$$
F=N+2 \rightarrow F=N+1
$$

effective superpotential agrees with the result for $F=N+1$:

$$
W_{\mathrm{eff}}=\frac{1}{\Lambda^{2 N-1}}\left[B^{i} M_{i}^{\prime j} \bar{B}_{j}-\operatorname{det} M^{\prime}\right]
$$

if and only if

$$
c \bar{c}=\frac{\mu}{\Lambda^{2 N-1}}, \frac{\widetilde{\Lambda}_{N, N+2}^{4-N}}{\mu^{N+2} m}=\frac{1}{\Lambda^{2 N-1}}
$$

second relation follows from

$$
\widetilde{\Lambda}^{3 \widetilde{N}-F} \Lambda^{3 N-F}=(-1)^{F-N} \mu^{F}
$$

Intrinsic Scales

$$
\widetilde{\Lambda}^{3 \widetilde{N}-F} \Lambda^{3 N-F}=(-1)^{F-N} \mu^{F}(*)
$$

consider generic values of $\langle M\rangle$ in dual, dual quarks are massive pure $S U(\tilde{N}=F-N)$ gauge theory.

$$
\widetilde{\Lambda}_{L}^{3 \widetilde{N}}=\widetilde{\Lambda}^{3 \widetilde{N}-F} \operatorname{det}\left(\frac{M}{\mu}\right)
$$

gaugino condensation:

$$
\left.\begin{array}{rl}
W_{L} & =\tilde{N} \widetilde{\Lambda}_{L}^{3}=(F-N)\left(\frac{\widetilde{\Lambda}^{3} \widetilde{N}-F}{} \operatorname{det} M\right. \\
\mu^{F}
\end{array}\right)^{1 /(F-N)}
$$

where we have used eqn $\left(^{*}\right)$ Adding mass term $m_{j}^{i} M_{i}^{j}$ gives:

$$
M_{i}^{j}=\left(m^{-1}\right)_{i}^{j}\left(\operatorname{det} m \Lambda^{3 N-F}\right)^{1 / N}
$$

which is the correct result

Dual of Dual

assume that $\widetilde{\widetilde{\Lambda}}=\Lambda,\left({ }^{*}\right)$ implies

$$
\Lambda^{3 N-F} \widetilde{\Lambda}^{3 \widetilde{N}-F}=(-1)^{F-\widetilde{N}} \widetilde{\mu}^{F}
$$

since $F-\widetilde{N}=N$, we must have for consistency

$$
\widetilde{\mu}=-\mu
$$

composite meson of the dual quarks:

$$
N_{j}^{i} \equiv \bar{\phi}^{i} \phi_{j}
$$

dual-dual squarks as d, dual-dual superpotential is

$$
W_{d d}=\frac{N_{i}^{j}}{\widetilde{\mu}} \bar{d}^{i} d_{j}+\frac{M_{j}^{i}}{\mu} N_{i}^{j}
$$

Dual of Dual

equations of motion give

$$
\begin{aligned}
\frac{\partial W}{\partial M_{j}^{i}} & =\frac{1}{\mu} N_{i}^{j}=0 \\
\frac{\partial W}{\partial N_{i}^{j}} & =\frac{1}{\widetilde{\mu}} \bar{d}^{i} d_{j}+\frac{1}{\mu} M_{j}^{i}=0
\end{aligned}
$$

So, since $\widetilde{\mu}=-\mu$, we can identify the original squarks with the dual-dual squarks:

$$
\Phi_{j}=d_{j}
$$

Plugging into the dual-dual superpotential (it vanishes

Duality for SUSY SU(N)

$$
\begin{aligned}
& \mathrm{F}=\mathrm{N}+1 \rightarrow \text { confinement without } \chi \mathrm{SB} \\
& \mathrm{~F}=\mathrm{N} \rightarrow \text { confinement with } \chi \mathrm{SB}
\end{aligned}
$$

Duality Consistency Checks

- Anomaly Matching

Q, $\bar{Q}: S U(N) \quad q, \bar{q}, M: S U(F-N)$

- Identical Space of Vacua

$\mathrm{Q} \overline{\mathrm{Q}}$	\longleftrightarrow	M
$\mathrm{Q}^{\mathrm{N}}, \overline{\mathrm{Q}}^{\mathrm{N}}$	\longleftrightarrow	$\mathrm{q}^{\mathrm{F}-\mathrm{N}, \overline{\mathrm{q}}} \mathrm{F}-\mathrm{N}$

- Deformations

