
Seiberg duality for SUSY
QCD



Phases of gauge theories

Coulomb : V (R) ∼ 1
R

Free electric : V (R) ∼ 1
R ln(RΛ)

Free magnetic : V (R) ∼ ln(RΛ)
R

Higgs : V (R) ∼ constant
Confining : V (R) ∼ σR .

electric–magnetic duality:
electron ↔ monopole

free electric ↔ free magnetic
Coulomb phase ↔ Coulomb phase

Mandelstam and ‘t Hooft conjectured duality: Higgs ↔ confining
dual confinement: Meissner effect arising from a monopole condensate

analogous examples occur in SUSY gauge theories



The moduli space for F ≥ N

SU(N) SU(F ) SU(F ) U(1) U(1)R

Φ, Q 1 1 F−N
F

Φ, Q 1 -1 F−N
F

〈Φ〉 and 〈Φ〉 in the form

〈Φ〉 =

 v1 0 . . . 0
. . .

...
...

vN 0 . . . 0

 , 〈Φ〉 =



v1

. . .
vN

0 . . . 0
...

...
0 . . . 0


vacua are physically distinct, different VEVs correspond to different
masses for the gauge bosons



Classical moduli space for F ≥ N
VEV for a single flavor: SU(N)→ SU(N − 1)

generic point in the moduli space: SU(N) completely broken
2NF − (N2 − 1) massless chiral supermultiplets

gauge-invariant description “mesons,” “baryons” and superpartners:

M j
i = Φ

jn
Φni

Bi1,...,iN = Φn1i1 . . .ΦnN iN ε
n1,...,nN

B
i1,...,iN = Φ

n1i1
. . .Φ

nN iN
εn1,...,nN

constraints relate M and B, since the M has F 2 components, B and

B each have
(
F
N

)
components, and all three constructed out of the

same 2NF underlying squark fields
classically

Bi1,...,iNB
j1,...,jN = M j1

[i1
. . .M jN

iN ]

where [ ] denotes antisymmetrization



Classical moduli space for F ≥ N
up to flavor transformations:

〈M〉 =



v1v1

. . .
vNvN

0
. . .

0


〈B1,...,N 〉 = v1 . . . vN

〈B1,...,N 〉 = v1 . . . vN

all other components set to zero
rank M ≤ N , if less than N , then B or B (or both) vanish
if the rank of M is k, then SU(N) is broken to SU(N − k)
with F − k massless flavors



Quantum moduli space for F ≥ N
from ADS superpotential

M j
i = (m−1)ji

(
detmΛ3N−F )1/N

Givir large masses, mH , to flavors N through F
matching gauge coupling gives

Λ3N−FdetmH = Λ2N+1
N,N−1

low-energy effective theory has N−1 flavors and an ADS superpotential.
give small masses, mL, to the light flavors:

M j
i = (m−1

L )ji
(

detmLΛ2N+1
N,N−1

)1/N

= (m−1
L )ji

(
detmLdetmHΛ3N−F )1/N

masses are holomorphic parameters of the theory, this relationship can
only break down at isolated singular points



Quantum moduli space for F ≥ N

M j
i = (m−1)ji

(
detmΛ3N−F )1/N

For F ≥ N we can take mi
j → 0 with components of M finite or zero

vacuum degeneracy is not lifted and there is a quantum moduli space
classical constraints between M , B, and B may be modified

parameterize the quantum moduli space by M , B, and B
VEVs � Λ perturbative regime
M , B, and B → 0 strong coupling
naively expect a singularity from gluons becoming massless



IR fixed points
F ≥ 3N lose asymptotic freedom: weakly coupled low-energy effec-

tive theory
For F just below 3N we have an IR fixed point (Banks-Zaks)
exact NSVZ β function:

β(g) = − g3

16π2
(3N−F (1−γ))
1−Ng2/8π2

where γ is the anomalous dimension of the quark mass term

γ = − g2

8π2
N2−1
N +O(g4)

16π2β(g) = −g3 (3N − F )− g5

8π2

(
3N2 − 2FN + F

N

)
+O(g7)



IR fixed points
Large N with F = 3N − εN

16π2β(g) = −g3εN − g5

8π2

(
3(N2 − 1) +O(ε)

)
+O(g7)

approximate solution of β = 0 where there first two terms cancel at

g2
∗ = 8π2

3
N

N2−1 ε

O(g7) terms higher order in ε
without masses, gauge theory is scale-invariant for g = g∗
scale-invariant theory of fields with spin ≤ 1 is conformally invariant
SUSY algebra → superconformal algebra

particular R-charge enters the superconformal algebra, denote by Rsc

dimensions of scalar component of gauge-invariant chiral and antichiral
superfields:

d = 3
2Rsc, for chiral superfields

d = − 3
2Rsc, for antichiral superfields



Chiral Ring
charge of a product of fields is the sum of the individual charges:

Rsc[O1O2] = Rsc[O1] +Rsc[O2]

so for chiral superfields dimensions simply add:

D[O1O2] = D[O1] +D[O2]

More formally we can say that the chiral operators form a chiral ring.

ring: set of elements on which addition and multiplication are defined,
with a zero and an a minus sign

in general, the dimension of a product of fields is affected by renormal-
izations that are independent of the renormalizations of the individual
fields



Fixed Point Dimensions
R-symmetry of a SUSY gauge theory seems ambiguous since we can

always form linear combinations with other U(1)’s
for the fixed point of SUSY QCD, Rsc is unique since we must have

Rsc[Q] = Rsc[Q]

denote the anomalous dimension at the fixed point by γ∗ then

D[M ] = D[ΦΦ] = 2 + γ∗ = 3
22 (F−N)

F = 3− 3N
F

and the anomalous dimension of the mass operator at the fixed point is

γ∗ = 1− 3N
F

check that the exact β function vanishes:

β ∝ 3N − F (1− γ∗) = 0



Fixed Point Dimensions
For a scalar field in a conformal theory we also have

D(φ) ≥ 1 ,

with equality for a free field Requiring D[M ] ≥ 1⇒

F ≥ 3
2N

IR fixed point (non-Abelian Coulomb phase) is an interacting conformal
theory for 3

2N < F < 3N

no particle interpretation, but anomalous dimensions are physical
quantities



Seiberg



Duality
conformal theory global symmetries unbroken
‘t Hooft anomaly matching should apply to low-energy degrees of freedom

anomalies of the M , B, and B do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a
“dual” SU(F −N) gauge theory with a “dual” gaugino, “dual” quarks
and a gauge singlet “dual mesino”:

SU(F −N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F−N

N
F

q 1 − N
F−N

N
F

mesino 1 0 2 F−N
F



Anomaly Matching

global symmetry anomaly = dual anomaly
SU(F )3 −(F −N) + F = N
U(1)SU(F )2 N

F−N (F −N) 1
2 = N

2

U(1)RSU(F )2 N−F
F (F −N) 1

2 + F−2N
F F 1

2 = −N
2

2F
U(1)3 0 = 0
U(1) 0 = 0
U(1)U(1)2

R 0 = 0
U(1)R

(
N−F
F

)
2(F −N)F +

(
F−2N
F

)
F 2 + (F −N)2 − 1

= −N2 − 1
U(1)3

R

(
N−F
F

)3
2(F −N)F +

(
F−2N
F

)3
F 2 + (F −N)2 − 1

= − 2N4

F 2 +N2 − 1

U(1)2U(1)R
(

N
F−N

)2
N−F
F 2F (F −N) = −2N2



Dual Superpotential

W = λM̃ j
i φjφ

i

where φ represents the “dual” squark and M̃ is the dual meson
ensures that the two theories have the same number of degrees of

freedom, M̃ eqm removes the color singlet φφ degrees of freedom
dual baryon operators:

bi1,...,iF−N = φn1i1 . . . φnF−N iF−N εn1,...,nF−N

b i1,...,iF−N
= φn1i1 . . . φnF−N iF−N

εn1,...,nF−N

moduli spaces have a simple mapping

M ↔ M̃
Bi1,...,iN ↔ εi1,...,iN ,j1,...jF−N

bj1,...,jF−N

B
i1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jF−N



Dual β function
β(g̃) ∝ −g̃3(3Ñ − F ) = −g̃3(2F − 3N)

dual theory loses asymptotic freedom when F ≤ 3N/2
the dual theory leaves the conformal regime to become IR free at exactly
the point where the meson of the original theory becomes a free field

strong coupling ↔ weak coupling



Dual Banks–Zaks
F = 3Ñ − εÑ = 3

2

(
1 + ε

6

)
N

perturbative fixed point at

g̃2
∗ = 8π2

3
Ñ

Ñ2−1

(
1 + F

Ñ

)
ε

λ2
∗ = 16π2

3Ñ
ε

where D(M̃φφ) = 3 (marginal) since W has R-charge 2
If λ = 0, then M̃ is free with dimension 1
If g̃ near pure Banks-Zaks and λ ≈ 0 then we can calculate the

dimension of φφ from the Rsc charge for F > 3N/2:

D(φφ) = 3(F−Ñ)
F = 3N

F < 2 .

M̃φφ is a relevant operator, λ = 0 unstable fixed point, flows toward λ∗



Duality
SUSY QCD has an interacting IR fixed point for 3N/2 < F < 3N

dual description has an interacting fixed point in the same region

theory weakly coupled near F = 3N goes to stronger coupling as F ↓
dual weakly coupled near F = 3N/2 goes to stronger coupling as F ↑
For F ≤ 3N/2 asymptotic freedom is lost in the dual:

g̃2
∗ = 0
λ2
∗ = 0

M̃ has no interactions, dimension 1, accidental U(1) symmetry in the IR
in this range IR is a theory of free massless composite gauge bosons,

quarks, mesons, and superpartners
to go below F = N + 2 requires new considerations since there is no

dual gauge group SU(F −N)



Integrating out a flavor
give a mass to one flavor

Wmass = mΦ
F

ΦF

In dual theory

Wd = λM̃ j
i φ

i
φj +mM̃F

F

common to write

λM̃ = M
µ

trade the coupling λ for a scale µ and use the same symbol, M , for fields
in the two different theories

Wd = 1
µM

j
i φ

i
φj +mMF

F



Integrating out a flavor
The equation of motion for MF

F is:

∂Wd

∂MF
F

= 1
µφ

F
φF +m = 0

dual squarks have VEVs:

φ
F
φF = −µm

along such a D-flat direction we have a theory with one less color, one
less flavor, and some singlets



Integrating out a flavor
SU(F −N − 1) SU(F − 1) SU(F − 1)

q′ 1
q′ 1
M ′ 1
q′′ 1 1
q′′ 1 1
S 1 1 1
MF
j 1 1

M j
F 1 1

MF
F 1 1 1

Weff = 1
µ

(
〈φF 〉M j

Fφ
′′
j + 〈φF 〉MF

i φ
′′i

+MF
F S
)

+ 1
µM

′φ
′
φ′

integrate out M j
F , φ′′j , MF

i , φ
′′i

, MF
F , and S since, leaves just the dual

of SU(N) with F − 1 flavors which has a superpotential

W = 1
µM

′φ
′
φ′



Consistency Checks

• global anomalies of the quarks and gauginos match those of the
dual quarks, dual gauginos, and “mesons.”

• Integrating out a flavor gives SU(N) with F − 1 flavors, with dual
SU(F − N − 1) and F − 1 flavors. Starting with the dual of the
original theory, the mapping of the mass term is a linear term for
the “meson” which forces the dual squarks to have a VEV and
Higgses the theory down to SU(F −N − 1) with F − 1 flavors.

• The moduli spaces have the same dimensions and the gauge invari-
ant operators match.

Classically, the final consistency check is not satisfied



Consistency Checks
moduli space of complex dimension

2FN − (N2 − 1)

2FN chiral superfields and N2 − 1 complex D-term constraints

dual has F 2 chiral superfields (M) and the equations of motion set
the dual squarks to zero when M has rank F

duality: weak ↔ strong also classical ↔ quantum
original theory: rank(M) ≤ N classically

dual theory: Feff = F − rank(M) light dual quarks
If rank(M) > N then Feff < Ñ = F −N , ⇒ ADS superpotential

⇒ no vacuum with rank(M) > N
in dual, rank(M) ≤ N is enforced by nonperturbative quantum effects



Consistency Checks
rank constraint⇒ number of complex degrees of freedom inM to F 2−Ñ2

since rank N F × F matrix can be written with an (F −N)× (F −N)
block set to zero.

when M has N large eigenvalues, Feff = Ñ light dual quarks
2Feff Ñ − (Ñ2 − 1) = Ñ2 + 1 complex degrees of freedom
M eqm removes Ñ2 color singlet degrees of freedom
dual quark equations of motion enforce that an Ñ × Ñ corner of M is
set to zero

two moduli spaces match:

2FN − (N2 − 1) = F 2 − Ñ2 + Ñ2 + 1− Ñ2 = F 2 − Ñ2 + 1

once nonperturbative effects are taken into account



F = N : confinement with χSB
For F = N ‘t Hooft anomaly matching works with just M , B, and B

confining: all massless degrees of freedom are color singlet particles
For F = N flavors the baryons are flavor singlets:

B = εi1,...,iFBi1,...,iF
B = εi1,...,iFB

i1,...,iF

classical constraint:

detM = BB

With quark masses:

〈M j
i 〉 = (m−1)ji

(
detmΛ3N−F )1/N



Confinement with χSB
Taking a determinant of this equation (using F = N)

det〈M〉 = det (m−1) detmΛ2N = Λ2N

independent of the masses

detm 6= 0 sets 〈B〉 = 〈B〉 = 0, can integrate out all the fields that
have baryon number

classical constraint is violated!



Holomorphy and the Symmetries
flavor invariants are:

U(1)A U(1) U(1)R
detM 2N 0 0
B N N 0
B N −N 0

Λ2N 2N 0 0

R-charge of the squarks, (F −N)/F , vanishes since F = N
generalized form of the constraint with correct Λ → 0 and B,B → 0
limits is

detM −BB = Λ2N

(
1 +

∑
pq Cpq

(Λ2N)p
(BB)q

(detM)p+q

)
with p, q > 0. For 〈BB〉 � Λ2N the theory is perturbative, but with
Cpq 6= 0 we find solutions of the form

detM ≈
(
BB

)(q−1)/(p+q)

which do not reproduce the weak coupling Λ→ 0 limit



Quantum Constraint
detM −BB = Λ2N

correct form to be an instanton effect

e−Sinst ∝ Λb = Λ2N



Quantum Constraint
cannot take M = B = B = 0

cannot go to the origin of moduli space ( “deformed” moduli space)
global symmetries are at least partially broken everywhere



Enhanced Symmetry Points
M j
i = Λ2δji , B = B = 0

SU(F )× SU(F )× U(1)× U(1)R → SU(F )d × U(1)× U(1)R
chiral symmetry breaking, as in non-supersymmetric QCD

M = 0, BB = −Λ2N

SU(F )× SU(F )× U(1)× U(1)R → SU(F )× SU(F )× U(1)R
baryon number spontaneously broken



Smooth Moduli Space
For large VEVs : perturbative Higgs phase, squark VEVs give masses to
quarks and gauginos

no point in the moduli space where gluons become light
⇒ no singular points

theory exhibits “complementarity”: can go smoothly from a Higgs
phase (large VEVs) to a confining phase (VEVs of O(Λ)) without going
through a phase transition



F = N : Consistency Checks
with F flavors and rank(M) = N , dual has confinement with χSB

det(φφ)− bb = Λ̃2Ñ
eff

M eqm sets φφ = 0
matching dual gauge coupling:

Λ̃2Ñ
eff = Λ̃3Ñ−Fdet′M

where det′M is the product of the N nonzero eigenvalues of M
combining gives

BB ∝ det′M

classical constraint of the original theory is reproduced in the dual by a
nonperturbative effect



F = N : consistency checks

detM −BB = Λ2N

is eqm of

Wconstraint = X
(
detM −BB − Λ2N

)
with Lagrange multiplier field X

add mass for the Nth flavor

M =
(
M̃ j
i N j

Pi Y

)
where M̃ is an (N − 1)× (N − 1) matrix



F = N : consistency checks
W = X

(
detM −BB − Λ2N

)
+mY

∂W
∂B = −XB = 0 ∂W

∂Nj = X cof(N j) = 0
∂W

∂B
= −XB = 0 ∂W

∂Pi
= X cof(Pi) = 0

∂W
∂Y = X detM̃ +m = 0

where cof(M i
j) is the cofactor of the matrix element M i

j

solution:

X = −m
(

detM̃
)−1

B = B = N j = Pi = 0

plugging solution into X eqm gives

∂W
∂X = Y detM̃ − Λ2N = 0



Effective Superpotential: F → N − 1
Weff = mΛ2N

detM̃

matching relation for the holomorphic gauge coupling:

mΛ2N = Λ2N+1
N,N−1

so

Weff =
Λ2N+1

N,N−1

detM̃

ADS superpotential for SU(N) with N − 1 flavors



Enhanced Symmetry Point
M j
i = Λ2δji , B = B = 0

Φ and Φ VEVs break SU(N)× SU(F )× SU(F )→ SU(F )d
quarks transform as × = 1 + Ad under SU(F )d
gluino transforms as Ad under SU(F )d

SU(F )d U(1) U(1)R
M − TrM Ad 0 0

TrM 1 0 0
B 1 N 0
B 1 −N 0

TrM gets a mass with the Lagrange multiplier field X



Enhanced Symmetry Points:
Anomalies

global symmetry elem. anomaly = comp. anomaly
U(1)2U(1)R −2FN = −2N2

U(1)R −2FN +N2 − 1 = −(F 2 − 1)− 1− 1
U(1)3

R −2FN +N2 − 1 = −(F 2 − 1)− 1− 1
U(1)RSU(F )2

d −2N +N = −N

agree because F = N



Enhanced Symmetry Points
At M = 0, BB = −Λ2N only the U(1) symmetry is broken

SU(F ) SU(F ) U(1)R
M 0
B 1 1 0
B 1 1 0

linear combination B +B gets mass with Lagrange multiplier field X

global symmetry elem. anomaly = comp. anomaly
SU(F )3 N = F
U(1)RSU(F )2 −N 1

2 = −F 1
2

U(1)R −2FN +N2 − 1 = −F 2 − 1
U(1)3

R −2FN +N2 − 1 = −F 2 − 1

agree because F = N



F = N + 1: s-confinement
For F = N + 1 ‘t Hooft anomaly matching works with M , B, and B
confining

does not require χSB, can go to the origin of moduli space

theory develops a dynamical superpotential

SU(F ) SU(F ) U(1) U(1)R
M 0 2

F

B 1 N N
F

B 1 −N N
F

For F = N + 1 baryons are flavor antifundamentals since they are
antisymmetrized in N = F − 1 colors:

Bi = εi1,...,iN ,iBi1,...,iN
Bi = εi1,...,iN ,iB

i1,...,iN



F = N + 1: Classical Constraints
(M−1)ijdetM = BiBj
M j
i B

i = M j
i Bj = 0

with quark masses:

〈M j
i 〉 = (m−1)ji

(
detmΛ2N−1

)1/N
〈Bi〉 = 〈Bj〉 = 0

taking determinant gives

(M−1)ijdetM = mi
jΛ

2N−1 .

Thus, we see that the classical constraint is satisfied as mi
j → 0

taking limit in different ways covers the classical moduli space
classical and quantum moduli spaces are the same
chiral symmetry remains unbroken at M = B = B = 0



Most General Superpotential

W = 1
Λ2N−1

[
αBiM j

i Bj + βdetM + detM f
(

detM

BiMj
i
Bj

)]
where f is an as yet unknown function
only f = 0 reproduces the classical constraints:

∂W

∂Mj
i

= 1
Λ2N−1

[
αBiBj + β(M−1)ijdetM

]
= 0

∂W
∂Bi = 1

Λ2N−1αM
j
i Bj = 0

∂W

∂Bj
= 1

Λ2N−1αB
iM j

i = 0

provided that β = −α



F = N + 1 Superpotential
to determine α, add a mass for one flavor

W = α
Λ2N−1

[
BiM j

i Bj − detM
]

+mX

M =
(
M ′ij Zi

Yj X

)
, B =

(
U i, B′

)
, B =

(
U j
B
′

)
∂W
∂Y = α

Λ2N−1

(
B′U − cof(Y )

)
= 0

∂W
∂Z = α

Λ2N−1

(
UB

′ − cof(Z)
)

= 0
∂W
∂U = α

Λ2N−1ZB
′

= 0
∂W

∂U
= α

Λ2N−1B
′Y = 0

∂W
∂X = α

Λ2N−1

(
B′B

′ − detM ′
)

+m = 0



F = N + 1 Superpotential
solution of eqms:

Y = Z = U = U = 0
detM ′ −B′B′ = mΛ2N−1

α = 1
αΛ2N

N,N

correct quantum constraint for F = N flavors if and only if α = 1

Plugging back in superpotential with mΛ2N−1 = Λ2N
N,N :

Weff = X
Λ2N−1

(
B′B

′ − detM ′ + Λ2N
N,N

)
Holding ΛN,N fixed as m→∞ ⇒ Λ→ 0

X becomes Lagrange multiplier
reproduce the superpotential for F = N



F = N + 1 Superpotential
superpotential for confined SUSY QCD with F = N + 1 flavors is:

W = 1
Λ2N−1

[
BiM j

i Bj − detM
]

M = B = B = 0 is on the quantum moduli space, possible singular
behavior since naively gluons and gluinos should become massless

actually M , B, B become massless: confinement without χSB



F = N + 1 Anomalies

global symmetry elem. anomaly = comp. anomaly
SU(F )3 N = F − 1
U(1)SU(F )2 N 1

2 = N 1
2

U(1)RSU(F )2 −NF
N
2 = 2−F

F
F
2 + N−F

2F

U(1)R −NF 2NF +N2 − 1 = 2−F
F F 2 + 2(N − F )

U(1)3
R −

(
N
F

)3
2NF +N2 − 1 =

(
2−F
F

)3
F 2 +

(
N−F
F

)3
2F ,

agree because F = N + 1



Connection to F > N + 1
dual theory for F = N + 2:

SU(2) SU(N + 2) SU(N + 2) U(1) U(1)R

q 1 N
2

N
N+2

q 1 −N2
N
N+2

M 1 0 4
N+2

.

W = 1
µMφφ

mass for one flavor produces adual squark VEV

〈φFφF 〉 = −µm

completely breaks the SU(2)



F = N + 2 → F = N + 1
massless spectrum of the low-energy effective theory:

SU(N + 1) SU(N + 1) U(1) U(1)R

q′ 1 N N
N+1

q′ 1 −N N
N+1

M ′ 0 2
N+1

Comparing with the confined spectrum we identify

q′i = cBi , q′j = cBj

where c and c are rescalings

Wtree = cc
µ B

iM ′ji Bj



F = N + 2 → F = N + 1
broken SU(2)⇒ instantons generate superpotential

Winst. = Λ̃̃b
N,N+2

〈φF
φF 〉

det
(
M ′

µ

)
= − Λ̃4−N

N,N+2
m

detM ′

µN+2

N−1

two mesinos (external straight lines) and N − 1 mesons (dash-dot
lines). instanton has 4 gaugino legs (internal wavy lines) and N + 2
quark and antiquark legs (internal straight lines)



F = N + 2 → F = N + 1
effective superpotential agrees with the result for F = N + 1:

Weff = 1
Λ2N−1

[
BiM ′ji Bj − detM ′

]
if and only if

cc = µ
Λ2N−1 ,

Λ̃4−N
N,N+2
µN+2m

= 1
Λ2N−1

second relation follows from

Λ̃3Ñ−FΛ3N−F = (−1)F−NµF



Intrinsic Scales
Λ̃3Ñ−FΛ3N−F = (−1)F−NµF (∗)

consider generic values of 〈M〉 in dual, dual quarks are massive
pure SU(Ñ = F −N) gauge theory.

Λ̃3Ñ
L = Λ̃3Ñ−Fdet

(
M
µ

)
gaugino condensation:

WL = Ñ Λ̃3
L = (F −N)

(
Λ̃3Ñ−F detM

µF

)1/(F−N)

= (N − F )
(

Λ3N−F

detM

)1/(N−F )

where we have used eqn (*) Adding mass term mi
jM

j
i gives:

M j
i = (m−1)ji

(
detmΛ3N−F )1/N

which is the correct result



Dual of Dual
assume that ˜̃Λ = Λ, (*) implies

Λ3N−F Λ̃3Ñ−F = (−1)F−Ñ µ̃F

since F − Ñ = N , we must have for consistency

µ̃ = −µ

composite meson of the dual quarks:

N i
j ≡ φ

i
φj

dual–dual squarks as d, dual–dual superpotential is

Wdd = Nj
i

µ̃
d
i
dj + Mi

j

µ N
j
i



Dual of Dual
equations of motion give

∂W
∂Mi

j

= 1
µN

j
i = 0

∂W

∂Nj
i

= 1

µ̃
d
i
dj + 1

µM
i
j = 0

So, since µ̃ = −µ, we can identify the original squarks with the dual–dual
squarks:

Φj = dj .

Plugging into the dual–dual superpotential ( it vanishes

dual of the dual of SUSY QCD is just SUSY QCD



 

 

Duality for SUSY SU(N)

F=N+1 → confinement without χSB
F=N     → confinement with χSB

IR Fixed Point

IR Free

Strong

SU(N)

IR Free

Strong

IR Fixed Point

SU(F-N)F

3N

N

  N
2
3



 

 

Duality Consistency Checks
 Anomaly Matching

Q,   : SU(N) q,q, M: SU(F-N)
 Identical Space of Vacua

Q                      M
QN,    N qF-N, q F-N

 Deformations
SU(N), F SU(F-N), F

    W=m QF   F        W=Mqq + mMFF 

SU(N), F-1     SU(F-1-N), F-1

=

Q
<q>≠0, <q>≠0

Q

Q
Q


