Exercises for Chapter 2

1. Check that

$$
\begin{equation*}
S=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+i \lambda^{\dagger a} \bar{\sigma}^{\mu} D_{\mu} \lambda^{a}+\frac{1}{2} D^{a} D^{a}\right) \tag{1}
\end{equation*}
$$

is a SUSY invariant using eqns (2.91)-(2.94). After doing the SUSY transformations you can go to a gauge where at the point of interest, x_{0}^{μ}, the gauge field vanishes $\left(A_{\nu}^{a}\left(x_{0}\right)=0\right)$. You will need to use the Bianchi identity $\epsilon^{\mu \nu \alpha \beta}\left(D_{\nu} F_{\alpha \beta}\right)^{a}=0$.
2. Check that the commutator of two SUSY transformations closes:

$$
\begin{equation*}
\left(\delta_{\epsilon_{2}} \delta_{\epsilon_{1}}-\delta_{\epsilon_{1}} \delta_{\epsilon_{2}}\right) X=-i\left(\epsilon_{1} \sigma^{\mu} \epsilon_{2}^{\dagger}-\epsilon_{2} \sigma^{\mu} \epsilon_{1}^{\dagger}\right) D_{\mu} X^{a} \tag{2}
\end{equation*}
$$

for $X^{a}=F_{\mu \nu}^{a}, \lambda^{a}, \lambda^{\dagger a}, D^{a}$. These calculations requires the identities:

$$
\begin{align*}
\xi \sigma^{\mu} \bar{\sigma}^{\nu} \chi & =\chi \sigma^{\nu} \bar{\sigma}^{\mu} \xi=\left(\chi^{\dagger} \bar{\sigma}^{\nu} \sigma^{\mu} \xi^{\dagger}\right)^{*}=\left(\xi^{\dagger} \bar{\sigma}^{\mu} \sigma^{\nu} \chi^{\dagger}\right)^{*} \tag{3}\\
\bar{\sigma}^{\mu} \sigma^{\nu} \bar{\sigma}^{\rho} & =-\eta^{\mu \rho} \bar{\sigma}^{\nu}+\eta^{\nu \rho} \bar{\sigma}^{\mu}+\eta^{\mu \nu} \bar{\sigma}^{\rho}+i \epsilon^{\mu \nu \rho \kappa} \bar{\sigma}_{\kappa} \tag{4}\\
\sigma_{\alpha \dot{\alpha}}^{\mu} \bar{\sigma}_{\mu}^{\dot{\beta} \beta} & =2 \delta_{\alpha}^{\beta} \delta_{\dot{\alpha}}^{\dot{\beta}} . \tag{5}
\end{align*}
$$

3. Derive the supercurrent

$$
\begin{align*}
J_{\alpha}^{\mu}= & \left(\sigma^{\nu} \bar{\sigma}^{\mu} \psi_{i}\right)_{\alpha} D_{\nu} \phi^{* i}-i\left(\sigma^{\mu} \psi^{\dagger i}\right)_{\alpha} W_{i}^{*} \\
& -\frac{1}{2 \sqrt{2}}\left(\sigma^{\nu} \bar{\sigma}^{\rho} \sigma^{\mu} \lambda^{\dagger a}\right)_{\alpha} F_{\nu \rho}^{a}-\frac{i}{\sqrt{2}} g \phi^{*} T^{a} \phi\left(\sigma^{\mu} \lambda^{\dagger a}\right)_{\alpha} . \tag{6}
\end{align*}
$$

The first term was done in Section 2.3. The second term comes from the total derivative in eqn (2.67).
4. Consider a Wess-Zumino-like model with the superpotential

$$
\begin{equation*}
W=\frac{y}{3} \phi^{3}+\frac{\lambda}{4 M} \phi^{4} . \tag{7}
\end{equation*}
$$

What are the off-shell SUSY transformations of the the scalar ϕ and its superpartner fermion ψ expressed only in terms of ϕ and ψ ?
5. For the superpotential given in (7) what is the corresponding Lagrangian in terms of ϕ and ψ ?
6. Schematically (include the parametric dependence on the couplings) what are the Feynman rules for the cubic and quartic interactions?
7. Check that the SUSY transformation of the gauge field A_{μ}^{a} in

$$
\begin{equation*}
\mathcal{L}_{\psi \text { gauge int. }}=-\psi^{\dagger} \bar{\sigma}^{\mu} g A_{\mu}^{a} T^{a} \psi \tag{8}
\end{equation*}
$$

cancels against the SUSY transformation of ϕ and ϕ^{*} in

$$
\begin{equation*}
\mathcal{L}_{\text {Yukawa }}=-\sqrt{2} g\left[\left(\phi^{*} T^{a} \psi\right) \lambda^{a}+\lambda^{\dagger a}\left(\psi^{\dagger} T^{a} \phi\right)\right] . \tag{9}
\end{equation*}
$$

You will need to use the generalized Pauli identity (A.27). Note that the cancellation relates two terms where two fields are replaced by superpartners.
8. For the superpotential

$$
\begin{equation*}
W=m \phi_{2} \phi_{3}+\frac{y}{2} \phi_{1} \phi_{3}^{2} ; \tag{10}
\end{equation*}
$$

a) calculate the scalar potential;
b) show that the SUSY vacua are given by $\left\langle\phi_{1}\right\rangle=v ;\left\langle\phi_{2}\right\rangle=0,\left\langle\phi_{3}\right\rangle=0$, for arbitray v;
c) expanding around the vacua $\phi_{1}=v+\tilde{\phi}_{1}$, and writing the scalar potential out to quadratic order, find the mass squared matrix, M_{ϕ}^{2}, for the scalars;
d) find the fermion mass matrix M_{ψ} and verify that $M_{\psi} M_{\psi}^{\dagger}=M_{\phi}^{2}$.
9. Using

$$
\begin{equation*}
V^{a}=\theta \sigma^{\mu} \bar{\theta} A_{\mu}^{a}+\theta^{2} \bar{\theta} \lambda^{\dagger a}+\bar{\theta}^{2} \theta \lambda^{a}+\frac{1}{2} \theta^{2} \bar{\theta}^{2} D^{a}, \tag{11}
\end{equation*}
$$

perform the superspace integration for the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\int d^{4} \theta \Phi^{\dagger} e^{2 g T^{a} V^{a}} \Phi \tag{12}
\end{equation*}
$$

keeping only terms of order g or higher. (We did the g independent terms in class.)
10. For a general SUSY gauge theory with renormalizable interactions find the soft SUSY breaking terms that are produced by giving θ^{2} spurion components to the background chiral superfields corresponding to the mass and Yukawa coupling, and the coefficient of $W_{\alpha} W^{\alpha}$ as well as the wavefunction renormalization:

$$
\begin{equation*}
Z=1+b \theta^{2}+b^{*} \bar{\theta}^{2}+c \theta^{2} \bar{\theta}^{2} . \tag{13}
\end{equation*}
$$

