Exercises for Chap. 12

1. Taking all the couplings in the superpotential (12.16) to be equal to λ , and the VEVs to be of order ϕ , estimate the vacuum energy at the minimum of the potential. Is there a regime where the s-confined theory is weakly coupled at the minimum of the potential?

2. Taking the effective superpotential in Eq. 12.36 find the vacuum energy density

$$V = |\mathcal{F}_{\overline{U}}|^2 , \qquad (1)$$

assuming a VEV for \overline{U} as given in Eq. 12.42. Is there a consistent regime where $\mathcal{F}_{\overline{U}} \ll \Lambda_{SU}^2$. Assuming that the standard model gauge groups are embedded in the global symmetry of this model for N = 3 and taking $\lambda = 0.1$ and $\Lambda_{Sp} = \Lambda_{SU}/100$ what scale (in GeV) is required for Λ_{SU} in order to get a 1 TeV gluino mass (take the messenger mass $M = \Lambda_{SU}$, see Eq. (6.6))

3. Consider a dual description of SUSY QCD where the electric quarks have equal masses so that the dual superpotential is

$$W = \bar{\phi}M\phi - f^2 \mathrm{Tr}M \ . \tag{2}$$

Find the relation between N and F in the electric theory which ensures that at the classical level there is a non-vanishing \mathcal{F} component for M at $\langle M \rangle = 0$. Show that the one-loop corrections stabilize this vacuum as was the case for the O'Raifeartaigh model of section 5.1. Since there is a SUSY vacuum, given by Eq. (10.11), at large $\langle M \rangle$ this is an example of metastable SUSY breaking (see hep-th/0602239). Estimate the tunneling time to the SUSY vacuum. What conditions need to be met for the tunneling time to be longer than the age of the Universe?