Scalar dark matter from a double-Higgs portal and the role of isospin-violating effect

Yun Jiang

U.C. Davis

(move to Niels Bohr Institute (Copenhagen) next week)

SUSY 2015, Tahoe, CA 08/27/2015

A. Drozd, B. Grzadkowski, J. F. Gunion and Y.J., JHEP 1411 (2014) 105; 1509.XXXXX (appear soon).

Outline

- Preliminary Background
 - Dark matter direct detection
 - Isospin-violating mechanism
- Odel building

(The discussion in this talk is mainly limited in the Higgs-portal models)

- minimal singlet extension
- go beyond the minimal (e.g., 2HDM plus a real scalar singlet)
- OM phenomenology
- Ollider search signature
- Conclusion

▲□▶!▲□▶!★国▶! ヨ !のへの

Existence of dark matter?

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_b h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010

Yun Jiang (U.C. Davis)

▲□▶,▲□▶,▲国▶, 目 ,のへの

Messages from DM direct detection

• The strongest of those limits is currently a result of the LUX and the superCDMS in the very-low mass regime.

 In particular, the lower energy threshold of LUX allows a significant improvement in constraints at small WIMP mass where positive signals are reported by other collaborations (CDMS II, CoGeNT and etc.).

Yun Jiang (U.C. Davis)

Scalar IVDM from double-Higgs portal

Messages from DM direct detection

< 미 M (4 @ M (4 문 M) 문

If f_n/f_p is NOT equal to one? J.Feng et.al., PLB703(2011)124, 1307.1758

$$\sigma_N^Z = \sigma_P \frac{\sum_i \eta_i \mu_{A_i}^2 [Z - (A_i - Z)f_n/f_p]^2}{\sum_i \eta_i \mu_{A_i}^2 A_i^2}$$

where σ_p : DM-proton cross section (as a function of f_n/f_p) σ_N^Z : DM-nucleon cross section assuming $f_n/f_p = 1$ η : relative abundance of an isotope μ_A : reduced nucleon-DM mass

Isospin-violating mechanism

The ratio of DM-nucleon (N) (proton (p), neutron (n)) couplings:

$$\frac{f_n}{f_p} = \frac{F_u^n \tilde{\lambda}_U + F_d^n \tilde{\lambda}_D}{F_u^p \tilde{\lambda}_U + F_d^p \tilde{\lambda}_D}$$

where the combined form factors (including the QCD NLO) are

$$F_{u}^{N} = f_{Tu}^{N} + \frac{2}{27} f_{TG}^{N} \left(1 + \frac{35}{36\pi} \alpha_{S}(m_{c}) \right) + \frac{2}{27} f_{TG}^{N} \left(1 + \frac{35}{36\pi} \alpha_{S}(m_{t}) \right)$$

$$F_{d}^{N} = f_{Td}^{N} + f_{Ts}^{N} + \frac{2}{27} f_{TG}^{N} \left(1 + \frac{35}{36\pi} \alpha_{S}(m_{b}) \right)$$

for which the nucleon form factor has the relation defined as $f_{TG}^N = 1 - \sum_{q=u,d,s} f_{Tq}^N$ and the DM-quark effective couplings

$$\tilde{\lambda}_U = \sum_{\mathcal{H}} \frac{\lambda_{\mathcal{H}}}{m_{\mathcal{H}}^2} C_U^{\mathcal{H}}, \qquad \tilde{\lambda}_D = \sum_{\mathcal{H}} \frac{\lambda_{\mathcal{H}}}{m_{\mathcal{H}}^2} C_D^{\mathcal{H}}$$

Model building: SM+Singlet (FAILED)

Model building: go beyond the minimal

- ${\small \textcircled{0}} \hspace{0.1 cm} \text{one Higgs} \rightarrow 125 \hspace{0.1 cm} \text{GeV, small invisible decay}$
- $\textbf{@ the other Higgs} \rightarrow \text{responsible for dark matter physics}$
- Type II: generate the isospin violation

Yun Jiang (U.C. Davis)

Scalar IVDM from double-Higgs portal

Adding a real gauge singlet scalar S to the two-Higgs-double model (2HDM)

$$V(H_{1}, H_{2}, S) = m_{1}^{2}H_{1}^{\dagger}H_{1} + m_{2}^{2}H_{2}^{\dagger}H_{2} - \left[m_{12}^{2}H_{1}^{\dagger}H_{2} + h.c.\right] + \frac{\lambda_{1}}{2}(H_{1}^{\dagger}H_{1})^{2} + \frac{\lambda_{2}}{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}|H_{1}^{\dagger}H_{2}|^{2} + \left[\frac{\lambda_{5}}{2}(H_{1}^{\dagger}H_{2})^{2} + \lambda_{6}(H_{1}^{\dagger}H_{1})(H_{1}^{\dagger}H_{2}) + \lambda_{7}(H_{2}^{\dagger}H_{2})(H_{1}^{\dagger}H_{2}) + h.c.\right] (1) + \frac{1}{2}m_{0}^{2}S^{2} + \frac{1}{4!}\lambda_{5}S^{4} + \kappa_{1}S^{2}(H_{1}^{\dagger}H_{1}) + \kappa_{2}S^{2}(H_{2}^{\dagger}H_{2}) + S^{2}(\kappa_{3}H_{1}^{\dagger}H_{2} + h.c.)$$

Symmetry: $\mathbb{Z}_2 \times \mathbb{Z}'_2$

- $\mathbb{Z}_2: H_1 \rightarrow H_1, H_2 \rightarrow -H_2$
- $\mathbb{Z}_2': H_1 \rightarrow H_1, H_2 \rightarrow H_2, S \rightarrow -S$

S is stable and thus could be a dark matter candidate.

Ξ.

2HDM+Singlet model (2HDMS)

the S-dependent part (after the EWSB)

$$V_{S} = \frac{1}{2}m_{S}^{2}S^{2} + \frac{1}{4!}\lambda_{S}S^{4} + \lambda_{h}\nu hS^{2} + \lambda_{H}\nu HS^{2} + S^{2}(\lambda_{HH}HH + \lambda_{hH}hH + \lambda_{hh}hh + \lambda_{AA}AA + \lambda_{H^{+}H^{-}}H^{+}H^{-})$$

$$(2)$$

where

$$m_5^2 = m_0^2 + (\kappa_1 \cos^2 \beta + \kappa_2 \sin^2 \beta) v^2$$
 (3)

$$\lambda_h = -\kappa_1 \sin \alpha \cos \beta + \kappa_2 \cos \alpha \sin \beta \tag{4}$$

$$\lambda_H = \kappa_1 \cos \alpha \cos \beta + \kappa_2 \sin \alpha \sin \beta \tag{5}$$

$$\lambda_{AA} = \frac{1}{2}\lambda_{H^+H^-} = \frac{1}{2}(\kappa_1 \sin^2 \beta + \kappa_2 \cos^2 \beta)$$
(6)

$$\lambda_{hh} = \frac{1}{2} (\kappa_2 \cos^2 \alpha + \kappa_1 \sin^2 \alpha)$$
(7)

$$\lambda_{HH} = \frac{1}{2} (\kappa_1 \cos^2 \alpha + \kappa_2 \sin^2 \alpha)$$
(8)

$$\lambda_{hH} = \frac{1}{2}(\kappa_2 - \kappa_1)\sin 2\alpha. \qquad (9)$$

Remarks

- NO AS² term!
- The set of independent inputs: $m_S, \lambda_h, \lambda_H, \lambda_S$ (only 4 !!!)

Yun Jiang (U.C. Davis)

▲□▶,▲□▶,▲国▶, 目 ,のへの

Portal coupling $\lambda_{\mathcal{H}}$ for the SM-like Higgs being constrained very small.

Finding a IVDM, a really challengeable job

Applying the Higgs-quark coupling pattern into the generic f_n/f_p already derived yields

$\tan \beta =$	$\frac{f_n}{f_p}F_u^p -$	$\frac{m_n}{m_p}F_u^n$	$\mathbf{w} + \tan \alpha$
$\tan p = -$	$\frac{f_n}{f_p}F_d^p$ –	$\frac{m_n}{m_p}F_d^n$	$1 - w \tan lpha$

Higgs	C_V	C_U	C_D	
h	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	
H	$\cos(eta-lpha)$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	

where the weight parameter is defined by $w = \frac{\lambda_h}{\lambda_H} \frac{m_H^2}{m_L^2}$

Dark matter physics

Light DM ($m_S \leq 50$ GeV)

 $m_h \sim 125 \,\, {
m GeV}$ • the ratio $\frac{\lambda_H}{m^2}$ is crucial. **2** A could be light, so $SS \rightarrow AA$ opens.

$m_H \sim 125 \text{ GeV}$

- the ratio $\frac{\lambda_h}{m_1^2}$ is crucial.
- 2 h could be light, so $SS \rightarrow hh$ opens.
- Additionally, the pole resonance structure is hit when $m_S \simeq m_h/2.$

Numerical analysis (h-125 scenario as an example for illustration)

In fact both h-125 and H-125 scenarios could fit very well with cosmological observation.

- Fully suppressed the invisible decay for the SM-like Higgs.
- Produce proper relic abundance
- direct detection
- indirection detection

▲□▶,▲□▶,▲国▶, 国 ,のへの

Direct detection (h-125 case for example)

Yun Jiang (U.C. Davis)

16 / 20

Indirect detection (h-125 case for example)

What about the possibility for the supersymmetric dark matter?

Consider the SI $\tilde{\chi}_0^1$ -nucleon scattering in the MSSM (the minimal SUSY model)

- SM-like Higgs exchange (mostly unlikely)
- Non SM-like (light and heavy) Higgs exchange
- SM-like Higgs and light squark exchange
- Generic Higgs and light squark exchange

The recent paper 1503.03478 investigated all these scenarios but they restrict the $m_{\tilde{\chi}_{0}^{1}} > 50$ GeV.

< □ > , < @ > , < 至 > , 三王 :

Collider search signature

- Alignment without decoupling: $m_H, m_A \lesssim 650$ GeV.
- Top-quark coupling for H, A is enhanced at low tan $\beta \sim 1$.

Remarks

- The Higgs and DM sectors may be intimately connected. If so, detecting the signs of one of sectors could shine light on still hidden elements of the other.
- It is of interest to explore some of the implications of recent developments in hunting for Higgs and detecting DM in the context of as simple framework as possible.
- The seemingly last mission: baryogenesis?

"Dark matter study is becoming more and more complicated, however, maybe we are approaching the reality step by step ..."

- Yun Jiang

< ロト < 圖 ト < 필 ト 三 里 -