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1 Introduction

“What is the most important symbol in physics? Is it this: +? Is it this: ×? Is it this:

=? No. I claim that it is this: ∼. Tell me the order of magnitude, the scaling. That is the

physics.” –Yuval Grossman, 21 August 2008.

These notes are transcriptions of the Physics 7661: Flavor Physics lectures given by Professor
Yuval Grossman at Cornell University in the fall of 2010. Professor Grossman also gave introduc-
tory week-long lecture courses geared towards beginning graduate students at the 2009 European
School of High-Energy Physics and the 2009 Flavianet School on Flavor Physics [1] and the 2010
CERN-Fermilab Hadron Collider Physics Summer School [2].

A course webpage with homework assignments and (eventually) solutions is available at:
http://lepp.cornell.edu/~yuvalg/P7661/.

There is no required textbook, but students should have ready access to the Review of Particle
Physics prepared by the Particle Data Group and often referred to as ‘the PDG.’ The lecturer
explains that the PDG contains “everything you ever wanted to know about anything.” All of
the contents are available online at the PDG webpage, http://pdg.lbl.gov/. Physicists may
also order a free copy of the large and pocket PDG which is updated every two years. The large
version includes several review articles that make very good bed-time reading. The data in the
PDG will be necessary for some homework problems.

Additional references that were particularly helpful during the preparation of these notes were
the following textbooks,

• Dynamics of the Standard Model, by Donoghue, Golowich, and Holstein.

• Gauge theory of elementary particle physics, by Cheng and Li.

Both of these are written from a theorist’s point of view but do so in a way that is very closely
connected to experiments. (A good litmus test for this is whether or not a textbook teaches chiral
perturbation theory.)

Finally, much of the flavor structure of the Standard Model first appeared experimentally in
the decays of hadrons. The techniques used to describe these decays are referred to as the current
algebra or the partially conserved axial current and have fallen out of modern quantum field theory
courses. We will not directly make use of these methods but will occasionally refer to them for
completeness. While many reviews exist on the subject, including [3] and [4], perhaps the most
accessible and insightful for modern students is the chapter in Coleman’s Aspects of Symmetry on
soft pions [5].

Problem 1.1. Bibhushan missed part of the first lecture because he had to attend the course
that he’s TA’ing, “Why is the sky blue?” As a sample homework problem, what is the color of
the sky on Mars? (Solutions problems in these notes appear in Appendix D.)

Finally, an apology. There are several important topics in flavor physics that we have been
unable to cover. Among the more glaring omissions are lepton flavor (neutrino physics), soft
collinear effective theory for b decays, non-relativistic QCD, chiral symmetries, and current algebra
techniques.
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2 Model building

In this lecture we will briefly review aspects of the Standard Model to frame our study of its flavor
structure. Readers looking for more background material can peruse the first few sections of [1].

The overall goal of high-energy physics can be expressed succinctly in the following form:

L = ? (2.1)

That is, our job is to determine the Lagrangian of nature and experimentally determine its pa-
rameters.

In order to answer this question we would like to build models. In fact, it is perhaps more
accurate to describe a theorist’s job not as model building, but rather model designing. In order
to design our Lagrangian, we need to provide three ingredients:

1. The gauge group of the model,

2. The representations of the fields under this gauge group,

3. The pattern of spontaneous symmetry breaking.

The last point is typically represented by a sign, for example the sign of the Higgs mass-squared
parameter at the unstable vacuum (µ2 < 0).

Once we have specified these ingredients, the next step is to write the most general renormaliz-
able Lagrangian that is invariant under the gauge symmetry and provides the required spontaneous
symmetry breaking pattern. This is far from a trivial statement. The ‘most general’ statement
tells us that all terms that satisfy the above conditions must be present in the Lagrangian, even
the terms that may be phenomenologically problematic. For example, even though we might
not want to include a term that induces proton decay, we cannot simply omit it from our model
without some symmetry principle that forbids it.

On the other hand, renormalizability strongly constrains the form of a Lagrangian and, in
fact, limits us to only a finite number of terms. This condition comes to us from the principles
of effective field theory and Wilsonian renormalization group. We assume that the UV (more
fundamental) theory may generate all possible operators—including non-renormalizable terms—
at the UV scale. By dimensional analysis the non-renormalizable operators depend on negative
powers of the UV scale Λ. Thus at the ‘low’ energies µ � Λ where the Standard Model is valid
we expect that these operators are suppressed by powers of µ/Λ� 1. Thus in principle such non-
renormalizable operators exist but they should come with small coefficients. Eventually we will
be interested in including these terms and understanding their effect on low-energy observables.
For more background on this subject, see reviews by Hollowood [6], Manohar [7], and The Weak
Interactions by Georgi [8].

At this point a few remarks are in order. One can take these as rules for designing models.

• We must impose Poincaré invariance (the ‘gauge group’ with respect to gravity). Eventually
in this course we may get to non-relativistic QCD which breaks Poincaré invariance at the
effective level, but not the fundamental level.

• We use the language of quantum field theory.
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• We do not impose global symmetries. We know, for example, that global symmetries are
broken by gravity since a black hole might eat a proton and spit out a positron as part of
its Hawking radiation. The gauged electromagnetic symmetry is protected, but the global
baryon number conservation is broken. Another way of saying this which we will discuss
below is that global symmetries are not ‘fundamental.’

• The ‘basic’ fermion representation are two-component chiral (Weyl) spinors. Four compo-
nent fields end up becoming useful for some calculations, but four dimensional theories are
generally chiral. An encyclopedic reference for Weyl spinors is [9].

• A model is not yet a description of nature until one experimentally measures the finite num-
ber of physical parameters associated with it. We will clarify what we mean by a ‘physical’
parameter below, but the finite number of such parameters comes from renormalizability. If
a Lagrangian contains k physical parameters, then one must first perform k measurements
before being able to predict the value of further measurements.

Note in the last point that the idea of the number of parameters required to define a theory is
independent of how they are parameterized. In fact, many not-so-obvious ideas in field theory such
as the renormalization group become obvious once one understands that they are reparameteriza-
tions of these physical parameters. In practice, if one makes n > k measurements of a theory, one
doesn’t first do k ‘parameter measurements’ and then (n− k) observations of the theory. Instead
one would take all n measurements and do a statistical fit (e.g. χ2) for the k parameters to check
for self-consistency. See James Wells’ lectures for a theorist’s discussion of this process [10, 11].
Philosophically, however, it is useful and important to remember that a model (a Lagrangian) by
itself does not make predictions, it must come with measurements of its parameters.

2.1 Example: the Standard Model

Our best and most successful model is the Standard Model. It serves as an excellent example
of the above principles because (1) it works and (2) it is familiar. The three ingredients are as
follows:

1. Gauge group: SU(3)c × SU(2)L × U(1)Y .

2. Matter representations: a useful mnemonic for the fermion fields of the Standard
Model is QUDLE (“cuddly”), which is short for the left-handed quark doublet Q, right-
handed up U , right-handed down D, left-handed lepton doublet L, and the right-handed
charged lepton E. Using the convention where all fields are written in terms of left-handed
Weyl spinors (taking CP conjugations as necessary), we may write the gauge representations
using the notation (c, L)Y :

Qi (3,2)1/6

U c
i (3̄,1)−2/3

Dc
i (3̄,1)1/3

Li (1,2)−1/2

Ei (1,1)1,
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we’ve written the generation index i = 1, 2, 3. Note that this index does not imply a global
symmetry. In addition to the fermions we also have a complex scalar Higgs field, φ, with
the representation (1,2)1/2. Note that for SU(2) the ε tensor allows us to convert between
the fundamental 2 and antifundamental 2̄ representations. For example, we may write
φ̃a = εabφ

b.

3. Spontaneous symmetry breaking: SU(2)L × U(1)Y → U(1)EM. We can see this from
the sign of the Higgs mass term, L ⊃ µ2|φ|2, so that the potential contains a term −µ2|φ|2.

The next step is to write down the most general renormalizable Lagrangian. This can be
divided into three parts,

LSM = Lkin + LHiggs + LYuk. (2.2)

The kinetic Lagrangian Lkin includes the gauge interactions through the covariant derivative and
non-Abelian field strength. The Higgs Lagrangian LHiggs gives the Mexican hat potential

LHiggs = µ2|φ|2 − λ|φ|4. (2.3)

The Yukawa part of the Lagrangian LYuk contains the terms

LYuk = yeijL̄
iφEj + ydijQ̄

iφDj + yuijQ̄
jφ̃U j + h.c. (2.4)

In the Standard Model fermions only get masses through these terms. In a general model you can
also have bare masses when gauge and spacetime symmetries permit it.

2.2 Global, accidental, and approximate symmetries

One might ask how we can have baryon number conservation if our rules above stated that we may
not explicitly impose any global symmetries. The global symmetries of the Standard Model result
as outputs of the theory rather than as external constraints. In particular, they come from the
structure imposed by renormalizability and gauge invariance. Global symmetries that appear only
because non-renormalizable terms aren’t considered are called accidental symmetries. These
are broken explicitly by non-renormalizable terms, but since these terms are small one can often
make use of these symmetries. When people ask why the proton doesn’t decay in the Standard
Model, then baryon number conservation is only part of the answer; the ‘fundamental’ reason is
that baryon-number-violating operators in the Standard Model are non-renormalizable.

In addition to accidental symmetries there are other approximate symmetries which are
parametrically small in the sense that they become exact global symmetries when a parameter
(or set of parameters) is set to zero. An example is isospin symmetry, which is an approximate
global symmetry of the Standard Model. It is broken by the the quark masses. Are these para-
metrically small? We can only say this about dimensionless parameters, and it turns out that the
relevant parameter is the ratio of the quark mass splittings to the QCD strong coupling scale,

mu −md

ΛQCD

. (2.5)
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Isospin symmetry is additionally broken by ‘the most famous small parameter in the world,’ αEM

since the charge of the u is different from the charge of the d.
There’s one more small parameter that you might be familiar with. The Higgs potential obeys

a custodial symmetry. It is broken at one-loop by the Yukawa couplings. While one might
argue that the Yukawas themselves are O(1) and thus not small, since the breaking only occurs at
loop-level the relevant parameter is y2/16π2 which is small. For more information about custodial
symmetry and a nice overview of the symmetries of the Standard Model, see Scott Willenbrock’s
TASI 2004 lectures [12].

These accidental and approximate symmetries can be very useful, but we should always re-
member that they are not as fundamental as the gauge symmetries that we begin with.

2.3 Learning how to count [parameters]

As we mentioned above, a model will never graduate to a ‘description of Nature’ until its physical
parameters are measured. What do we mean by physical parameters? It is useful to start by
reviewing some unphysical parameters which cannot be measured. This is an idea that has been
with us since Newtonian mechanics, where the absolute value of the energy is not physical (only
differences are measurable). In quantum mechanics, a key idea is that the overall phase of a
wavefunction is not physical.

We know that the Standard Model has 18 physical parameters. For a reminder of these
parameters accessible to a general audience, see [13]. It doesn’t matter how we write these 18
parameters. In fact, we may even parameterize the Standard Model in different ways—but the
number of physical parameters does not change.

To learn how to count these parameters, let’s consider the leptonic Yukawa term,

yeijL̄
iφEj. (2.6)

How many parameters does the matrix ye have? Since it is a 3× 3 complex matrix, it contains 18
real parameters. We know, however, that the SM lepton sector only has three physical parameters:
the masses of the charged leptons. Thus there are 15 unphysical parameters hidden in (and
obfuscating) the ye matrix! Since unphysical parameters are useless for predictions, it’s always
nicer to choose parameterization where everything is physical.

Let’s see how we could have figured out that there were 3 physical parameters in this sector
of the Standard Model. If ye = 0, then the Lagrangian would enjoy a larger global symmetry:
the global symmetry of the kinetic term, Lkin ⊃ Ēi /DEi + L̄i /DLi. This is a U(3)E × U(3)L
global symmetry associated with the rotation between the three generations of E and L. The
Yukawa term breaks the global symmetry down to U(1)3 (corresponding to the phases of the mass
eigenstate fields). We may use the now-broken U(3)E×U(3)L symmetry to rotate the symmetry-
breaking direction ye to a convenient direction. Clearly this rotation will use only the broken
generators of U(3)E × U(3)L. We call ye a spurion of this symmetry. A particularly convenient
direction is to rotate ye to a diagonal matrix proportional to the charged lepton masses where it is
now clear that there are three physical parameters. To recap, we have used the broken generators
of the symmetry group to remove unphysical parameters by orienting the spurion y3 to convenient
direction in symmetry space. (It is tautological that the unbroken generators would not affect the
spurion direction.)
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From this simple example one can see that the number of physical parameters is related to the
generators of the unbroken symmetry by

# physical parameters = # parameters−# broken generators. (2.7)

In the case of the lepton Yukawa there were 15 broken generators out of 18 total generators,
confirming that there are 3 physical parameters in this sector. Make sure you understand why
this formula makes sense. Unlike unbroken generators which represent symmetries of the system,
the generator of a broken symmetry will change a system and so allow us to align the system
to match our parameterization and—by doing so—eliminate unphysical parameters. This rather
abstract statement can be made very concrete with the following example.

A very simple example. To rephrase the above argument in terms of a very simple example
from quantum mechanics, recall the Zeeman effect where the energy levels of the Hydrogen
atom are split in the presence of a magnetic field. In the absence of such a field the system
enjoys an SO(3) rotational symmetry and so has degenerate ground states. The field breaks
the symmetry and splits the degeneracy by breaking SO(3) down to SO(2), which is the
remaining rotational symmetry perpendicular to the direction of the field. There are two
broken generators. The physical parameter in the system is the magnitude of the magnetic
field. Generically, the field points in an arbitrary direction B = Bxx̂ + Byŷ + Bzẑ. We can
use the two broken generators to rotate the coordinates so that Bx = By = 0. These were
unphysical parameters. This leaves a single physical parameter, Bz, which in these coordinates
is precisely the magnitude of B.

2.4 Counting parameters in low-energy QCD

We may now generalize this picture to more complicated groups. Let us consider the low-energy
Lagrangian for the strong force in which only the light quark species (u, d, s) are active. Re-
call that this is the underlying structure of Murray Gell-Mann’s Eightfold Way for light hadron
classification. As before the three ingredients for our model are:

1. Gauge group: SU(3)c. We ignore U(1)EM as a small perturbation.

2. Matter representations: for each flavor (u, d, s) we have a left-chiral fundamental
representation and a right-chiral fundamental representation. Thus we have:

uL 3 uR 3
dL 3 dR 3
sL 3 sR 3.

3. Spontaneous symmetry breaking: at tree level there is none. At the quantum level
SU(3)A is broken spontaneously by the QCD chiral condensate, 〈q̄LqR + q̄RqL〉.
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As before we write out the most general renormalizable Lagrangian,

L =
∑

i=u,d,s

(
q̄iLi /Dq

i
L + q̄iRi /Dq

i
R

)
+
(
mij q̄

i
Lq

j
R + h.c.

)
. (2.8)

Note the important difference between this low-energy QCD Lagrangian and the Standard Model:
the flavor symmetry of the kinetic term allows one to rotate up, down, and strange quarks (of
a given chirality) between one another! In the Standard Model this is prohibited because this
mixes different components of SU(2)L doublets or, alternately, because this mixes particles of
different charge. Do not confuse this U(3)L × U(3)R flavor symmetry with the U(3)L × U(3)R
flavor symmetry of the Standard Model’s quark sector which mixes the three generations between
one another. (There are a lot of 3s floating around, make sure you don’t mix them up.)

It is useful to write down this flavor symmetry in terms of vector and axial symmetries,

U(3)L × U(3)R = U(3)V × U(3)A, (2.9)

where the vector (axial) transformation corresponds to

qiL → q′iL = U i
jq
j
L qiR → q′iR = U

(†)i
jq
j
R. (2.10)

In other words, the vector symmetry rotates the left- and right-handed quarks in the same way
while the axial symmetry rotates them oppositely.

Now let’s look at the mass terms of low-energy QCD. We may diagonalize mij, find the eigen-
values, and write down the three physical mass parameters. Thus for a generic mass matrix we
see that flavor is a good quantum number and the U(3)V × U(3)A symmetry of the kinetic term
is broken down to U(1)3

V representing the phases of each flavor mass eigenstate (these are now
Dirac spinors). If, for some reason, the mass matrix is universal, m ∝ 1, then the mass terms
break U(3)L × U(3)R to U(3)V . We see that the mass terms always breaks the axial part of the
kinetic term’s flavor symmetry.

One might now ask the following clever question:

Why should we include the mass terms in the QCD Lagrangian at all since we know
these come from the Yukawa sector of the Standard Model?

While this is true, we must remind ourselves that our model building rules tell us that we must
include all renormalizable terms that respect our gauge symmetries. For low-energy QCD this
means that we must include these mass terms. Now one might ask an even more clever question:

Fine, we include these terms, but then we go out and measure them and they’re very
small. Shouldn’t we still be able to ignore these terms since they are much smaller than
the relevant mass scale, ΛQCD?

Indeed! We know that mq � ΛQCD for all active quarks at low energies, so the limit mij → 0
(or alternately taking the dimensionless paramter mij/ΛQCD → 0) should be sensible. However,
the point is that in the absence of masses the chiral condensate breaks the SU(3)A ⊂ U(3)A and
does so at the scale ΛQCD (recall that 〈q̄iqj〉 ∼ Λ3

QCDδij). Thus we really should assume that this
symmetry is broken. One more clever retort:
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Fine! The SU(3)A should be broken either by mass terms or by the QCD condensate,
but what about the remaining U(1)A ⊂ U(3)A?

If we do our parameter counting, we have mij an arbitrary complex matrix with 18 real parameters.
The breaking of U(3)V → U(1)3

V gives 32 − 3 = 6 broken generators. SU(3)A is broken and gives
us 32 − 1 = 8 broken generators. Thus if we pretend that U(1)A is unbroken, we would have
18 − 14 = 4 physical parameters. We know that the correct answer is 3, the three Dirac quark
masses. What has happened?

The answer is that U(1)A is broken: it is anomalous, i.e. broken by quantum effects. The U(1)A
axial anomaly is notorious in the history in particle physics3. For our purposes we must make
the additional rule that at the quantum level, anomalous symmetries are no good for counting
parameters. If this is the case, then there’s one less broken symmetry generator and so we expect
there to be one more physical parameter relative to the classical analysis. Does such a parameter
exist? Yes; it is precisely the non-perturbative ΘYM term which transforms as a shift with respect
to U(1)A!

Thus there are two ways of counting parameters:

1. Classically: look only at the most general, renormalizable perturbative Lagrangian (i.e.
without Θ terms) and perform the counting using the classical symmetries without any
regard as to whether or not they are broken by anomalies.

2. Quantum mechanically: consider the most general, renormalizable Lagrangian including
non-perturbative terms and only consider non-anomalous symmetries.

Both are consistent as long as you stay within the regime of the description, in other words, if
you’re counting classical (tree-level) parameters, then don’t include quantum effects like anomalies
and Θ angles. Conversely, if you’re counting quantum parameters, then you must include both the
effect of anomalies and the non-perturbative terms associated with them.

2.5 Counting parameters in the Standard Model

Let’s go back to our favorite example, the Standard Model. Where do the Standard Model’s 18
parameters come from?

• The kinetic Lagrangian Lkin contains three physical parameters, the couplings g′, g, g3 which
determine the strengths of each force.

• The Higgs Lagrangian LHiggs contains two physical parameters which we may take to be the
vacuum expectation value of its neutral component v and the quartic interaction strength
λ. (One could also have chosen the unstable mass −µ2 or the physical mass m2

H .)

• Finally, the Yukawa Lagrangian contains the three charged lepton masses which we discussed
above plus ten physical parameters associated with the quark Yukawa sector.

3See [14] for an excellent presentation with an emphasis on instantons by a reputable, charming, and handsome
author.
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To explain the last ten parameters, recall that the quark Yukawa sector takes the form

LYuk ∼ yuQ̄φU + ydQ̄φD. (2.11)

There are 36 total real parameters between the yu and yd. The generational symmetry of the
kinetic term is U(3)3 which gives 27 total generators. How many of these survive after turning on
the yu and yd interactions? Baryon number U(1) survives with one generator, and so we have 26
broken generators. The number of physical parameters is 36− 26 = 10.

In fact, we can separate the physical real parameters from the physical phases. A generic
Yukawa matrix has 9 real parameters and 9 phases, one for each element: yij = reiθ. How many
real parameters and phases are there in a unitary matrix? We know that a unitary U(N) matrix
has N total parameters (N2 complex elements with the constraint equation Uik(U

†)kj = δij for
each element) and that an O(N) orthogonal matrix has 1

2
N(N − 1) parameters which are all real.

Since an orthogonal matrix is just a unitary matrix “without the phases,” we may subtract the
latter from the former to find that an N×N unitary matrix has 1

2
N(N+1) phases and 1

2
N(N−1)

real parameters. Thus our U(N)3 kinetic term symmetry gives 9 real parameters and 18 phases.
The Yukawas break this to U(1)B so that the number of real physical parameters is

2 Yukawas × 9 R param. each− 9 broken R generators = 9 physical R parameters. (2.12)

Similarly for the complex phase,

2 Yukawas × 9 phases each− 17 broken phase generators = 1 physical phase. (2.13)

These physical parameters are the quark masses, the mixing angles, and the CP-violating phase.
The above counting came from a classical analysis. Let us briefly remark on what happens in

the quantum picture. The U(1)A symmetry is anomalous and so should not be counted as having
ever been a symmetry of the kinetic term. This gives one less broken generator again giving us
the ΘQCD term.

Problem 2.1. Extra generations in the Standard Model. Count the number of physical
flavor parameters in the quark sector of the Standard Model with N generations. Show that the
quark sector of such a model has N(N + 3)/2 real parameters and (N − 1)(N − 2)/2 phases.
Determine the number of mixing angles.

Problem 2.2. Exotic light quarks, part I. Consider a copy of the Standard Model with a
modified quark sector without the c, b, and t quarks. The remaining quark representations are
modified to QL = (uL, dL) forming an SU(2)L doublet and sL an SU(2)L singlet. All the right-
handed quarks are singlets (uR, dR, sR). All color and electric charges are the same as in the
Standard Model. Electroweak symmetry follows as in the usual Standard Model. How many
physical parameters are in the model? How many of them are real and how many are phases?

Problem 2.3. Parameters of the MSSM. Show that there are 110 physical parameters in the
flavor sector of the minimal supersymmetric Standard Model (MSSM). Don’t forget to include
general soft SUSY-breaking terms. How do these divide into masses, mixing angles, and phases?
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Problem 2.4. The ΘWeak angle for SU(2)L. In Section 2.4 we discussed how the counting of
parameters pointed to the appearance of ΘYM as a physical parameter when taking into account
quantum corrections. Use a similar argument to show that such an angle is not physical for SU(2)L.
(Hint: one could alternately ask why the anomalous U(1)B+L doesn’t affect our Standard Model
counting.)

3 A review of hadrons

Peeking at the PDG for the first time may intimidate a student by the many long lists of particles.
One worries that this aspect of particle physics reduces to memorizing the periodic table or, even
worse, memorizing the botanical names of flowers. This distaste for the hadronic spectra seems
more pronounced in students of theory than experiment since the latter very quickly familiarize
themselves which the kinds of particles that appear in different parts of a detector. Theorists,
on the other hand, tend to want to live in a magical place where Lagrangians are written not
in terms of hadrons but in terms of ‘fundamental’ constituents like u and d quarks. A major
theme of this course is to be able to pull one’s head out of the UV to be able to make the
transition between ‘fundamental’ Lagrangians and the actual measurable physical states at low
energies. This transition is far from trivial and a good theorist must be able to go back and forth
between the the Standard Model Lagrangian, low energy spectra, and—hopefully—a new physics
Lagrangian. It will be useful to have the PDG (or the PDG website) nearby while reading this
section. A good refresher of the topics in this section are the undergraduate textbooks by Griffiths
[15] and Perkins [16].

As you have known since kindergarden, QCD states at low energies are hadrons and we can
distinguish between mesons, which are bosons, and baryons, which are fermions. With that out
of the way, we can move on to slightly more non-trivial things.

3.1 What we mean by ‘stable’

Next let us highlight an important abuse of language. We will divide hadrons between stable
particle and unstable particles, where the latter are often called resonances. These do not refer
to stability in the ‘absolute’ sense. Rather, they refer to stability with respect to whether a particle
is “stable on detector time scales.” Recall that there are two ways to measure an intermediate
particle’s lifetime: (1) one can directly measure its decay width or (2) for sufficiently long-lived
particles one can measure a displaced vertex. Stable particles are those whose lifetimes are at
least large enough to be measured by the latter method.

A more concrete definition is that a stable particle is one that does not decay through QCD
interactions. In this sense a kaon is a stable meson, it certainly decays, but these channels are only
through the weak interaction. In fact, let’s make a somewhat fancy definition that we’ll justify
later:

Definition 3.1. A stable particle is one that is either an eigenstate of the Hamiltonian or that
only decays through weak interactions; in other words, it is an eigenstate of the Hamiltonian in
the limit g → 0.
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Resonances are then defined to be those particles which are not stable. We can now connect the
‘intuitive’ definition of stability with this semi-technical definition by looking at the characteristic
lifetimes of hadrons that decay via the strong versus weak forces.

Example 3.2. Consider the ρ meson. This is a resonance of up an down quarks. What is its
approximate mass and width? Since the ρ is composed of light quarks, the dominant contribution
to its mass comes from QCD. We thus expect the mass to be on the order of ΛQCD, which is
hundreds of MeV. What is its width? The couplings are order 1 so we estimate it to again be
ΛQCD. Now go ahead and look it up in the PDG. unless we specify an excited state we will mean
the lowest-mass particle by that name, so in this case we mean the ρ(770). We find mρ ≈ 775
MeV and Γρ ≈ 150 MeV. Not bad.

The ρ width is very large, just a factor of five smaller than its mass. In fact, some resonances
have a width that is so large (on the order of their mass) that it becomes very hard to determine
whether or not it is a bound state at all. Recall that when we do QFT we work with states in the
asymptotic past and future. When a particle’s decay width is on the order of its mass, the notion
of asymptotic state becomes ill defined. The bottom line is that all of these resonances decay very
quickly.

What about the stable particles?

Example 3.3 (This example about useful numbers that you should memorize.). What about the
B0 meson? Typist’s note: because this is one of Yuval’s famous stories, I have tried to transcribe the
following just as it was dictated in lecture. See also [17]

What is the mass of the B meson? All of you know the story right? No? What is the mass
of the B meson? Flip? (No response.) Okay, let’s start with a little story. When I was
young—like Flip’s age—I went to TASI, just like Flip. And we started hiking, just like Flip4.
And I saw this sign, and the sign said, “Mile High City.” And it said “mile high” and it said
“5280 feet.” You know, I was like—I couldn’t—I couldn’t breathe for a few seconds. That’s
exactly the mass of the B meson in MeV! Exactly, up to four digits. Okay? So the [moral of]
the story is as follows. You always have to remember [it] like this. It’s always much easier to
remember two things than [it is to] remember one thing. Since most of you don’t even know
how many feet there is in one mile, now you have two things to remember: the number of
feet in one mile is exactly mass of the B meson in MeV.

What about the lifetime of the B0 meson? It decays weakly and turns out to have a lifetime of τB =
1.5× 10−12 seconds (about a picosecond). A useful conversion is

1 GeV = 1.5× 1024 sec−1. (3.1)

From this one ends up with a decay width of ΓB = 4× 10−4 eV.

Problem 3.1. Derive (3.1) if you are not already familiar with it.

4Addendum: Flip didn’t actually do any hiking at TASI because he spent the weekends calculating penguin
diagrams with Yuval’s student.
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Now we can see the difference between a resonance and a stable particle. Consider the order
of magnitudes of the widths of the ρ and the B0:

ΓB ∼ 10−4 eV (3.2)

Γρ ∼ 108 eV. (3.3)

This is why we call the B ‘stable.’ You should also have intuited the significance of the term
resonance, since these particles tend to be QCD excited states of a given quark content. It is
worth remembering that this big difference between the weak and the strong interaction doesn’t
come from the SU(2)L coupling constant being much smaller than the strong coupling (it’s not);
it comes from the virtual W that is emitted by a b quark in the decay of the B meson.

A nice analogy is tritium: this is a hydrogen isotope with two neutrons. The excited 2P
tritium state will emit a photon to decay to the 1S ground state at a time scale on the order of a
nanosecond. The 1S state will eventually decay into helium-3 with a lifetime on the order of 18
years. One can similarly imagine an excited (heavy) B resonance decaying rapidly to the B0 by
emitting a pion and then the B0 decaying via the weak interaction on a much longer time scale.

One should be comfortable thinking about the plethora of hadrons as excited hydrogen atoms
in basic quantum mechanics. In fact, let us turn to one of the basic features of hydrogen in
quantum mechanics: the quantum numbers that describe a state.

A PDG hint. In the PDG particles whose name contains their mass in parenthesis, e.g.
ρ(770), are resonances while those that do not are stable.

3.2 Hadron quantum numbers

There are three kinds of hadronic quantum numbers:

1. Exact quantum numbers

2. Quantum numbers which are exact under QCD, but not the weak interactions

3. Approximate quantum numbers, even within QCD.

There are two exact quantum numbers: electromagnetic charge Q and spin J , by which we
mean the sum of the constituent particle spins and the orbital angular momenta. Since much of
this course will involve particle mixing, these quantum numbers are important because they give
strict rules about which particles can mix. If two particles have the same quantum numbers then
[in general] they mix, i.e. the state which commutes with the Hamiltonian is generically a linear
combination of all such states. However, states with different quantum numbers cannot mix.

There is actually one more exact quantum number that we should have guessed from the
hydrogen atom analogy, the mass (the ‘N ’ quantum number). This is certainly conserved, but
we won’t use this so much since we’ll often be working with states that are flavor but not mass
eigenstates.

Example 3.4. Do the π and ρ mesons mix? No—they have different spin and spin is an exact
symmetry and must be conserved.

12



Note that in order for particles to mix they needn’t be exactly degenerate, but having a small
mass difference certainly helps5. One might also ask why we don’t list baryon number as an
exact quantum number. Since baryons have 2J + 1 even and mesons have 2J + 1 odd, baryon
number conservation automatically comes out of conservation of angular momentum. (We will
ignore objects such as glueballs.)

Next let us consider the quantum numbers that are not quite exact but are at least exact
with respect to QCD. These quantum numbers are parity and charge conjugation. We will
be particularly interested in their combination, CP . These are ‘parities’ in the sense that they
are Z2 discrete symmetries. Mesons in the PDG are denoted by their spin, parity, and charge
conjugation parity by JPC . The superscript is a mnemonic that they are only approximate—but
really good—symmetries.

Example 3.5. Look up the listing for the π± meson in the PDG. Why does it only list JP

instead of JPC? (Hint: what do we know about degenerate states versus eigenstates?) The π± are
degenerate states that are conjugate to one another, i.e. a state π+ has neither charge parity plus
or minus since it’s not an eigenstate of charge parity. How can this be? Recall that degenerate
states needn’t be states of the symmetries of the theory, all that is required is that a superposition
of these states is an eigenstate.

While you’re looking at the π±, you’ll note that there are additional quantum numbers listed:
IG. I is isospin, which we’ll discuss below. What is G? This is G-parity, a generalization of charge
quantum number that acts on isospin multiplets to replace the C quantum number for particles
like the π±. The strict definition is

G = CeiπI2 , (3.4)

where the second factor is a rotation in isospin space that takes I3 → −I3.

Example 3.6. Consider the π0 meson. The PDG tells us that it has JPC = 0−+. Does this make
sense? Why should the pion have negative internal parity? We know that it is a pair of quarks.
It’s the lightest meson so it wants to have J = 0 with as little total and orbital angular momentum
as possible. It does this by having two antiparallel spin one-half quarks and so it must pick up a
minus sign under parity. Indeed, everything makes sense.

What about T? We know that CPT is required for any consistent Lorentz invariant quantum
field theory. The violation of CP by the weak interactions thus implies a (compensating)
violation of T . In neutrino physics, the CP conjugate of the process νµ → νe is ν̄µ → ν̄e. On
the other hand, the T conjugate is νe → νµ. CPT tells us that the amplitudes for the CP
conjugate and T conjugate processes must be equal. One particularly interesting search for T
violation is through the electric dipole moment (EDM) of the neutron. EDM of an elementary

5This is better stated as a comparison of the diagonal versus off-diagonal elements of the mass matrix. A nice
related undergraduate-level quantum mechanics question is to ask the validity of degenerate perturbation theory
when the states have a small mass splitting. For a given mass splitting, how big are the corrections to degenerate
perturbation theory from non-degenerate perturbation theory and how do these compare to the corrections from
the next order in degenerate perturbation theory?
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particle points in the direction of its spin s (by Lorentz invariance there is no other possibility)
and is proportional to the electric field E. Note that

P s = s PE = −E
T s = −s TE = E,

Thus a nonzero EDM is a signal of both P and T violation. For more information about this
see [16, 18].

Finally, the approximate quantum numbers are those associated with flavor. An example of
‘flavor’ for the light (i.e. ‘flavorless’) mesons composed of only u and d quarks is isospin. This is
because when we neglect the mass difference between the up and the down quarks (∆mud � ΛQCD)
then u and d form an isodoublet and can mix.

What other approximate flavor quantum numbers might we consider? Charm and strangeness
are ‘okay.’ Actually, strangeness is the worst possible example we could have chosen since its mass
is so close to ΛQCD. On the other hand, beauty (bottom-ness, if you prefer) is a good approximate
quantum number because it’s so heavy. Can a B meson and a charmed meson mix? Only by a
very small amount since the b quark is so heavy. When you see a stable meson with a mass on the
order of 5 GeV you know it contains a b quark. The s quark, on the other hand, is not particularly
light nor heavy. We’ll get to know its mesons soon.

The punchline of this discussion is that degenerate states with the same quantum numbers
generally mix, sometimes with large or small mixing. When they have different exact quantum
numbers the cannot mix, but having different approximate numbers means that they can mix a
little. How much mixing is allowed for a given approximate quantum number will be a big part
of our course.

Problem 3.2. Using the PDG. Use the PDG to answer the following questions:

1. What are the component quarks of the D+ meson? What is its mass?

2. What are the component quarks of the Λ baryon? What is its spin?

3. What is Br(τ → µνν̄)?

4. What is the width (in eV) of the B+ meson?

5. What is the average distance a B+ meson will travel if γ = 4?

3.3 Binding energy

As we already started to discuss above, the masses of the hadrons come from two sources: the
‘bare masses’ of the quarks (coming from electroweak symmetry breaking) and the binding energy
coming from QCD interactions. We may continue our analogy with hydrogen since the mass of
a hydrogen atom comes from the masses of its constituent proton and electron plus a potential
energy V = −13.6 eV. Indeed, we can experimentally check that the mass of hydrogen is 13.6 eV
less than the sum of the masses of the proton and electron. In this sense this analogy is too good,
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since this statement comes from being able to physically pull a proton and electron asymptotically
apart and measure their masses independent of their mutual electric field.

In QCD the situation is more complicated since confinement tells us that we cannot pull in-
dividual quarks apart and measure them independently. What we can do is something a bit
counterintuitive and sneaky: we can probe these quantities at high energies where QCD is weak.
If we can extract the quark masses at high scales then we can hope to run these masses down to
the IR, but it’s clear that we’re cheating a little. The act of running the masses down involves
the inclusion of interactions, which is precisely what we wanted to separate from our mass mea-
surement. Of course, even the measurement of the masses in the UV is tricky since UV quantities
don’t depend strongly on low-scale masses. Another way of saying this is that we usually define
masses at low energies.

This is really a problem of the light quarks since we have probed them at energies much larger
than their pole masses (to the extent that a pole mass is well defined). The bottom line is that
these quark masses are very regularization-scheme dependent. When someone tells you a quark
mass, the particular value shouldn’t mean much without an accompanying regularization scheme.
This is like someone offering to sell you a copy of Mathematica without specifying whether its for
Linux or Mac.

While we’re on the subject of differences between QCD and QED, let us remark that you
should have already noticed that unlike atoms, hadrons can have masses larger than the sum of
their constituent quarks. In other words, the potential energy can be positive. This, of course, is
a signature of confinement.

3.4 Light quarks, heavy quarks, and the heaviest quark

So far we’ve discussed two kinds of quarks and hinted at properties of their associated hadrons.
There are the light quarks (u, d, s) which have masses—even though they are renormalization-
scheme dependent—much less than ΛQCD. These guys have their relevant mass scales set by
ΛQCD and the differences between their masses are negligible enough to talk about approximate
symmetries between them. (This is a bit of a stretch for the s quark, but it’s certainly true for
the u and d.)

On the other hand, there are the heavy quarks (c, b, t) with masses much greater than ΛQCD.
Unlike the light quarks, mesons made of heavy quarks have their mass scales set by the bare
masses of their valence quarks. Again, the c is a bit of a borderline case, but we don’t have to be
picky. This is certainly true for the stable B mesons,

mb ≈ 4500 MeV (3.5)

mB0 = 5280 MeV. (3.6)

What about the top quark?
It turns out that because the top quark is so heavy (mt ≫ ΛQCD) that it decays before

it hadronizes. For example, at a collider we might produce a b quark that hadronizes into an
excited B meson (resonance) which quickly decays into a stable B meson which must then decay
by the weak interaction. We understand this story from our ρ and B examples above: the weak
interaction widths are much smaller than strong interaction widths. For the top quark, on the
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other hand, the weak decay is more important than the strong force. The top width is 2 GeV
from a weak decay which is much greater than ΛQCD. Thus the top quark will decay via a W
well before it can form any kind of hadron. In fact, because mt > mW , the top decays into an
on-shell W which gives additional kinematic enhancement since it decays via a two-body decay
rather than a three-body decay required by the b.

We sometimes say that the top “doesn’t form hadrons.” We should be careful with how we
phrase this. Because the top decays so quickly we can never identify the hadron that it forms.
Arguably it is even an ill-posed question to identify the top hadron in that time scale. In principle,
though, we can “turn off” the weak interaction and calculate a spectrum of top hadrons. This
is a very strongly coupled problem that is intractable by known techniques, but in principle one
can calculate the spectrum of top hadrons when the weak force is negligible. In this sense it’s not
quite correct to say that there’s ‘no such thing’ as a top hadron, it’s just that we don’t see them.

The reason why this linguistic issue is important is that it puts one in danger of turning poor
language into poor physics. For example, one might want to try to explain that the top quark
doesn’t form hadrons because such hadrons are not eigenstates of the full Hamiltonian. This is
wrong ! Sure they’re not eigenstates of the Hamiltonian, but neither are any of the ‘stable’ hadrons
that we’ve been discussing, even those made up of light quarks! Any particle which decays is not
an eigenstate of the Hamiltonian. When we discuss particles like the B meson, we really mean
objects that are eigenvalues of the Hamiltonian in the limit when the weak interaction is turned
off. This now ties back to Definition 3.1 for a stable particle which is defined in the limit when
the SU(2)L coupling g → 0.

3.5 Masses and mixing in mesons

Why do some mesons have definite quark content while others oscillate?

We’ve discussed the ‘problem’ of QCD where quarks are tied up in strongly-coupled bound
states like mesons. There’s a second problem associated with QCD that is of utmost importance
to us: not only is the quark tied up in a confined state, but once a quark of a given flavor is bound
up in a physical-state meson, the meson doesn’t necessarily preserve that quark’s flavor. As you
know a u will want to hadronize into a pion, but the pion will oscillate (π ∼ uū + dd̄) and not
necessarily want to stay a in bound state u-quarks.

A major theme in this course will be how flavor-mixing is induced by objects that naturally live
in different bases. The most famous example is the CKM matrix which rotates between the mass
and interaction bases of the Standard Model. Before turning to this, however, we can already see
this idea at work in the mixing apparent in meson states.

If we work in a basis where we ‘know’ the masses of different quarks (modulo RG-dependence),
then we can say that a given quark pair describes meson state. We can say that such a combination
has a definite ‘flavor’ in the sense that the valence quark and anti-quark are well-defined.

Example 3.7. A neutral pion has valence quark structure π0 = (uū− dd̄)/
√

2. We can say that
it is 50% a uū state and 50% a dd̄ state.

However, these mesons can mix so that the physical meson states are linear combinations of
quark pairs of different flavor combinations. On the other hand, we already mentioned above that
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B and charmed mesons shouldn’t mix appreciably because the b quark makes the B-meson so
much heavier. Why is it that the π0 has a 45◦ mixing while the B0 is [nearly] a definite flavor
state? Why can’t we have a physical meson that is an appreciable admixture of bottom and
charm, (b̄d + c̄u)/

√
2? Nothing ‘fundamental’ (symmetries, for example) prohibits this, so what

is it that tells us how mesons mix?
It turns out that the answer is related to the origin of meson masses, which we saw above can

predominantly come from either (1) the QCD binding energy (of order ΛQCD), or (2) the valence
quark masses. In QCD we know that isospin is a good symmetry in the limit where the quark
masses are small compared to ΛQCD. This holds for the light quarks (u, d, s). In this case the
dominant contribution to the meson masses comes from the QCD potential energy and the mesons
have masses on the order ΛQCD plus, for higher resonances, any additional energy from internal
degrees of freedom such as orbital angular momentum. Each light quark has isospin 1/2 so that
the bound state qq̄ (for q = u, d, s) has isospin 0⊕1. In other words, we may have iso-singlets and
iso-triplet mesons coming from light quark bound states. This is just the same story as hyperfine
splitting in the hydrogen atom. Just like the hydrogen atom the singlet and triplet states have
different energies (masses), but within the triplet all three states are [nearly] degenerate. We say
that for the light quark mesons like the π0 the QCD potential energy gives mass according to
isospin and not flavor. What about mesons such as the B0 whose masses come from a heavy bare
quark mass? In this case the meson knows about flavor because the bare mass contribution from
the heavy quark is larger than the ΛQCD-scale potential energy contribution. It is now flavor and
not isospin that determines the meson mass.

We should think these effects in terms of 2×2 matrices6. First consider the mass term generated
by the QCD potential. This is a diagonal matrix acting on a space spanned by the iso-singlet |1〉
and iso-triplet |3〉 mesons,

Lmass, iso ∼
(
〈1| 〈3|

)(m1 0
0 m3

)(
|1〉
|3〉

)
. (3.7)

Consider the mass terms coming from the valence quarks. For simplicity let’s consider only the
case where this contribution is dominated by only one of the quarks (mesons with two heavy
quarks have shorter lifetimes). We can also write this contribution in terms of a 2× 2 matrix, but
this time acting on the ‘flavor-basis’ states defined by the presence of the heavy quark:

Lmass, flavor ∼
(
〈q| 〈q′|

)(mq 0
0 mq′

)(
|q〉
|q′〉

)
. (3.8)

The point is that we must take the sum of these two mass matrices, but (3.7) and (3.8) are written
in different bases. Thus shifting one matrix to the other basis will introduce off-diagonal terms
which indicate mixing. The basis of mass eigenstates is generally something in between these
two bases, the relevant question is whether the mass basis is closer to the isospin basis or the
flavor basis. In other words, we must ask which effect is more important: isospin splitting (in this

6The best physicists make the most out of simple systems, such as the diagonalization of 2 × 2 matrices. In
fact, the diagonalization of 2 × 2 matrices were defining moments for Cabbibo (leading to the CKM matrix) and
Glashow, Iliopoulos, and Maiani (the GIM mechanism). In this sense the thing that separates great physicists is
knowing which 2× 2 matrices to diagonalize.
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case singlet-triplet splitting) or the difference in heavy quark masses. If isospin splitting is more
important, then we can use the isospin basis and treat the valence quark masses as a perturbation
that introduces off-diagonal terms. This is what happens when the mesons such as the π0 that
are made up of light quarks whose masses are all small.

On the other hand, if the quark mass differences are more important, then we should use the
flavor basis and treat the isospin-dependent masses as a perturbation that introduce off-diagonal
terms. This is the case with our hypothetical mixing between a b̄b and a c̄c (these take the place
of the |q〉 and |q′〉 states above). A physical mass state is some linear combination

cos θ b̄b+ sin θ c̄c, (3.9)

where θ is the mixing angle. In this case, however, sin θ is suppressed by a factor on the order of
magnitude of

Λ2
QCD

m2
b −m2

c

� 1. (3.10)

Indeed, the physical states are called the J/Ψ = c̄c and the Υ = b̄b. The J/Ψ (“so good they
named it twice”) led to a Nobel prize for the discovery of charm while a resonance of the latter—
the Υ(4S)—decays to nearly-at-rest B0 mesons and play a key role in ‘B-factories’ like the LHCb,
BaBar, and Belle. In general states mesons composed of a heavy quark and its antiparticle
are called quarkonia, the J/Ψ and Υ are examples of charmonium and bottomonium states,
respectively. (Panda–anti-panda = pandamonium.)

Please take note that the important quantity for mixing is the difference between the valence
quark masses. The overall scale of these masses do not affect mixing (though they of course set
the overall mass scale).

It is also worth observing that the mass difference |md−mu| also splits the triplet. You should
also now realize that we were being a bit sneaky in the previous section when we wrote 2 × 2
matrices. We explore these ideas in the following problem.

Problem 3.3. Meson eigenstates for general quark masses. Consider a model of QCD
with only up and down quarks of unspecified masses mu and md, that is we do not know a priori
whether the isospin or flavor basis is dominant. Write down the meson mass matrix in the flavor
basis. (Hint: the matrix is larger than 2× 2.)

Finally, we can milk our hydrogen analogy even further to remark on one more contribution
to the meson masses7. As we will see below this effect is necessary to explain the mass splitting
between the (pseudo) vector isotriplet ρ mesons and the pseudoscalar isotriplet pions. The only
difference between these mesons is the orientation of the quark spins (they’re different representa-
tions an actual -spin, rather than isospin), so we might expect an analog to the spin-spin term in
the energy states of hydrogen where the energy splitting is proportional to the dot product of the
electron and proton spins se · sp/memp. By fitting for the proportionality constant by plugging in
values quark masses it turns out (rather remarkably) that one can fit the masses of seven of the
eight light mesons to percent accuracy. The eighth meson is the η′ and is the subject of the U(1)A
problem that plagued particle physics until instanton effects were properly understood [14].

7Here the typist has borrowed from Chapter 5.5 of Introduction to Elementary Particles by Griffiths.
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3.6 The pseudoscalar mesons

Pseudo-Goldstone bosons. Before we discuss the mesons, we should remark that a use-
ful way to think about these mesons is that they are the Goldstone bosons associated with
the spontaneous breaking of the SU(3)A flavor symmetry by in low-energy QCD the chiral
condensate. However, since these flavor symmetries are only approximate symmetries, these
Goldstone bosons are not exactly massless. Additional contributions to the masses come from
the ‘weak gauging’ of SU(2)L × U(1)Y subgroup of SU(3)V × SU(3)A × U(1)B. Particle
that are ‘approximate’ Goldstones are called pseudo-Goldstone bosons [19]. The idea that
strongly-coupled systems can be described in terms of weakly-coupled degrees of freedom is en
vogue in model building today and should elicit the AdS/CFT correspondence. It should be
no surprise that one particularly interesting avenue along these lines is that the Higgs might
be a pseudo-Goldstone boson; see [20] for a recent review.

Now that we have a handle to intuitively understand what determines the physical meson states
(i.e. which quark pairs will mix) we can familiarize ourselves with the spectrum of low-lying mesons.
Heavier mesons are resonances that are excitations of internal degrees of freedom. For now let’s
look at the lightest mesons, the pseudoscalars (JP = 1−); in the next section we’ll consider the
vectors, but these are a bit heavier by the spin-spin energy of the quarks. We know, for example,
that the u and d have a very good approximate isospin symmetry because md − mu � ΛQCD.
From the usual addition of angular momentum in quantum mechanics, we know that mesons
made out of the u and d can be decomposed into an iso-singlet and an iso-triplet. The singlet is
the η (mη = 550 MeV) and the triplet is the π (mπ ∼ 135 MeV). Electromagnetism provides a
higher-order splitting that distinguishes the neutral pion π0 and the charged pions π±.

Now let us consider adding the s quark to enlarge isospin to an SU(3) symmetry. A bit of
terminology: usually this symmetry is called SU(3) flavor, which might be slightly confusing since
then the phrase ‘flavor basis’ is somewhat ambiguous (definite quark content or definite SU(3)
representation?). Instead in this document we will use the phrase SU(3) isospin, which is a bit of
an oxymoron since isospin should be SU(2), but at least makes it clear what basis is relevant. We
know that since ms is quite a bit heavier than mu,d that this is slightly dubious, but the difference
is still less than ΛQCD so let’s see how far we can push this. The tensor product of a fundamental
and anti-fundamental of SU(3) is 3⊗ 3̄ = 1⊕ 8, where the 8 is the adjoint.

Do we find this structure in the meson spectrum? Yes! The singlet is the η′ (mη′ = 960 MeV)
and the pseudoscalar octet composed of the pions, the η, and the kaons (mK ∼ 490 MeV). We can
see that the pions of the SU(2) pretty-good iso-triplet and the kaons which flesh out the just-okay
SU(3) octet indeed has a mass difference on the order of the s mass (ms ∼ 150 MeV), which
breaks the SU(3) isospin/flavor symmetry. To provide a graphical mnemonic, the weight diagram
for the pseudoscalar nonet (octet + singlet) is:
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π+

K+K0

π−

K− K̄0

η′η

π0

As we saw with the pions, the whole point of isospin symmetry here is that group theory is
able to tell us how states of different quark content ought to mix. In the SU(2) case we saw that
the interesting mixing occurred in the I3 = 0 states (π0, η ∝ uū ± dd̄). Similarly, the interesting
mixing occurs in the I3 = 0 states of SU(3) where group theory predicts that the η (part of the
octet) and η′ (the singlet) have the content

η =
1√
6

(
uū+ dd̄− 2ss̄

)
(3.11)

η′ =
1√
3

(
uū+ dd̄+ ss̄

)
. (3.12)

This is, at least, what we expect from SU(3) isospin. It turns out the mass difference |ms−mu,d|
leads to a mixing angle that gives only a 10% correction and we are indeed justified in working in
the isospin basis.

For completeness, we mention that using chiral perturbation theory (i.e. the pseudoscalar
octet’s ‘true identity’ as pseudo-Goldstone bosons) we may represent these fields in and SU(3)
adjoint matrix as




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K0 − 2√
6
η


 . (3.13)

3.7 The vector mesons

The vector mesons JP = 1−, however, are a bit of a different story8. We can draw the 8⊕1 weight
diagram to compare with the pseudoscalars:

8This section borrows from Chapter 4.4 of [21].
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ρ+

K∗+K∗0

ρ−

K∗− K̄∗0

ωφ

ρ0

The ρs (mρ = 770 MeV) form an SU(2) iso-triplet, the analog of the pions. The SU(2) iso-singlet
is the ω (mω = 783 MeV), which is the analog of the η. Including the strange quark and enlarging
to SU(3) isospin symmetry the K∗s (mK∗ = 892 MeV) are the analogs of the spin-0 kaons and
the φ (mφ = 1020 MeV) is the I3 analog of the η′.

Do you see the problem? No? Here’s a hint.

Problem 3.4. The pseudoscalar Gell-Mann–Okubo mass formula. In the early 1960s
Gell-Mann and Okubo were independently searching for predictions of the quark model on the
spectrum of mesons. Write down the masses of the different particles (π, K, η) in the pseudoscalar
octet⊕singlet by summing some universal (flavor-independent) QCD-induced mass with the va-
lence quark masses. Assume mu = md but leave ms independent. Assume that the quark masses
and the universal mass are unknown. Hint: Write the squared meson masses as the sum of the
universal part and terms which are linear in the quark masses times some overall dimensionful
constant. Show that

4m2
K = m2

π + 3m2
η. (3.14)

Remark: Writing out the squared mesons masses not the natural thing to do; in general one
should write the linear meson masses as a universal part plus a linear combination quark masses.
We will discuss below, however, why the pseudoscalar octet is special.

Näıvely we expect the vector meson states to have the analogous quark content as the pseu-
doscalars; that is the I3 states ought to have the same mixing of quark flavor states so that

ω
?
=

1√
6

(
uū+ dd̄− 2ss̄

)
(3.15)

φ
?
=

1√
3

(
uū+ dd̄+ ss̄

)
. (3.16)

In particular, we expect the Gell-Mann–Okubo formula to hold since the additional spin-spin term
in the mass is flavor-universal:

4m2
K∗

?
= 3m2

ω +m2
ρ. (3.17)

Plugging in the values above we get a prediction that mω = 926.5 MeV, which is very different
from the experimentally observed mexp.

ω = 783 MeV. What went wrong?
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Ah, this seems like it’s on the order of ms. Shouldn’t this just be a correction to our
SU(3) isospin approximation that we already expected?

No! The Gell-Mann–Okubo formula already treats the valence quark masses as being different
and so should already account for the SU(3) isospin breaking from ms 6= mu,d. We’re still missing
something.

Well, we remarked that the quadratic sum of meson masses should only hold for the
pseudoscalar mesons. [Why?] The correct form of the Gell-Mann–Okubo formula for
the vector mesons, then, should be linear in the meson masses.

Good! This is absolutely true. We’ll discuss this in the next section. But meanwhile, have a
revised Gell-Mann–Okubo formula for vector (and any higher spin) mesons:

4mK∗
?
= 3mω +mρ. (3.18)

Unfortunately this predicts mω = 1446, which is an even worse fit! We’re really in trouble now!

Problem 3.5. If you haven’t figured you the mystery yet, stop. Just stop right there. Don’t read
beyond this problem. Go to the PDG and look up the quark content of the ω and ρ mesons.

It turns out that our assumption about the quark content of the I3 states (3.15) and (3.16) is
wrong. Given the theme of these lectures, you should already know why: these are two particles
with the same quantum numbers, so that—in general—they mix ! We can thus make the ansatz
that the ω and φ are not actually the I3 components of the iso-octet and iso-singlet as we had
initially assumed (and that was true for the ηs). Instead, these states are assumed to be linear
combinations of the actual I3 components of the iso-octet and iso-singlet, which we shall call ψ8

and ψ1 with masses m8 and m1. The quark content is given by

ψ8 =
1√
6

(
uū+ dd̄− 2ss̄

)
(3.19)

ψ1 =
1√
3

(
uū+ dd̄+ ss̄

)
. (3.20)

In other words, the mass matrix for ψ8 and ψ1 contains off-diagonal elements m81 = m18,

M =

(
m8 m81

m18 m1

)
. (3.21)

It may not seem like this helps much since it looks like we have three free parameters (m8, m1,
and the mixing angle θ) to fit two experimentally determined values mω and mφ. However, we
should remember that the Gell-Mann–Okubo formula must work for the ψ8 and ψ1 states. Thus
(3.18) should be modified to

4mK∗ = 3m8 +mρ. (3.22)

where m8 = 1446 MeV is the mass of the I3 = 0 member of the octet. One might also wonder
about the off-diagonal elements of the ψ8,1 mass matrix; these masses are also fixed by the same
valence quark analysis—see the following problem. (In what follows we will always be careful to
take differences of meson masses so that the universal mass contributions from angular momentum
and the QCD potential can be ignored.)
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Problem 3.6. The Schwinger meson mass relation. Shortly after Gell-Mann and Okubo,
Schwinger published his own mass sum rule for mesons for SU(3) nonets (octet+singlet) that is
robust against mixing [22]. In this problem we will prove Schwinger’s relation and see that it
works for the vector mesons. First determine the elements of the mass matrix (3.21) in terms
of the measurable masses of the other octet mesons (m∗K , mρ). Note that these mesons don’t
mix (why?) and so their masses are good parameters. Next use the invariance of the trace and
determinant to prove the following relations

mω +mφ = 2mK∗ (3.23)

mωmφ =
1

9

[
(4mK∗ −mρ)(2mK∗ +mρ)− 8(mρ −mK∗)

2
]

(3.24)

Finally, combine these equations to write down the Schwinger meson mass relation,

−(m8 −mω)(m8 −mφ) =
8

9
(mρ −mK∗)

2, (3.25)

where m8 is expressed in terms of measurable masses by the Gell-Mann–Okubo relation (3.22).
Check that the vectors satisfy this relation. (Please do this question especially if you are confused
about what’s going on!)

The observation that the vector meson masses obey the Schwinger relation tells us that the
model of SU(3) broken by ms is consistent and does explain the ω and φ masses once one accounts
for mixing. The next thing we need to check is to find out how much the ψ8 and ψ1 states actually
mix. If you did the previous problem, then you already have the explicit form of the mass matrix
elements m8,m1,m18 = m81 in terms of meson masses that one can look up in the PDG. Thus it
shouldn’t be any trouble for you to do the following problems (we’re back to diagonalizing 2× 2
matrices!):

Problem 3.7. The ω-φ mixing angle, part I. Parameterize the mixing between the SU(3)
flavor eigenstates ψ8 and ψ1 into the mass eigenstates ω and φ as follows:

(
φ
ω

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ψ8

ψ1

)
, (3.26)

where the flavor eigenstates have quark content (3.19-3.20). In this problem we will show several
formulae for the mixing angle. For tan2 θ show that

tan2 θ = −m8 −mφ

m8 −mω

= −m1 −mω

m1 −mφ

=
m8 −mφ

m1 −mφ

=
m1 −mω

m8 −mω

. (3.27)

While those formulae do not give the overall sign of θ, prove the following tan θ formulae which
do:

tan θ =
−m81

m8 −mω

=
m81

m1 −mφ
=
m8 −mφ

m81

=
m1 −mω

−m81

. (3.28)

Finally, for good measure, prove for cos 2θ and sin 2θ,

cos 2θ =
m8 −m1

mφ −mω

sin 2θ =
2m81

mω −mφ

. (3.29)
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Problem 3.8. The ω-φ mixing angle, part II. Now that we have the formulae above, rewrite
them in terms of physical meson masses so that it is easy to go to the PDG and plug in the
appropriate numbers. In particular, prove the relations given in the “Quark Model” review of the
PDG:

tan2 θ = −4mK∗ −mρ − 3mφ

4mK∗ −mρ − 3mω

(3.30)

tan θ =
4mK∗ −mρ − 3mφ

2
√

2(mρ −mK∗)
. (3.31)

Show that the expression for tan 2θ obtained from (3.29) is independent of physical measurements
and remark on the significance of this value.

These are very important relations and we end up with a mixing angle of θ ≈ 37◦. Note
that the mixing angle is determined by the ratio of mass differences! (Remind yourself that
m81 ∝ (ms−mu)!) So the reason why the Gell-Mann–Okubo relation failed for the vector mesons
is that there is an appreciable mixing between the ψ8 and ψ1. We say ‘appreciable’ because
37◦ � 0◦, but how much mixing is actually contained in 37◦? To ask the question in a different
way: is there a way that we could have expected this amount of mixing? Shouldn’t we have
expected either zero or 45◦? This would be a good homework problem, but it’s so important (and
simple) that we’ll do it together.

Example 3.8. Ideal mixing. We assume that SU(3) is broken only by the difference (ms−mu)
(where md = mu by isospin). Thus it is intuitively clear that the physical states in the theory
should appear in a way that reflects this breaking. This is just like saying that the in the fine
structure of Hydrogen one breaks along total angular momentum so that one obtains the singlet
and triplet states; then in the hyperfine structure one breaks along the direction of orbital angular
momentum so that one obtains the |1,±1〉, |1,±0〉 states. We can use (3.29) to determine the
expected angle θ. A quick way to do this is to write down the valence quark masses in each
component. You know from the previous problems that

m8 =
2

3
(mu + 2ms) (3.32)

m1 =
2

3
(2mu +ms) (3.33)

m81 =
2
√

2

3
(mu −ms). (3.34)

Plugging these in we obtain the ideal mixing angle

tan 2θideal = 2
√

2, (3.35)

which is approximately 35.5◦.

Aha! So we see that the value of θ = 37◦ that we found indeed is very close to the prediction
of ideal mixing. More importantly, by now you should physically understand what ideal mixing
signifies: the ss̄ component of the I3 = 0 mesons should separate from the uū and dd̄ components.
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The physical states should mirror the breaking pattern, just like the fine structure of hydrogen.
Indeed, writing

ω = cos θ ψ8 − sin θ ψ1 (3.36)

φ = sin θ ψ8 + cos θ ψ1 (3.37)

and remembering the iso-state quark content

ψ8 =
1√
6

(
uū+ dd̄− 2ss̄

)
(3.38)

ψ1 =
1√
3

(
uū+ dd̄+ ss̄

)
, (3.39)

one finds that for ideal mixing the φ is a pure ss̄ state while the ω contains no strangeness,

ω =
1√
2

(
uū+ dd̄

)
φ = ss̄. (3.40)

In this sense it is maximally sensitive to how much the s quark mass breaks SU(3) isospin sym-
metry and so we end up with the ω and φ being much heavier than their cousins.

So now we’ve completely turned around the ‘problem’ that we originally proposed at the
beginning of this section. There’s nothing odd about the vector mesons—they behave precisely
as we would expect given the way that SU(3) is broken. Indeed, one finds that the J = 2 tensor
mesons have a mixing angle that is also very close to ideal mixing [23]. The real problem is that
the pseudoscalars are misbehaving because they somehow conspire to give zero mixing when we
expect ideal mixing! It is a deep principle in physics that nothing is ever zero ‘by accident.’

3.8 Why are the pseudoscalar and vector octets so different?

Now that we’ve identified the pseudoscalars as the trouble-makers, why should they behave so
differently from the higher-spin mesons? We already mentioned part of the answer: the pseu-
doscalars are secretly under-cover Goldstone bosons of SU(3)A, i.e. they are pseudo-Goldstone
bosons which obtain masses according to chiral perturbation theory. Unfortunately the formal-
ism for chiral perturbation theory is beyond the scope of this course9. However, the crux of the
matter is that the breaking of SU(3) by quark masses gives relations of the form (using soft pion
techniques)

f 2
πm

2
π =

mu +md

2
〈0|uū+ dd̄|0〉 (3.41)

f 2
Km

2
K =

mu +md

2
〈0|uū+ ss̄|0〉 (3.42)

f 2
ηm

2
η =

mu +md

6
〈0|uū+ dd̄|0〉+

4ms

3
〈0|ss̄|0〉. (3.43)

9For some reviews see [24, 25, 26, 27] or more recent reviews on modern versions of this idea [20, 28]. Additionally,
older-style textbooks such as Cheng & Li [21] or Donoghue et al. [29] give very nice introductions.
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We can assume that all of the expectation values are at the same QCD condensate scale, 〈0|qq̄|0〉 =
Λ3

QCD and further that the decay constants are all equivalent fπ = fK = fη = f . What we are left
with is a relation for the quadratic meson masses that is linear in the symmetry-breaking terms,
the quark masses. This explains why the original Gell-Mann–Okubo formula for the pseudoscalar
mesons (3.14) is written with squared meson masses while the formulae for the vectors (3.18) is
linear in the meson masses.

So maybe this is the source of the problem. Unfortunately, one can go ahead and try to use
all of the mixing angle formulae we derived in Problems 3.6 and 3.8. You can work this out as an
exercise, but it turns out that one doesn’t get consistent answers! Another way to say this is that
the Schwinger mass relation (3.25) doesn’t hold. Clearly something is still wrong. Before moving
on, though, let use remark that an independent measurement of the pseudoscalar mixing angle
can be obtained by looking at various decay rates (‘partial widths’) as explained in the PDG’s
“Quark model” review; the angle is found to be between −10◦ and −20◦.

So what is it that is causing the pseudoscalars to mix in such an unexpected and seemingly
inconsistent way? It turns out that we’ve already met this before when we were counting param-
eters: it is our old friend the U(1)A axial anomaly. The fact that U(1)A is broken means that

ψ1 gets an additional mass contribution (in principle from the FF̃ term). See, for example, the
discussions in the book by Donoghue et al. [29] or the older article by Isgur [23]. The reviews by
Feldmann [30] and Gasser and Leutwyler [31] are particularly thorough.

Problem 3.9. A physical interpretation of θ = −10◦. Change to the basis where the mesons
have quark content following the SU(3) breaking pattern preferred by the symmetry-breaking
(ms −mu) parameter,

ψx = ss̄ (3.44)

ψy =
1√
2

(
uū+ dd̄

)
. (3.45)

Write the deviation from the ideal mixing angle θideal as φ so that θ = θideal + φ. Show that

tan 2φ =
mxy

m2
x −m2

y

. (3.46)

Consider the limits mxy � m2
x−m2

y and mxy � m2
x−m2

y and use these to explain the significance
of the mixing angles θ = θideal and θ = θideal − 45◦. Comment on the stability of these values in
the aforementioned limits.

Problem 3.10. Mixing of the I3 6= 0 states. Explain why the K± and π± do not mix
appreciably. It is not sufficient to invoke SU(3) flavor symmetry since we know that ms � mu,d

so that this is not a very good symmetry. Hint: Assume that SU(3) is only broken by the quark
masses.

3.9 Hadron names

“You can know the name of a bird in all the languages of the world, but when you’re
finished, you’ll know absolutely nothing whatever about the bird. So let’s look at
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the bird and see what it’s doing—that’s what counts. I learned very early the dif-
ference between knowing the name of something and knowing something.” –Richard
Feynman10

While Feynman makes a point that is well-known by any physicist who has talked to someone
from a ‘taxonomic’ field (like botany), it is important to be familiar with the names of common
hadrons. At the very least one should be motivated that experimentalists are all very familiar
with different hadrons (since these are the things which fly through the detector), so it’s worth
knowing what they’re talking about when they say things such as, “A hyperon can punch through
and mimic a muon.”

We’ve already talked about the pseudoscalar mesons which have JPC = 0−+. We have the
π, η, η′, K, D,B. The first three are called ‘unflavored’ by the PDG. By this we really mean
that it contains no heavy flavor, i.e. no net strangeness, charm, or beauty. The ηs contain some
admixture of ss̄, but this has no net strangeness quantum number. The K, D, and B are all code
for flavored mesons. The kaons (K) all have net strangeness, the Ds have net charm, and the Bs
have net beauty.

We’ve also already met several vector mesons which have JPC = 1−−. The iso-triplets are
the ρs and we’re now very familiar with the ω and φ as our famous states which mix isospin
representations. The flavored vector mesons are indicated by stars relative to the pseudoscalars:
K∗, D∗, B∗.

There are other mesons. The JPC = 0++ mesons are formed by quark configurations with
orbital angular momentum ` = 1 but fundamental spin s = 1 such that the net spin is zero. These
have less exotic names, a0, a1, a2, . . .. What about the 1+− states? These are formed from states
with ` = 1 and s = 0. Can you guess their names? b0, b1, . . .. If you guessed that correctly then
you have at least a minimal amount of ‘physics intuition.’

For completeness we should also discuss the names of some popular baryons. The most popular
baryons are well-known by everybody: the proton and neutron. For most of this course, however,
we won’t spend much time thinking about the other baryons. It is worth briefly reviewing why
this is the case.

Why we don’t bother with baryons. We understand how we get mesons: we smash
particles together at a collider and the hard scattering processes tend to create objects like qq̄
pairs. Confinement tells us that we must pull out a qq̄ pair from the vacuum in order to form
color-neutral final-states. If we wanted to create final-state baryons, on the other hand, we’d
need to pull out two qq̄ pairs from the vacuum. An undergraduate might then say that this
must be a higher-order process since we’re borrowing ‘more’ energy from the QCD vacuum,
and thus baryon production is rare.

This is wrong ! QCD is strongly interacting, so the cost of pulling a qq̄ pair from the vacuum
is order one. Indeed, we know that for high-energy collisions we end up with jets that each
have dozens of qq̄ pairs. What does end up costing you something is combinatorics. When one
pulls out two qq̄ pairs from the vacuum, it’s far more likely (counting color multiplicities) that

10“What is Science?”, presented at the fifteenth annual meeting of the National Science Teachers Association,
in New York City (1966) published in The Physics Teacher Vol. 7, Issue 6 (1969).
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they will produce three mesons than three baryons. Thus the suppression is not that making
enough pairs to produce baryons is less likely, but rather that once you do this it is still more
likely to form mesons.

Still, let’s go over the baryon names. These are half-integer spin guys. For three light quarks
(u, d combinations), i.e. isospin I = 1/2, these are called nucleons N . This is just a fancy name
for ‘proton or neutron.’ For I = 3/2 we have the ∆s (m∆ = 1232 MeV). These come in charges
q = +2,+1, 0,−1.

For baryons with two light quarks we have the Λs (I=0) and Σs (I=1). The isospin comes
only from the light quarks. These particles are named according to their heavy quark. No index
implies an s, while a subscript c or b indicates charmed or beautiful baryons, for example Λc.

Baryons with just one light quark (I = 1/2) are called Ξ, which is too difficult for particle
physicists to pronounce consistently so we tend to call them ‘cascades.’ These are also named
according to their heavy quarks with s implied for no index. Thus we would name a baryon with
one light quark, a strange quark, and a charm quark the Ξc. How do we know which light quark is
active? By the charge; for example the Ξ+ must be a uus combination. (You might say that this
depends on electromagnetism to distinguish states; this is exactly correct, since without isospin
breaking the question of ‘which light quark’ is ill-posed.)

Finally, what about the baryons with no light quarks? There is one famous one, the Ω composed
of three strange quarks. This is the particle that Ne’eman and Gell-mann predicted on the basis
of the decouplet of SU(3). They wrote down its charge, quark content, and mass and the Ω was
discovered a few years later.

We will not have many occasions to discuss baryons with multiple heavy quarks. The first
such baryon, the Ξcc was only tentatively observed in the past decade. Recall that while it is easy
to produce light quarks from the vacuum, heavy quarks with m � ΛQCD are a whole different
story. Such production is suppressed by exp(−m/ΛQCD). Thus, for a Ξcb one can hope to produce
the valence b quark from a high-energy parton-parton collision but the accompanying c must be
produced from the vacuum at the cost of exponential suppression.

Well, wait a second. The LHC has a really large center-of-mass energy. Can’t it
produce all of the heavy quarks we need?

Do not be confused by the fact that the LHC is a multi-TeV collider! We would produce these
heavy hadrons just as well at HERA as we would at the LHC. The key point (and a deep principle
in physics) is decoupling. The hard scattering event which occurs at high scales is likely to produce
any of the quarks since mq �TeV. These quarks propagate away from one another for a distance
scale on the order of 1/ΛQCD and it is only at that distance scale that hadronization from QCD
really becomes active. This is a fact that is very well known by anyone who works with Monte
Carlo generators: you use MadGraph for the hard scattering, but Pythia for hadronization and
showering. You can separate these steps because they occur at two totally different scales and are
governed by different physics.

Problem 3.11. An improved Gell-Mann–Okubo formula for the baryon octet. The
masses of the baryons in the SU(3) iso-octet do not fit the näıve isospin predictions. Apparently
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there is a considerable contribution from the spin-spin interactions. Fortunately, the magnetic
moments of the isospin octet baryons are relatively well-measured. Use this to write down predic-
tions for the baryon masses taking into account the constituent quark masses and the hyperfine
splitting from spin-spin interactions.

4 The flavor structure of the Standard Model

Now that we’ve waded a bit in the hadronic ‘brown muck11,’ let us pop our heads back up into the
clouds of theory. In fact, let’s go to our beloved friend, the Standard Model. From our parameter
counting in Section 2.5 we know that the Standard Model has four physical flavor parameters. In
this section we’ll see how these show up in the Standard Model. The experimental goal of flavor
physics is to measure these four parameters in as many ways as possible to check for consistency
and hope for a signal of new physics.

4.1 The CKM matrix

We should already know that we will be interested in the CKM matrix, named after Cabbibo,
Kobayashi, and Maskawa. Cabbibo, unfortunately, passed away in 2010 before he had a chance
to compete for a Nobel prize after Kobayashi and Maskawa each took part of the 2008 prize. We
should hold a special regard for Cabbibo since he was the one to diagonalize the relevant 2 × 2
matrix (between the d and s quarks), and we know that clever physicists know how to identify
the right 2× 2 matrix to diagonalize.

At the heart of the matter the CKM matrix comes from a basis rotation coming from the fact
that one cannot diagonalize all of the matrices in the Standard Model. The CKM matrix takes
you from one basis to another and is the source of flavor mixing. The particular flavor matrices
that cannot be simultaneously diagonalized are the W -boson couplings, the masses of the d-type
quarks, and the masses of the u-type quarks. At most one can diagonalize two of these and one
has to choose which—if any—should be diagonal. We will chose to diagonalize the masses and
leave the W coupling being non-diagonal. It is important to emphasize over and over again that
this is a choice that we are free to make. In neutrino physics, for example, we choose the neutrino
masses to be not diagonal. In principle we could have even chosen a different basis where none of
the matrices are diagonal.

From our principle of writing the most general renormalizable Lagrangian, the only non-trivial
(i.e. not from the kinetic terms) quark interactions are Yukawa couplings (2.4),

LYuk = ydijQ̄
iφDj + yuijQ̄

jφ̃U j + (lepton term) + h.c. (4.1)

Upon electroweak symmetry breaking the Higgs vacuum expectation value (‘vev’) turns these
into mass matrices. To get these masses we use our unphysical degrees of freedom (explicitly
broken global symmetries of the kinetic term) to rotate the Higgs vev to be real and in the down

component of φ (and so the up component of φ̃). Writing the doublet fields out explicitly,

Qi
L =

(
uiL
diL

)
, (4.2)

11A term coined by Howard Georgi, [32].
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we see that the Higgs vev gives us mass terms of the form

Lmass,q = md
ij d̄

i
Ld

j
R +mu

ijū
i
Lu

j
R, (4.3)

where the mass matrices are related to the Yukawas and the Higgs vev 〈φ〉2 = v/
√

2 by

mq
ij =

v√
2
yqij. (4.4)

In general these mqs are not diagonal. So far there are many unphysical parameters. We now
move to the mass basis. Again we note that there’s nothing holy about the mass basis! This is
a choice that we are free to make, we could have chosen a different basis without affecting the
physics.

Is the mass basis special? When we learn QFT we always start out in the mass basis. We
should remember, however, our roots in relativistic quantum mechanics where the ‘mass basis’
is just the energy basis, which is just another basis that one is free to choose for one’s states. In
QM we’re used to working with states that aren’t in the energy basis, so we should be willing
to transfer this intuition to QFT. However , there is an important counter point about why
the mass basis is ‘special’ in QFT. In the mass basis one can go ahead and completely solve the
quadratic part of the path integral without any of the problems associated with the infinite-
dimensionality of QFT. This means that it is a natural basis to expand about in perturbation
theory. Of course, we are free not to use the mass basis and in the limit where the masses
are perturbative relative to the energy scales of a process one can work with two-point mass
insertion Feynman rules. This is useful, for example, when calculating higher-dimensional
penguins [33]. More generally the mass-insertion approximation is often used in the SUSY
flavor sector, though there exist computer codes which make this unnecessary [34]. Anyway,
the point is that it is perfectly valid to do QFT in bases other than the mass basis, though
there are good reasons why the mass basis is a default in calculations.

Let’s diagonalize m. How do we diagonalize an arbitrary complex matrix? We use a bi-unitary
transformation, i.e. a unitary transformation acting on the left and another unitary transformation
acting on the right. By comparison, Hermitian matrices can be diagonalized with the same rotation
acting from the left and right. In general,

m̂q
ij = V q

Likm
q
k`

(
V q†
R

)
`j
. (4.5)

We use the notation that a matrix with a hat m̂ is diagonal. In principle these L,R indices have
nothing to do with the L,R indices, but one can see from (4.3) that the i index is associated with
the left-chiral quark while the j index is associated with the right-chiral quark. Thus rotate the
left-chiral and right-chiral fields by VL and VR accordingly:

qiL = (V q
L )ij q

′j
L (4.6)

qiR = (V q
R)ij q

′j
R. (4.7)
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On the left-hand side we’ve written the interaction-basis field and on the right-hand side we’ve
written the corresponding linear combination of mass-basis fields. From here on we will assume
the mass basis and drop the prime. (Don’t you hate it when textbooks do this?)

How does our Lagrangian look in this mass basis? The Yukawa interactions are now diagonal
since the mass matrices are proportional to the Yukawa matrices, but now the coupling of the W
is contains off-diagonal terms. Going from the interaction to the mass basis, we find

LWqq =
g√
2
ūLiγµdLW

µ → g√
2
ūLiγµ(VuLV

†
dL)dLW

µ, (4.8)

where the factor of 1/
√

2 came from the normalization of the W± states relative to the W 1,2 states.
We can now identify the famous CKM matrix,

V ≡ VuLV
†
dL. (4.9)

Let’s discuss some properties of the CKM matrix.

• The CKM matrix is unitary. V †V = V †V = 1. We will see, however, that it is often
convenient to parameterize it in a non-unitary way that captures all of the relevant physics.

• The number of physical parameters is always four (and always three mixing angles and a
complex phase), but we there are many convenient parameterizations. Choosing a convenient
parameterization is independent of physics.

• The index structure of the CKM matrix is

V =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (4.10)

We have chosen to order the quarks by increasing masses. We have also chosen to name the
mass eigenstates by their dominant flavor. This is not what we do with neutrino mixing, for
example, where we refer to mass states ν1 and interaction (‘flavor’) states νe.

Before moving on, let’s re-emphasize once again for the millionth time that we are making an
arbitrary (but convenient) choice about how we choose the physical parameters of V . We are free
to choose any parameterization and the physics must be parameterization-invariant. Any quantity
which is parameter dependent cannot be physical.

Example 4.1. Vub is parameter dependent, but |Vub| is parameter independent. Of the two, only
the latter can be a physical observable.

In this sense parameterization-invariance is like gauge invariance. Anything physical must be
parameterization invariant, and any ‘physical’ quantity which you calculate that ends up being
parameterization-dependent must be a mistake.
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4.2 Parameterizations of the CKM matrix

Our parameter counting taught us to expect that the quark sector of Standard Model contains
three mixing angles and one complex phase. Recall our explanation for dividing the parameters
this way came from comparing the number of parameters in an orthogonal matrix versus a unitary
matrix; review Problem 2.1 and the discussion above it for a refresher. Given that the whole of
the flavor structure in the Standard Model boils down to these four numbers (plus the three
Dirac masses for the quarks), the general unitary matrix we wrote in (4.10) must contain many
unphysical parameters since element Vij is generally a complex number.

Problem 4.1. Simplest unitary parameterization of the CKM. Given that we know that
the physical content of the CKM matrix must boil down to three mixing angles and one phase,
how minimally can one encode these ingredients into a single unitary matrix? In particular, How
many of the elements of the CKM matrix can be made real and how many must be complex?
Answer: The most general CKM matrix can be parameterized by at most 4 real parameters that
cannot all be in the same row. This means we must have a minimum of five complex elements.

In light of the above mathematical result, it is customary to choose Vud, Vus, Vcb, and Vtb to be
purely real. The remaining elements are complex. One standard parameterization of the mixing
angles is: θ12, θ13, θ23. In the limit of two generations (e.g. d and s), θ12 is the usual Cabbibo
angle. The two indices tell us which plane we’re rotating about. We will call the phase δKM after
Kobayashi and Maskawa. In terms of these parameters, the CKM matrix takes the form (writing
c12 = cos θ12, etc.)

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 . (4.11)

This is nice, but it’s a little unwieldy. It would be nice to have an approximation that cap-
tures the essential physics in a way that makes it more transparent. This is a bit of a shift in
paradigm, so let’s take a moment to discuss some philosophy. The reason why do we usually use
approximations in physics is because we often can’t solve things exactly. However, here we have
an exact parameterization of the CKM matrix, but we want to move away from it to an approxi-
mation. This sounds extremely stupid. It will seem even more stupid when you realize that the
approximation that we’ll make is not even unitary—we lose one of the fundamental properties of
the matrix! However, part of being a physicist means knowing what you can neglect. Yuval says
it this way:

I tell the undergrads that it is not by mistake that [our department] is in [the college of ]
Arts and Sciences. All of physics is about the art of making the right approximation.
Making the right approximation can teach you a lot.

The first person to make such an approximation was Wolfenstein (you might also be familiar
with him from the MSW effect in neutrino physics). His key insight was that the orders of
magnitude of the CKM matrix seemed to follow a particular pattern:

|V | ∼




1 λ λ3

λ 1 λ2

λ3 λ2 1


 , (4.12)
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where λ ≈ 0.2. Motivated by this, he defined four different parameters to describe the physical
content of the CKM matrix: λ,A, ρ, η. One takes λ to be a small parameter worthy of expanding
about and the others are O(1). These parameters are defined relative to the standard parameter-
ization by

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
(4.13)

s13 = Aλ2 = λ

∣∣∣∣
Vcb
Vus

∣∣∣∣ (4.14)

and finally (this is the somewhat ugly one)

s13δ
iδ = Aλ3(ρ+ iη) = V ∗ub =

Aλ3(ρ̄+ iη̄)
√

1− A2λ4

√
1− λ2[1− A2λ4(ρ̄+ iη̄)]

, (4.15)

where ρ̄ + iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) is invariant under how one chooses to define the CKM phase.

The bars mean that we should treat these as the ‘exact’ values and ρ+iη are expansions of this value
about small λ. One is free to plug in these relations into (4.11) to get a perfectly unitary and even
uglier representation of the CKM matrix. The beauty of the Wolfesntein parameterization,
however, is that we may use it to write the CKM matrix as a Taylor expansion in λ, so that

V =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4). (4.16)

Looking at the factors of λ we can see that the diagonals are order one, and we get the structure
that (4.12) Wolfenstein observed. Now look at the upper left 2 × 2. Do you recognize this? (“If
you don’t see it, then there’s something wrong with your physics education!”) The elements are
just the expansion for sine and cosine. In fact, this is just the 2× 2 Cabbibo mixing matrix! We
see that to first order in λ the first two generations don’t know about the third. There’s one more
feature: complex numbers only show up in the 3-1 mixing element. Let us make a brief detour to
highlight the physical significance of this complex number.

4.3 CP violation

Since the punchline of our discussion will be CP violation, let’s remind ourselves of some properties
of discrete symmetries12.

Of course we’re talking about the usual suspects: C, P, CP, and CPT. We know that any local
Lorentz-invariant field theory preserves CPT. So far everything we’ve observed agrees with CPT,
so we will assume that this is respected by nature. (Note that there are interesting cases where
effective CPT-violating theories are useful.) What about the other guys? None of them needs to
be conserved by a theory. Experimentally we know that QCD and QED each conserve both C
and P separately, and so also conserve CP . The weak interaction is a different story.

12Yuval bet 25 cents that he’s taught first semester QFT enough to know the exact chapter in Peskin & Schroder
where this is discussed: 3.6. He’s correct, but a better reference for this is Ticciati [35].
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Electroweak theory is, by construction, parity violating. This is because it is a chiral theory,
meaning it treats left- and right-handed fields differently. Clearly once you write down such a
theory interchanging left and right brings you to a different theory. Any chiral theory tautologically
violates parity. What about charge conjugation? Applying C to a left-handed field χ indeed
transforms it into a right-handed field, ψ̄. The particular transformation isn’t important to us
here, but is explained thoroughly in, e.g. [35, 36]. Thus a chiral theory violates both P and C. To
repeat things over again but with more refined language, we may say

QED and QCD are vectorial and so preserve P and C separately, but electroweak
theory is chiral and so violates both P and C.

What about CP? Since both P and C transformations take left- and right-handed fields into
one another, χ↔ ψ̄, at first glance CP isn’t necessarily violated. This is indeed true at a model-
building level. Following our prescription for designing a model, we may specify the key ingredients
of a model (gauge group, representations, breaking pattern) and then write down the most general
renormalizable Lagrangian. This is a model, but it’s not actually a “predictivedescription of
nature” until its physical parameters are determined explicitly. The Standard Model as written
in terms of undetermined parameters may or may not violate CP. It is only once the parameters
of the Standard Model were measured13 that we found that indeed, the values of some of the
parameters violates CP .

How does a parameter violate CP? It turns out that CP-violation reduces to the presence of
a non-vanishing physical phase. (This is precisely what we called δKM above!) You should read
these as synonyms:

“physical non-zero phase” = “this theory is CP violating.”

We won’t go into details here, though we’ve already done most of the work in our parameter
counting. For details see [37, 36]. Instead, we’ll provide a hand-wavy argument an focus on the
Yukawa terms. Let us consider the u-type Yukawa term and—for this one time only—explicitly
write out its hermitian conjugate,

LYuk,u = yijχ
i
Qφψ

j
U + y∗ijχ̄

i
Qφ
†ψ̄iU , (4.17)

where we’ve explicitly written out Weyl spinors to emphasize that our fields are chiral What
happens when we apply CP to this? The key point is that fermion the scalar fermion bilinear Ψ̄Ψ
in Dirac notation14) is invariant under CP . In terms of Weyl spinors,

χiQφψ
j
U

CP←→ χ̄iQφ
†ψ̄jU (4.18)

So that the CP conjugated Yukawa terms look like

(CP )LYuk,u = yijχ̄
i
Qφ
†ψ̄jU + y∗ijχ

i
Qφψ

j
U . (4.19)

13This is an anachronistic statement since the Standard Model was developed theoretically hand-in-hand with
the experiments that probed its parameters.

14It is arguable whether or not the discussion is simpler using Dirac spinors. On the one hand the transformation
properties are straightforward, but on the other hand one should technically also write out explicit chiral projection
operators which end up not mattering. The original lecture was given in Dirac spinors, but these will be typed
with Weyl spinors or else the typist’s adviser would disown him in utter shame.
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Note that we did not act on the coefficient, which is just a number. We conclude that the
Lagrangian is CP-invaraint only when y = y∗, i.e. when y is real. We could have of course chosen
y to be real by rephasing our fields. The complete argument requires showing that one cannot
make this phase rotation, and in fact reduces to the fact that we’ve already shown from parameter
counting that there is a physical phase left over. Of course, the final observation is that in the
Standard Model there is such a phase and experiments have verified that it is non-trivial. The
key statement is this:

A physical complex parameter that is measured to be non-trivial implies CP violation.

So far we haven’t mentioned flavor at all. Charge and parity are discrete symmetries of our
field theory, in a sense coming from Lorentz symmetry. In the Standard Model, however, CP
violation always comes with flavor violation. We could see this in our parameter counting by
noting that we really needed to have N ≥ 3 flavors (i.e. N ×N Yukawa matrices) in order to have
a physical phase.

Now let’s go back to the Wolfenstein parameterization (4.16). The interesting feature we noted
at the end of the last subsection was that to leading order the only complex parameters show up in
the 1-3 and 3-1 elements. In other words, to very good approximation CP violation only occurs in
interactions between the first and third generations! One can go to higher order in the expansion
in λ to get CP violation in other elements, but clearly these effects will be suppressed by additional
powers of λ.

4.4 The Jarlskog Invariant

Now that we’re familiar with the existence of the CP-violating phase, we would like to be able
to quantify it in a meaningful way—i.e. in a way which is manifestly basis-indepenent. What we
need is some kind of invariant that identifies CP violation. Such an object exists and it is called
the Jarlskog invariant, J [38]. It is defined by

Im
[
VijVklV

∗
i`V
∗
kj

]
= J

∑

mn

εikmεj`n, (4.20)

where there is no sum on the left-hand side. In terms of our CKM parameterizations, this corre-
sponds to

J = c12c23c
2
13s12s23s13 sin δKM (4.21)

≈ λ6A2η. (4.22)

This is our parameterization-independent quantity that measures the amount of CP violation in
our model. The most remarkable observation is that this depends on every physical mixing angle!
Thus if any of the mixing angles are zero, there would be no CP violation. This emphasizes
the deep connection between flavor and CP. In fact, we can see that the amount of CP violation
in the Standard Model is small, but it is not small because the CP phase δKM is small. Quite
on the contrary, it is small because of the mixing angles. We can see this in the Wolfenstein
parameterization where the Jarlskog invariant comes along with six powers of λ.

The Jarlskog is a geometric object coming from the theory of the U(3) group. Some details
can be found in [39].
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4.5 Unitarity triangles and the unitarity triangle

Using the unitarity of the CKM matrix we can write down equations for the off diagonal elements
of V V †, for example

∑

i

VidV
∗
is = 0. (4.23)

We have 6 such relations (three for the rows, three for the columns) and can plot each relation as
a triangle in the complex plane. These are called unitarity triangles.

Some of these triangles are rather flat and almost linear. Consider the example above:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0. (4.24)

Remembering the Wolfenstein parameterization, we can see that the first two terms are O(λ) while
the third term is O(λ5). The last term is very small and so one ends up with two (normalized)
sides that are O(1) and one that is smaller by a factor of ∼ 10−3.

Instead, let’s look at the most interesting unitarity triangle. It is so interesting that it has a
‘special name,’ we call it the unitarity triangle.

∑

i

VidV
∗
ib = 0. (4.25)

Doing the same order-of-magnitude estimate from the Wolfenstein parameterization,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb (4.26)

is a sum of terms that are each O(λ3). Each side is roughly the same order, so we can expect it
to look much more triangular. To normalize our triangle, it is customary to normalize the sides.
Let us divide by VcdV

∗
cb. The resulting relation is

VudV
∗
ub

VcdV ∗cb
+ 1 +

VtdV
∗
tb

VcdV ∗cb
= 0. (4.27)

How do we draw this? Treat each term in the sum as a vector on the complex plane. Recall from
preschool that to sum complex numbers we can think of adding vectors by attaching the tail of
each vector to the head of the preceding vector. So let’s start at zero, add the unit term to get
to (1, 0), and sum either of the remaining two terms to get the third point of the triangle. (The
third term will bring you back to zero, of course.) You end up with a nice triangle:

(0, 0) (1, 0)

(ρ, η)

γ
β

α∣∣∣∣
VudV

∗
ub

VcdV ∗
cb

∣∣∣∣

∣∣∣∣
VtdV

∗
tb

VcdV ∗
cb

∣∣∣∣
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The great thing about the unitarity triangle is that because each side is O(1) relative to the others,
it is robust against experimental errors.

Problem 4.2. A geometric interpretation of the Jarlskog invariant. Show that the area of
all six unitarity triangles are all exactly equal to J/2. This makes sense since each of the triangles
gives the same information about CP violation and we argued that the parameterization-invariant
quantity that captures this information is J . Note: this holds for unitarity triangles before
normalizing one side to unit length.

Problem 4.3. Area of unitarity triangles. Check the claim of the previous problem by
writing out the areas of any two different unitarity triangles written with respect to the standard
parameterization of the CKM matrix.

This is a very famous triangle. As Yuval says, “There aren’t many famous triangles in the
history of mankind, [but] this is one of them.” In the diagram above we gave the angles names,
α, β, γ. Note that there is physical significance to the direction with which we measure the angles;
for example, if (ρ, η) had been in the lower quadrant the signs would differ. According to popular
legend, these were given by Yossi Nir while he was at SLAC. There’s another parameterization
that was also invented at SLAC by Bjorken,

φ1 = β φ2 = α φ3 = γ. (4.28)

These appear to have been popularized in Japan by Sanda so that now the flavor physicists at Belle
use different conventions from those at BaBar and LHCb. In fact, at a recent flavor conference in
Japan the proceedings were edited so that all of the articles used the φ notation.

In terms of the CKM matrix parameters, the angles are given by

α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
(4.29)

β = arg

(
VcdV

∗
cb

VtdV ∗tb

)
(4.30)

γ = arg

(
VudV

∗
ub

VcdV ∗cb

)
. (4.31)

For completeness, we can also write out the length of the sides of the unitarity triangle in terms
of these parameters,

Ru =

∣∣∣∣
VudV

∗
ub

VcdV ∗cb

∣∣∣∣ =
√
ρ2 + η2 (4.32)

Rt =

∣∣∣∣
VtdV

∗
tb

VcdV ∗cb

∣∣∣∣ =
√

(1− ρ)2 + η2. (4.33)

The remaining side is, by normalization, set to unit length.
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5 Charged versus neutral currents

What did experimentalists see in the charged current and how did this lead to the
construction of the Standard Model?

We know from our theoretical construction of the Standard Model that we’ve chosen a basis
for the quarks where the only flavor-off-diagonal interaction comes from the W -boson, which we
know is charged. Thus the neutral boson interactions are flavor-conserving. Now let’s switch gears
and look at this from the experimental side. Suppose we don’t know anything about the Standard
Model, all we know are the experiments whose data is summarized in the PDG.

Let us ‘go through the data’ and compare some charged current and neutral current processes.

Example 5.1. Kaon decay. Consider the following two decays:

Br(K+ → µ+ν) = 64% Br(KL → µ+µ−) = 7× 10−9. (5.1)

Because the left-hand side of each decay is hadronic and the right-hand side is leptonic, we
can determine that K+ → µ+ν has a charged intermediate state (charged current) and that
KL → µ+µ− has a neutral intermediate state (neutral current).

What do we learn from this? Both processes change flavor, but the charged current has a much
much larger rate—larger by eight orders of magnitude. Näıvely we would expect both processes
to come from some flavor-violating structure so that they should both be of the same order of
magnitude. Do we see the same pattern in other decays?

Example 5.2. B and D decays. Making use of the PDG, we find for two particular B decays

Br(B± → D±`ν`X) = 11% Br(B0 → K∗`+`−) = 10−6. (5.2)

Similarly, for two particular D decays,

Br(D± → K0µ±ν) = 9% Br(D0 → K±π∓µ±µ∓) < 5× 10−4. (5.3)

Note, as one can see from the PDG, experimentalists have not yet measured flavor-changing
neutral currents in the charm sector, this is why we only have upper bounds.

We see the same pattern! The charged current interaction is much larger than the neutral
current.

Further, we should note that this only shows up for flavor-changing processes. For the flavor-
conserving processes, the weak-interactions charged and neutral currents indeed occur at roughly
the same rates. We leave it to look up demonstrative examples in the PDG.

Example 5.3. Isolating the weak interaction, part I. One set of flavor-conserving processes
are νeX → eX ′ and νeX → νeX

′ where X and X ′ are nuclear states. Why would it be misleading
to look at the rates for eX → eX ′? The answer is that this is dominated by the electric coupling
and so the overall rate will not tell us about interactions mediated by the weak force.
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Problem 5.1. Isolating the weak interaction, part II. Experimentalists are clever. Show
that you are also clever by explaining how one can experimentally isolate the weak part of the
eX → eX ′ rate. Hint: a general principle is, “we can see very small things if they break a
symmetry.”

The large discrepancy between the charged and neutral flavor-changing currents and the order-
of-magnitude agreement in the flavor-conserving currents is a major experimental observation
about the structure of the underlying theory. In fact, flavor-changing neutral currents (FCNCs)
are always a big issue in designing models beyond the Standard Model.

If we haven’t emphasized it enough so far, familiarize yourself with the PDG. This is a theorist’s
best friend when one needs to connect to experiment. When we want to measure something, our
‘experiment’ is to open up the PDG and look up the actual measured value. Take time to do
this; experimentalists spent tens of years extracting and thinking about this information—you can
afford to spend ten minutes doing the same thing.

6 Why FCNCs are so small in the Standard Model

6.1 Diagonal versus universal

Let’s start with some almost trivial remarks. We know that flavor-changing effects occur due to
off-diagonal couplings. Thus one might want to say that couplings do not change flavor if they are
diagonal in flavor-space. This is generally not true since ‘diagonal’ is a basis-dependent property.
One can shift to a different basis and a diagonal matrix will transform into a matrix with both
diagonal and off-diagonal parts. It is only universal matrix—those which are proportional to
the identity—which are diagonal in every basis. Sometimes it is sufficient to be diagonal, but in
general flavor-changing effects are only protected against by having couplings that are universal.

6.2 FCNCs versus gauge invariance

In the Standard Model we know that we have flavor-changing in the charged current, namely the
W boson. So what about flavor-changing neutral currents? As a caveat in this section we will
only discuss tree-level FCNCs; the appearance of loop-level FCNCs will be a major topic later in
this course. It is sufficient for us to look only at the bosons of the Standard Model since they are
the force-mediators.

Example 6.1. No fermion force mediators. Fermions cannot be force-mediators since forces
are classical effects; in other words, we are interested in the effective potential. Long range forces
come from a multi-state background of quantum particles. By their statistics fermions cannot
form coherent states and so one cannot construct a classical fermion background. Simply put,
fermions are inherently quantum mechanical. Or, in Feynman’s words when describing a neutrino
model of quantum gravity [40] (see also [41]),

Since the neutrino has half-integral spin, the single exchange does not result in a static
force, because after a single exchange the neutrino source is no longer in the same state
as it was initially. In order to get a force out of an exchange, it is necessary that the
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diagram including the exchange should be able to interfere with the diagonal terms in
the scattering amplitude, that is, it should add to the amplitude that nothing happens.

The relevant Standard Model gauge bosons are the Higgs h, the Z, the photon γ, and the gluon
g. (Alternately, the neutral Higgs, the pseudoscalar Higgs, W 3, B, and g.) Why do these particles
not have any tree-level FCNCs? The photon and gluon have a simple answer: gauge invariance.
Gauge symmetry forces the kinetic terms (where the gauge couplings live) to be universal.

6.3 FCNCs versus Yukawa alignment

The Higgs couplings to the fermions comes from the Yukawas. In the Standard Model these are
trivially diagonal since they are proportional to the fermion mass matrices. In other words, they
are aligned with the mass matrices15. For example, consider the down-type Yukawas,

ydijQ̄
iφDj. (6.1)

Expanding the Higgs φ about its vev, we obtain

ydijQ̄
i(v + ih)Dj. (6.2)

Thus it is clear that diagonalizing the mass matrix v yd simultaneously diagonalizes the Q̄hD
coupling. This is one of the rare examples when it is sufficient for a matrix to be diagonal but not
universal. This is very specific to the fact that the Standard Model only has one Higgs. Consider
adding a second Higgs in the most trivial way,

y1
ijQ̄

i
L(v1 + ih1)Dj

R + y2
ijQ̄

i
L(v2 + ih2)Dj

R. (6.3)

In this model we can give each Higgs a different potential, V1(H1) and V2(H2) so that h1 and h2

have different masses no mixing. The point is that the fermion mass matrix is now (y1v1 + y2v2)
while the Higgs couplings are governed by y1 and y2 separately. One can see that now the Higgs
coupling matrices are (in general) not proportional to the fermion mass matrix and so these are
flavor-changing.

Example 6.2. Two Higgs Doublet Models. Note that this is not the way we usually add
a second higgs in two Higgs doublet models (2HDM). In those models the up- and down-type
sectors couple to different Higgs bosons which each get an independent vev. In this case the Higgs
couplings are diagonal because they are aligned with the mass matrices. To provide some context,
the most famous 2HDM model is the MSSM since supersymmetry requires at least two Higgses
due to constraints from holomorphy and anomaly cancellation. Note that if you have four Higgses
in the MSSM you again generally find FCNCs through the Higgs couplings.

Example 6.3. Experimental signature of Higgs FCNCs. This model has explicit flavor-
changing neutral currents in the quark sector. Where do you expect to see trouble? We’ll narrow
it down to a multiple choice question: do you expect more disagreement in the kaon sector or the

15This alignment plays a major role in the suppression of certain µ → eγ diagrams in a warped extra
dimensions[33].
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B sector? Answer: In this particular model there is some subtlety because the mass matrix can
be very different from the couplings, but let us assume that this effect is not particularly perverse.
Because the Higgs couples according to the Yukawas, it couples more strongly to massive particles.
Thus we end up with a much stronger coupling to B mesons (from the b quark) than kaons (which
only have an s quark). This is an important lesson: there are some cases where FCNCs in the
kaon sector are negligible and offer model-builders some wiggle room.

6.4 FCNCs versus broken gauge symmetry reps

Now what about the Z? This is a gauge boson, but it is a gauge boson for a broken gauge
symmetry so there is no reason to expect gauge invariance to protect against FCNCs. We don’t
have FCNCs at tree-level in the Standard Model, so something is still protecting the Z.

Because the Z is neutral it only connects fermions with the same electric charge and color.
Color is trivially satisfied since SU(3)c has nothing to do with SU(2)L × U(1)Y . Electric charge,
on the other hand, is related to the SU(2)L and U(1)Y charge by Q = T3 + Y . In the SM all
quarks with the same electric charge Q also have the same T3 and therefore also the same Y .
Recall that the Z coupling only depends on these quantities,

gZff = g cos θWT3 − g′ sin θWY. (6.4)

Thus particles of the same charge all have the same coupling to the Z, i.e. the Z coupling is
universal for each of the up-type and (separately) down-type quarks. This is why the Standard
Model Z doesn’t give flavor-changing neutral currents. To see this explicitly, consider the terms
in the Lagrangian giving the Z coupling to left- and right-handed up quarks,

LZ =
g

cos θW

[
ūiLγµ

(
1

2
− 2

3
sin2 θW

)
uiL + ūjRγµ

(
−2

3
sin2 θW

)
ujR

]
Zµ. (6.5)

To go to the mass basis, we perform a unitary rotation on the external fields. Let’s just write out
the uL term,

LZ =
g

cos θW

[
ūLVuLγµ

(
1

2
− 2

3
sin2 θQ

)
V †uLuL

]
Zµ (6.6)

What is the structure of this term in flavor space? Everything in the parenthesis is universal.
Thus the flavor structure is trivial,

VuLV
†
uL = 1. (6.7)

and we have no FCNCs.

Problem 6.1. A homework problem for Yuval. As a useful exercise, rewrite (6.5) using Weyl
spinors. Be sure to get the bars and Pauli matrices correct.

Let us write this in terms of a general principle,

Theorem 6.4. In order to completely prevent flavor-changing neutral currents in the gauge sec-
tor, particles with the same unbroken gauge quantum numbers must also have the same quantum
numbers under the broken gauge group.
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So in the Standard Model we have no Z FCNCs because the particles of a given electric charge
also have the same SU(2)L charge (namely T3). In general this needn’t have been the case. Con-
sider a slightly different model where the dL and sL quarks had different SU(2)L representations,
but still the same electromagnetic and color charge.

d̄L

[
T

(d)
3 −Q sin2 θW

]
dL (6.8)

+s̄L

[
T

(s)
3 −Q sin2 θW

]
sL (6.9)

If T
(d)
3 6= T

(s)
3 then we would not be able to avoid FCNCs.

Example 6.5. For example, consider the somewhat contrived case where Qd,s = 0, T
(d)
3 = 1,

T
(s)
3 = 0. Thus the s doesn’t see the Z and the flavor structure of the relevant term in the Z

coupling will be

VdL

(
1 0
0 0

)
V †dL. (6.10)

This is trivially not universal.

Example 6.6. Why the charm shouldn’t have been surprising. The charm quark was
discovered in the J/ψ particle in 1974. The Cabbibo angle for two-generation mixing was un-
derstood in the 1960s, but charm wasn’t even hypothesized until the 70s. Thus through most
of the 60s it was well understood that there was a (u, d) isospin (really SU(2)L) doublet and a
weird s quark with the same charge as the d but apparently living in an iso-singlet. This was a
missed opportunity! We now see that this structure clearly has flavor-changing neutral currents
and physicists should have expected to see KL → µ+µ−. It wasn’t until Glashow, Iliopoulos, and
Maiani that physicists realized that the non-observation of this mode imples that there should be
a charm quark to complete the doublet. By the time physicists discovered the b physicists had
learned their lesson and realized immediately that there should also be a t quark. (Or course they
expected a t that was not much heavier than the b; the story of this hierarchy is one of the great
unsolved problems in flavor physics.)

Problem 6.2. Exotic light quarks, part II. Recall the model in Problem (2.2), where we
change the Standard Model quark sector by removing the c, b, and t quarks and change the
representations such that the light quarks are composed of an SU(2)L doublet QL = (uL, dL), and
singlets sL and sR. The quantum numbers are assigned to maintain the same color and electric
charge as the Standard Model. Answer the following questions (it helps to have done the first
part of this problem):

1. Write out the gauge interactions of the quarks with the Z boson in both the interaction and
the mass bases. (Only write the terms that change when you rotate to the mass basis.) Are
there, in general, tree-level Z exchange FCNCs?

2. Are there photon and gluon mediated FCNCs? Support your answer by an argument based
on symmetries.
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3. Are there Higgs exchange FCNCs?

4. Do you expect this model to be experimentally ruled out or not? Why?

Problem 6.3. Exotic light quarks, part III. Repeat the analysis for Problems 2.2 and 6.2 for
a modified exotic light quark model where the uR and dR are part of an SU(2)L doublet.

Problem 6.4. The two Higgs doublet model. Consider the two Higgs doublet model (2HDM)
where the Standard Model is extended by an additional Higgs doublet. We label the two Higgses
φ1 and φ2 with SU(2)L × U(1)Y representations 2−1/2 and 21/2. For simplicity we will work with
two generations.

• Write down the most general Yukawa potential for the quarks.

• Carry out the diagonalization procedure for such a model. Show that the Z couplings are
still flavor diagonal.

• Show that in general the Higgs mediates FCNCs.

• Is this model experimentally viable?

7 Parameterizing QCD

In our review of hadrons we already presented the general problem of QCD: because of confine-
ment the ‘fundamental’ objects in our theory are not the degrees of freedom that we observe
in experiments. Our Lagrangians are written in terms of quarks, but our world is made up of
hadrons. Extracting quark interactions from these hadronic interactions is far from trivial.

When doing scattering in quantum field theory we work with asymptotic states, say electrons
and positrons. In QCD, however, we can’t have quarks at infinity. Thus, even at a formal level, a
lot of what we say about quark interactions in QFT isn’t strictly very well defined. We can talk
about pion field theories, but then we’re working with pion couplings and are still removed from our
fundamental QCD Lagrangian. Thus in simple words, the fundamental problem of QCD is that
our theory is described in one language and our experiments are done in another16. Fortunately
there are some ways around this; partly due to clever parameterization. Before moving forward it
is important to introduce some language that lies halfway between theory and experiment (a sort
of Yiddish). The vocabulary is as follows:

• Matrix element. This is just what we mean by scattering amplitude. You should be
familiar with this from non-relativistic quantum mechanics.

• Form factor. This should sound familiar from (non-relativistic) scattering such as Ruther-
ford scattering. It is the shape correction to the approximation that a scattering object is
point-like (S-wave).

• Decay constant. This is a non-perturbative property of the mesons that we met briefly
when we discussed chiral perturbation theory.

16Sometimes this is how it feels to type up these notes. . .
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• Factorization. This is the deep idea that we may separate different kinds of physics. For
example, physics at different scales ought to decouple. In our case, we will be interested in
the factorization of the hadronic matrix elements from the leptonic matrix elements. This
factorization is realized because the operators that mix hadronic and leptonic pieces are
formed by integrating out an intermediate W at ‘low energy’ scales much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. Let’s start by remembering
how we do calculations and start with a simple purely leptonic example. Consider the process
W → `ν. The amplitude is written as

A = 〈`ν|O|W 〉, (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We can then write
down the decay rate for the W to a lepton and its neutrino by

Γ ∼
∫
|A|2 × d(phase space). (7.2)

We know that in this example the amplitude is trivially A = g/
√

2. One can write down the
relevant tree-level term for O,

O = ¯̀γµW
µν (7.3)

and do the appropriate Wick contractions with the external states. Note that the point here is
that the external states are asymptotic so that our operator can ‘literally’ be written in terms of
them.

Moving on, we can see what happens when we look at hadronic decays. Consider π → `ν. The
matrix element is simple to write,

A = 〈`ν|O|π+〉. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the π0?
Let’s say this is a uū combination (ignore the dd̄ part for now), then we must create an up–anti-up
pair. Because this is a low energy process (mπ � MW ), we can integrate out the W boson from
our theory. The key point is that our operator O factorizes into the leptonic and hadronic currents
that attached to either end of the W boson:

O = O`
1

M2
W

OH = (“¯̀γµν”)
1

M2
W

(“ūγµu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., γ5.) This means that
our matrix element should also factorize,

〈`ν|O|π+〉 = 〈`ν|O`|0〉
1

M2
W

〈0|OH |π+〉. (7.6)
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The object on the left-hand side is simple to calculate. Don’t get confused by the form of the
〈`ν|O`|0〉 matrix element, it looks like some weird expectation value for, say, the leptonic current—
it doesn’t make sense kinematically on its own, the matrix element isn’t a kinematic object. (The
kinematics are split with the hadronic part and and are really only accounted for in the phase
space integral.) The factor of 1/M2

W combines with coupling constants (implicitly in the Os) to
give the famous Fermi coupling,

GF√
2
≡ g2

8M2
W

. (7.7)

The numerical factors are historical and are motivated below (B.1).
The 〈0|OH |π0〉 might cause some concern. It looks something like a quark current expectation

value, except for the fact that the external state has no explicit quarks—it’s a pion. Sure, a pion
is made of quarks, but it’s also made up of glue and is an actual asymptotic state while quarks
are not. The easiest way to deal with this is to just define this object to be a parameter of our
effective theory. We call it the pion decay constant, fπ, and we can heuristically define it as

〈π|O|0〉 ∼ fπ. (7.8)

We’ll get to a more proper and technical definition below; for now just focus on the ideas. Decay
constants capture all of the intractable-to-calculate non-perturbative “brown muck” that keeps
the pion together. In recent times lattice QCD calculations have made huge steps in being able
to calculate these objects to the percent level, but in principle we should treat these as additional
physical parameters whose values should be fixed by experiment.

Now let’s look at more complicated hadronic decays. Consider K+ → π0`+ν.

Example 7.1. Draw the Feynman diagram for this process. (This should be very basic review!)

u

s̄

u

ū

W+ ν`

`

K+ π0

We’ve only drawn the uū content of the π0, but we know by now that the π0 is really the
linear combination (uū− dd̄)/

√
2. Get used to drawing Feynman diagrams quickly in your head.

Experimentalists and flavor physicists deal with the processes whose diagrams all have similar
topologies and so no longer bother to explicitly draw diagrams for each other.

The matrix element is again simple to write,

A = 〈π0`ν|O|K+〉. (7.9)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the K+
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and the π0? We know that K = s̄u and for this decay we only care about the uū part of the π0.
The operator that we need looks like17

ūγµs = ψuσµψ̄s + χ̄uσ̄µχs (7.10)

since want it to annihilate an anti-s quark and create a u quark. Of course, these are statements
about quarks. What we really want is something that annihilates a kaon and generates a pion.
This is where our QCD ‘language’ problem manifests itself: the quark operator coming from the
Lagrangian is not directly related to the hadronic external states coming out of an experiment.

We certainly have creation and annihilation operators on the quark level, but just because you
annihilate an s̄ and produce a u it does not mean that you have automatically taken a K+ and
turn it into a π. This could have been the quark-level operator for any number of other processes
with different external states, say Λ→ pµν. So how do we calculate this matrix element?

Once again we appeal to factorization. In particular, we know that we can (heuristically) write

O = O`
1

M2
W

OH = (“¯̀γµν”)
1

M2
W

(“ūγµs”), (7.11)

where we’ve explicitly separate the leptonic and hadronic sides of the integrated-out W boson
diagram. The quotation marks remind us not to take the actual explicit form of the O`,H operators
that we wrote above too seriously yet, we’ll shortly discuss their actual form. The matrix element
thus factorizes,

〈π0`ν|O|K+〉 = 〈`ν|O`|0〉
1

M2
W

〈π|OH |K+〉. (7.12)

As we know from above, we’re perfectly happy calculating the leptonic piece, 〈`ν|O|0〉. The hard
part is the hadronic piece, 〈π|O|K〉, which is deeply entrenched in how QCD converts quarks into
bound states. In the case of a single hadron we ended up packaging this non-perturbative garbage
into a single parameter, the decay constant. What about when we have two hadrons, H1 and H2?
We can define another parameter,

〈H1|O|H2〉 ∼ F. (7.13)

We call this a form factor (where, again, we’ll save a technical definition for later). We choose
this name because this looks like scattering: one state H1 coming in and a different state H2

coming out. Usually the physical process includes leptons coming out, so form factors are closely
related to semileptonic decays, e.g. B → D`ν.

Matrix elements with more than two hadrons do not have any special names.
Being able to calculate these decay constants and form factors would already be a big step.

Peter Lepage, currently the Dean of Cornell’s College of Arts and Sciences, made career out of
making lattice measurements of these non-perturbative constants. While there have been many

17This is the last time for a while that I’ll explicitly write out Weyl spinors since it will actually be convenient
to see explicit factors of γ5 rather than ambiguous minus signs. This, I think, is one of two good reasons to use
Dirac spinors. The other good reason is because one is working in 5D where the Dirac representation is required.
(This makes you wonder why Csaba is so attached to Weyl spinors, doesn’t it?)
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achievements on this front, such as correctly predicting some values before they were experimen-
tally measured, there’s still a long way to go before the QCD ‘language problem’ is ‘solved’. For
example, three body hadronic matrix elements are still in the asymptotic future. We need to
find a way to get around this so that we can take one non-perturbative result as a parameter
and apply it to make predictions of other processes. A more recent approach involves the hope
that the AdS/CFT correspondence might be able to provide a perturbative method to calculate
these strongly-coupled objects; this is often referred to as AdS/QCD. Recent progress has led
to promising results in meson spectroscopy, but predictions of actual matrix elements are still
‘undelivered’ [42].

To reiterate the big picture: Recent progress with holographic and lattice techniques notwith-
standing, we cannot calculate hadronic matrix elements from first principles. The best that we
can do is to parameterize our ignorance using symmetries. Indeed, a bit of cleverness can go a
long way. Sometimes we can just measure the matrix elements in one process and apply the result
to other processes—this is the best case, one doesn’t even need theory to do this! When this fails,
however, we have to be a bit more slick and use approximate symmetries. The program is as
follows

1. Use symmetries to determine which matrix elements are relevant.

2. For an unknown hadronic matrix element, write out the most general linear combination
of dynamical variables (e.g. momenta) which match the Lorentz structure of the matrix
element. (Do not forget the discrete symmetries!)

3. Write the coefficients of these terms as parameters (decay constants and form factors) that
have to be determined.

4. Use every trick you can to determine which of these terms are relevant.

7.1 The decay constant

Let’s take a closer look at

〈0|O|π+〉. (7.14)

The operator O should annihilate a pion and so must have the form

O ∼ ūΓd (7.15)

for some Dirac structure Γ. We can always simplify the Dirac structure to one of S, P, V,A, T
(scalar, pseudoscalar, vector, axial vector, tensor). Of these five operators, symmetries force some
of them to vanish.

Example 7.2. Which operators vanish? Suppose we knew that the main contribution come
from either the V = γµ or the A = γµγ5 operator, while the other vanishes. Which one is zero?
Solution: We know that π is a pseudoscalar and QCD conserved parity. The vacuum |0〉 is
parity-even, thus O must be parity-odd, i.e. the vector must vanish and the main contribution
must come from the axial operator. Similarly, S = T = 0.
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Let’s look at the the axial matrix element 〈0|ūγµγ5d|π〉 a bit more closely. We don’t know how
to calculate this object, but we saw above that we can parameterize our ignorance in terms of a
decay constant fπ, which we now properly define to be

〈0|Aµ|π〉 ≡ −ipµfπ. (7.16)

There should be nothing surprising about the structure of the right-hand side. Lorentz structure
forces us to have a pµ on the right-hand side since this is the only vectorial quantity available to
us. The rest of the right-hand side is an overall coefficient, which we define to be −ifπ with mass
dimension 1. In principle this could have had some dependence on Lorenz scalar quantities, of
which we only have mπ, but this is not a dynamic variable—it is some fixed value that does not
change when we change the kinematic configuration of the decay.

It turns out that fπ can be measured and has the value (whose order of magnitude you should
memorize)

fπ ∼ 131 MeV. (7.17)

Sometimes this will be written in terms of self-adjoint isospin currents and fields as18,

〈0|jµ5a|πb〉 = iδabFπp
µ Fπ ≡

fπ√
2
≈ 93 MeV. (7.18)

How do we make this measurement? We should look at the dominant pion decay, π+ → µ+ν,
which has a branching ratio of about 99.99%. The amplitude for this decay is given by the simple
s-channel diagram:

d

u

W

µ

ν

Problem 7.1. Draw this diagram using [massless] chiral spinors.

It is straightforward to calculate the amplitude for this diagram,

M(π → µν) = − g2

4M2
W

fπVudmµµ̄RνL. (7.19)

Problem 7.2. A basic Feynman diagram calculation. Derive (7.19). Yuval says this is a
very important exercise in QFT, so derive it using both Dirac and Weyl spinors. Think about the
pros and cons of each calculation. Explain the physical significance of the mµ factor (Hint: see
Problem 7.1).

18See Georgi chapter 4.3 for a discussion [8].
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One can now convert this to a decay width (hint: the PDG has a review section for two- and
three-body decay kinematics),

Γ(π → µν) =
G2
F

8π
|Vud|2f 2

πm
2
`mπ

(
1− m2

µ

m2
π

)2

. (7.20)

The factor in the parenthesis is the factor coming from the phase space integral; it is conventionally
normalized so that in the limit m` → 0 the phase space factor goes to 1. What about the factor
of m2

µ? This is clearly the same factor of mµ in (7.19).

Problem 7.3. An exercise in calculating decay rates. Derive (7.20) from (7.19). Hint: If
you’re spending a lot of time with γ matrix identities then you’re doing this the hard way.

At first sight this factor seems puzzling: this means that the π → µν decay is dominant over
the π → eν decay, even though the latter has a much bigger phase space. How did this factor
appear? It is there to preserve angular momentum. We know that the Standard Model is chiral.
The W that mediates this decay only couples to left-handed fermions. However, the pion is a
spin-0 scalar. The W that mediates this decay can only directly decay into left-handed fermions.
Angular momentum conservation requires a left- and right-handed fermion pair, thus there must
be an explicit Dirac mass term converting the left-handed muon µL = χµ to a right-handed muon
µR = ψ̄µ. (Note that this interpretation is trivial when using Weyl spinors but somewhat subtle
when using Dirac spinors.) We say that this decay has a chiral suppression.

Chirality versus helicity. It is interesting that experimentalists often refer to this as helicity
suppression. These are two different—but closely related—ideas that every particle physicist
should be comfortable with. Chirality is a property of a field, it is the difference between
the SU(2)L doublet versus singlet fields (i.e. χ versus ψ). Helicity, on the other hand, is a
property of a particle which one can measure (it is an experimental quantity). For massless
fields chirality and helicity are the same. For massive fields one can flip chirality though mass
insertions.

Everything in (7.20) is known except for fπ; we can thus measure this decay to determine fπ.
What is most interesting to us, however, is the physics behind this quantity. For example, how
does this quantity scale? Can we understand it heuristically?

Example 7.3. The positronium ‘decay constant.’ It is often useful to think of a toy example
as a crutch for physical intuition. In this case, an instructive example is positronium. This is an
e+e− bound state and should have a decay constant, just like the pion. What is it?

The relevant question is how does positronium decay. Semiclassically this occurs when the
electron and positron touch, i.e. the probability that they are in the same place. The lifetime of
positronium clearly depends on the overlap of the e+ and e− wavefunctions. Assuming that the
positron is at the origin, the ‘decay constant’ of positronium can thus be heuristically interpreted
as something like |Ψe(r = 0)|2.

Caveat emptor! This is just a toy model to build physical intuition, it is not meant to be an
actual representation of the physics of the pion!
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From the above example, we can consider limits when one quark becomes very heavy. In this
case its wavefunction becomes very narrow and we would expect the decay constant to decrease.

We’ve now explored the meaning of the axial matrix element and have parameterized the
QCD brown muck into a single pion decay constant. Armed with this, what can we say about
the pseudoscalar matrix element? It turns out that we don’t need to do any more calculations or
introduce any more parameters: we can use a slick trick to get the pseudoscalar matrix element
from the axial matrix element. This trick falls under the umbrella of the current algebra, something
which has fallen out of favor in modern textbooks. For a more formal introduction, see [21, 4, 31].
Here we’ll just sketch what we need.

Let us consider the pseudoscalar kaon matrix element,

P = 〈K(p)|s̄γ5u|0〉. (7.21)

This is manifestly a Lorentz scalar quantity. The result that we would like to show is

P = ifK
m2
K

mu +ms

. (7.22)

The trick to derive this result is to take the divergence of the axial current,

i∂µ(s̄γµγ5u) = i(∂µs̄)γµγ5u+ s̄γµγ5(i∂µu) (7.23)

= (i/∂s̄)γ5u− s̄γ5(i/∂u) (7.24)

= −(ms +mu)s̄γ5u. (7.25)

Now take this and put it between the kaon and the vacuum. The derivative is just (∂µ = −ipµ) is
just a momentum, so we get

〈K|i∂µ(s̄γµγ5u)|0〉 = pµ(−ifKpµ) = −ifKm2
K , (7.26)

from this we obtain (7.22) straightforwardly.

Example 7.4. Scalar dominance. Pop quiz: which matrix element is more important, the
pseudoscalar or the axial vector? The difference is a factor of m2

K/(mu + ms). Since the kaon is
made up of light quarks, the dominant mass scale is set by λQCD which is greater than the sum
of the valence quark masses. Thus the (pseudo) scalar is enhanced relative to the (axial) vector
operator. This is a generic feature for the light quark mesons. Note that this is a purely QCD
effect (the decay constants parameterize QCD), electroweak theory only gives axial and vector
contributions from the W .

7.2 Remarks on the vector mesons

So far we’ve discussed the decay constants for pseudoscalars. What about the vector mesons?
Consider the ρ matrix element with the vacuum,

〈0|O|ρ〉 =? (7.27)
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Can we measure this object? What we are really asking is whether or not the ρ has a nonzero
matrix element with the QCD vacuum, i.e. does it have leptonic decays via the weak interaction
that would cause this matrix element to be nonzero? For the ρ the answer is no, it only decays
via the strong force19, in other words, the ρ is a resonance; it decays into two pions. The same is
also true for the φ. These particles do not decay weakly.

What about the (heavy) flavored vectors? The J/ψ and the Υ can both decay to leptons, so
it makes sense to write down their decay constants. We see, however, that for the light vector
mesons decay constants are not particularly useful. Näıvely we might want to write

〈0|V µ|ρ〉 ?∝ f ′ρp
µ, (7.28)

but this turns out to be too näıve. For two very important reasons. First the parities for the two
sides do not match since ρ is a pseudoscalar. More fundamentally, we know from the LSZ theorem
in quantum field theory that amplitudes with external vectors are proportional to the polarization
vector, εµ.

A remark on the LSZ theorem. Just as we know that an amplitude with external fermions
should have spinor contractions of the form ū(p) · · ·u(p), an amplitude with an external vector
should be proportional to the polarization vector εµ. We—of course—do not have the external
plane wave spinors since the whole point of these decay constants and form factors is that we
parameterize how these objects hadronize.

In fact, there’s a slightly deeper reason why the matrix element must be proportional to εµ—the
LSZ theorem in quantum field theory. Just as we know that an amplitude with external fermions
should have spinor contractions of the form ū(p) · · ·u(p), an amplitude with an external vector
should be proportional to the polarization vector εµ. We—of course—do not have the external
plane wave spinors since the whole point of these decay constants and form factors is that we
parameterize how these objects hadronize.

Thus the correct thing to write is

〈0|V µ|ρ〉 ∼ fρε
µ, (7.29)

where now it is clear that both sides transform the same way under parity and that the propor-
tionality to ε from the LSZ theorem is satisfied.

Example 7.5. Vector parity. Let us check that the two sides indeed transform the same way
under parity. ρ is a pseudoscalar and the vector current has parity (−)µ, where this is notation
to mean

(−)µ =

{
+ if µ = 0
− if µ = 1, 2, 3

. (7.30)

In other words, a vector transforms under parity as P [V µ(x)] = Vµ(P [x]). The total parity of
the matrix element is then −(−)µ, matching what we expect from an axial vector and only axial
vector available on the right-hand side is εµ.

19A quick glance at the PDG will show a small branching ratio of the neutral ρ to `+`−, but this is due to mixing
with the ω.
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Dynamical quantities. In the example of the vector mesons we saw that there are other
dynamical quantities other than the external particle momenta. This might lead one to think
a bit more about similar quantities that exist in our system. A natural question is whether
we should also include the spin vectors sµ of the quarks. It is a somewhat subtle point that
these should not be considered to be real physical dynamical quantities! The spin index just
identifies the chirality of the external state spinors; in other words, this just identifies the Weyl
spinor χ or ψ (or their conjugates).

7.3 Form factors

Let us introduce form factors with a simple example which will be useful later on: the β decay
of a neutron into a proton, n → p+en̄u. Let us focus only on the vector current. The relevant
matrix element that we cannot calculate from first principle is

〈p+(p′)|d̄γµu|n̄(p)〉. (7.31)

This is a ‘brown muck’ object that we’d like to parameterize. To do so we must write out the
most general linear combination of kinematic variables (and products of those variables),

〈p+(p′)|d̄γµu|n̄(p)〉 ∼ apµ + bp′µ, (7.32)

where the coefficients a and b are our form factors. We know that these can only depend on
Lorentz scalars; there are three of these available: p2, p′2, and p · p′. The first two are just masses
and are not dynamical, they don’t change when we change the momenta. The third one is a
bona-fide dynamical Lorentz scalar. It is conventional to write this in a different momentum
basis.

Let’s define the momentum q by

q ≡ p− p′. (7.33)

q2 = p2 + p′2 − 2p · p′. (7.34)

This should be a familiar quantity from deep inelastic scattering calculations. We can now use
(p + p′) and q as our basis of momenta in this problem. We write our form factors as f± which
are functions of q2 and thus write our matrix element as

〈p+(p′)|d̄γµu|n̄(p)〉 = f+(q2)(p+ p′)µ + f−(q2)(p− p′)µ. (7.35)

For now we will leave this definition of the f± form factors. Below we will apply it to the
determination of the |Vud| CKM matrix element and see how, in specific cases, this structure can
be made to simplify even further.

This section under construction: include “timelike/spacelike” analysis from
discussion with Pirjol.

For a more non-trivial example of how to parameterize a form factor with more dynamical
variables, see the following problem.
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Problem 7.4. The 〈D∗+(pD, ε)|V µ|B̄(pB)〉 form factor. Consider the semi-leptonic decay B →
D∗`ν. Let us again focus on calculating the hadronic vector matrix element.

1. Before diving into this particular decay, consider B → D+`ν. Convince yourself that the
relevant hadronic vector matrix element takes the form of (7.35).

2. Prove that

〈D∗+(pD, ε)|V µ|B̄(pB)〉 = ig(q2)εµναβε∗ν(pD + pB)αqβ, (7.36)

where ε is the totally antisymmetric tensor.

3. Using the fact that T acts as a complex conjugate, show that g(q2) is real.

4. Parameterize the axial matrix element, 〈D∗(pD, ε)|V µ|B̄(pB)〉.

7.4 Aside: Goldstones, currents, and pions

This section aims to provide an informal glimpse of the current algebra techniques
originally used to understand hadron decays. More advanced techniques, such as chi-
ral perturbation theory, as well reviewed elsewhere. This section is outside the main
narrative of these lectures and may be omitted, but it will hurt my feelings a little bit.

There is a somewhat antiquated way of looking at Goldstone’s theorem based on what was
called the current algebra that also connect the identity of the pions (and its octet cousins)
as pseudo-Goldstone boson. This presentation comes from Cheng and Li Section 5.3 [21] and
Coleman’s lecture on soft pions [5].

Given a conserved current ∂µJ
µ(x) = 0 we may define a conserved charge Q(t) =

∫
d3xJ0(x)

that acts as the generator of the symmetry. When the symmetry is not spontaneously broken, this
charge is also conserved. In the case of spontaneous symmetry breaking, the charge is no longer
very well defined since the integral does not converge—but for our purposes this is a technical
detail since we will only care about commutators. Current conservation trivially tells us that

0 =

∫
d3x[∂µJ

µ(x), φ(0)] (7.37)

= −∂0

∫
d3x[J0(x), φ(0)] +

∫
dS · [J(x), φ(0)]. (7.38)

Here we can identify the conserved charge associated with the symmetry current,

Q =

∫
d3x J0(x), (7.39)

this also plays the role of the generator of the symmetry group with respect to the fields in the
Lagrangian. For a sufficiently large volume the surface integral vanishes and we thus find that for
a symmetry-preserving vacuum configuration,

d

dt
[Q(t), φ(0)] = 0. (7.40)
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Spontaneous symmetry breaking can thus be defined by the condition that this commutator does
not vanish on the vacuum,

〈0|[Q(t), φ(0)]|0〉 6= 0. (7.41)

This is intuitively clear since it tells us that the generator of the symmetry enacts a non-trivial
transformation of the vacuum configuration of field φ(0). Note that (7.40) still holds since this
came from ∂µJ

µ(x) = 0, which is a statement about the Lagrangian independent of the vacuum.
To properly understand this spontaneous breaking we may insert a complete set of orthonormal

momentum states to write the left-hand side as (dropping an overall normalization),

∑

n

δ(3)(pn)
(
〈0|J0(0)|n〉〈n|φ(0)|0〉e−iEnt − 〈0|φ(0)|n〉〈n|J0(0)|0〉eiEnt

)
. (7.42)

Spontaneous symmetry breaking is the condition where this expression is non-vanishing. Further,
(7.40) tells us that this expression must be time-independent so that spontaneous symmetry
breaking requires that there exists a state |n′〉 such that En′ = 0 for pn′ = 0, i.e. the state is
massless. Further, we have the properties that 〈n′|φ(0)|0〉 6= 0 and 〈0|J0(0)|n〉 6= 0.

This turns out to be closely related to the LSZ reduction formula, which gives us a rigorous
prescription for extracting off-shell matrix elements from the path integral by extracting the poles
in the external particles. Going back to the definition of the pion form factor,

〈0|Aµ|π〉 ≡ −ipµfπ, (7.43)

we find an expression very similar (unsurprisingly!) to our manipulations above. Taking a diver-
gence, we find that

〈0|∂µAµ|π〉 ≡ m2
πfπ. (7.44)

This is an interesting statement in light of the LSZ formula, which one can interpret as a statement
about what it means to assign a field to a particle—this, of course, is related the whole point of
parameterizing our ignorance about QCD matrix elements. In particular, any number of local
operators can used as field for a particle. If φ is a ‘good’ field, then so are objects made up of
powers and derivatives of φ that maintain its canonical normalization. This is fixed from the LSZ
formula and Lorentz invariance,

〈p|φ(x)|0〉 = (2π)−3/2(2E)−1/2eip·x (7.45)

for a scalar field.

Example 7.6. A sketch of the proof. The LSZ reduction formula tells us that to obtain
off-shell matrix elements we should take the n-point Green’s function

G(n)(k1, . . . , kn) =

∫ i∏

k

d4xi e
i
∑
j kj ·xj〈0|T̂

[
φ̂(x1) · · · φ̂(xn)

]
|0〉 (7.46)
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where φ̂(xn) is the interaction picture field operator, and multiply it by inverse propagators to
identity the on-shell pole in the external particles, e.g.,

M(init→ final) ∝
∫ n∏

i

d4xi

n∏

j

Ojeikj ·xj 〈0|T̂
[
φ̂(x1) · · · φ̂(xn)

]
|0〉, (7.47)

where Oj is the appropriate operator in the free Lagrangian which cancels the external state
propagators, in this case it is just the Klein-Gordon operator. We’ve neglected overall prefactors
of the form (2π)−3/2(2E)−1/2 as well as renormalization factors. Here we have taken all external
legs off shell by Fourier transforming in each of them; let us consider the simplified case where
we do this for only one field, φ̃ ,which may need not be a ‘fundamental’ field but is canonically
normalized according to (7.45). The LSZ prescription tells us that to obtain an on-shell matrix

element with (n − 1) external φ particles and one external off-shell) φ̃ field, one calculates the

necessary n-point functions, multiplies by (p2−m2) for the φ̃ external line, and then takes the φ̃ on

shell. In other words, one identifies the pole in the φ̃ squared momentum. The only diagrams with
such poles are those with one particle intermediate φ̃ states on this leg, and these are normalized
by (7.45) to contribute a factor of unity. Thus we indeed find that we generate the same matrix
element (i.e. combinations of couplings and internal propagators) that we would have generated

for any canonically φ̃ field. This is further explained in Section 2.1 of Coleman’s lectures [5].

From all of this we see that in light of (7.45), what (7.44) is really trying to tell us is that

φπ =
∂µA

µ

fπm2
π

(7.48)

is a perfectly good field for the pions. Purists can attach SU(2) indices as appropriate, e.g.
fπ → δabfπ, but—like minus signs—if you complain about it, then it’s your homework to do it
thoroughly20. This form of the pion field should not be surprising. After all, we know that in the
limit where it is a Goldstone boson, it should have a shift symmetry. This is made explicit here by
the derivative form of the field which guarantees the ‘derivative coupling’ that one finds in chiral
perturbation theory. The relation of the divergence of the axial current to the pion is called the
partially-conserved axial current (PCAC) hypothesis.

In fact, more generally, the LSZ statement about writing down an appropriate field to represent
a given particle is at the heart of chiral perturbation theory. This was first put on solid footing by
Callan, Coleman, Wess, and Zumino in what they called ‘phenomenological Lagrangians’ [43, 44,
45]. See Chapter 4 of Donoghue [29] for a more modern treatment with explicit demonstrations
of the representation independence of such models.

Armed with the insight of (7.48), we can start to get a feel for the current algebra tech-
niques once practiced by ancient physicists. One quick result is called the Goldberger-Treiman
relation.

Problem 7.5. The Goldberger-Treiman relation. Derive the Goldberger-Treiman relation,

fπgπNN = mNgA(0), (7.49)

20This policy is attributed to Csaba Csáki and his graduate electrodynamics course.
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where gπNN is the pion-nucleon vertex function evaluated at q2 = 0,

〈p(kp)|∂µAµ|n(kn)〉 =
2fπm

2
π

q2 −m2
π

gπNN(q2)iūp(kp)γ5un(kn), (7.50)

and gA(0) is the the nucleon axial vector coupling in

〈p(kp)|Aµ|n(kn)〉 = ūp(kp)
[
gA(q2)γµγ5 + qµhA(q2)γ5

]
un(kn). (7.51)

We can make more powerful use of the connection between the pion and the divergence of the
axial current by invoking the algebra of the symmetry group. Recall that from a Lagrangian one
can write down the current associated with a transformation

φi → φ′i = φi + iεataijφj (7.52)

in the usual way,

Jaµ = −i δL
δ(∂µφi)

taijφj. (7.53)

From this we can define the generator/charge of the transformation using (7.39). For a symmetry
of the Lagrangian, these generators satisfy the commutation relations of the symmetry group
itself,

[Qa(t), Qb(t)] = ifabcQc(t), (7.54)

where we note that the charges are time-dependent and the algebra is satisfied at equal times.
Charges are nice, but even better quantities are currents, since currents actually contain local (i.e.
not integrated) products of the actual fields we care about. From the rigorous derivation of the
charge commutation relations above one can also simply write out the commutation relation for
charges with the time component of currents,

[Qa(t), J b0(t,x)] = ifabcJ c0(t,x). (7.55)

By Lorentz invariance we can promote this tho

[Qa(t), J bµ(t,x)] = ifabcJ cµ(t,x). (7.56)

In fact, it turns out we may go even further and write out current-current commutations relations,
yielding the current algebra,

[Ja0 (t,x), J b0(t,y)] = ifabcJ c0(t,x)δ(3)(x− y). (7.57)

We neglect the spatial Jai commutators since they turn out to include extra terms which usually
end up canceling unphysical local singularities (x → y). For the SU(N)L × SU(N)R (N = 2, 3)
flavor symmetries of interest to us, the ancient (B.C., “before chiral perturbation theory”) current
algebra between the vector and axial currents were used to produce relations between form factors
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and pion scattering amplitudes. Commutation relations naturally arose when pulling out partial
derivatives from time ordered products, for example

∂µ〈f |T (Aµ(x)O(0)) |i〉 = 〈f |T (∂µAµ(x)O(0)) |i〉+ δ(x0)〈f |T [A0(x),O(0)] |i〉, (7.58)

where typically O is another current. Thus the current algebra provided a way to simplify the
matrix elements in hadronic physics before more sophisticated techniques were available.

Archaeologist–Physicists may learn more about these ancient techniques in Coleman’s lecture
on soft pions [45], Cheng & Li [21], the review by Scadron [3], or the book by Treiman, Jackiw,
and Gross [4].

8 Flavor symmetry and the CKM

Now that we’ve bounced back and forth between theory and experiment a few times, we see
that experimental physics has robust flavor structure that is explained very well by the Standard
Model. We must remind ourselves that the Standard Model (and any other model) is predictive
after all of its parameters are measured. More practically, one makes several measurements and
performs a global fit to determine the parameters. It is only when there are more measurements
than parameters that the global fit becomes statistically meaningful21.

In order to ‘really probe’ the Standard Model’s flavor sector, then, we must measure and re-
measure the four parameters of the CKM matrix. This will be our focus for some time. The
motivation here is very important, since it is easy to feel like we’re making a big fuss about
measuring particular each element of the CKM matrix. Nobody really cares about any particular
element, say Vcb. The interesting part of determining its value is to add it to the global fit of
the Standard Model parameters to actually test the theory. One might complain that as we go
through each element of the CKM matrix we’re only measuring quantities which we could have
extracted from the other elements; this is, in fact, the entire point! Each measurement only
becomes meaningful when the parameter it is measuring has been measured independently in
many other ways (e.g. through other elements of the CKM matrix).

8.1 Measuring |Vud|
The key process to measure d → u transitions is already very familiar: β decay. This, however,
comes in different forms:

• Nuclear β decay, for example tritium 3H to 3He or 14C to 14N.

• Neutron β decay n→ peν involving a free neutron decaying to a free proton.

• Pion β decay, π+ → π0eν or π+ → µν.

21There are some cases where one can make meaningful measurements without the entire fit, for example when
one measures a positive-definite parameter to indeed be positive when it needn’t have been from the experiment.
Statistically, however, this does not have the same weight and predictive power as an over-constrained global fit.
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Even though these all probe the d → u transition, these are all different. Even though these are
all mediated by the W boson and hence the same operators these processes differ by the initial
and final states. In particular, they differ according to how the quarks are “dressed” by QCD.

The basic approach for determining Vud in each of these processes is the same. We take the
amplitude and compare it to muon decay.

d

u

W

e

νe

νµ

µ

W

e

νe

How do these diagrams differ? The external states and the phase space integrals are different, but
the actual Feynman rules differ only by a factor of Vud.

8.1.1 Nuclear β decay

Let’s start with nuclear β decay. Nuclei are complicated objects and this seems hard to calculate
from first principles. Fortunately, symmetries make our lives much easier. (In case you haven’t
noticed, this is a major theme in this class!) In general we would like to determine the matrix
element of an operator O sandwichd between two nucleon states N and N ′,

〈N |O|N ′〉. (8.1)

In the Standard Model we know that O can be vector or axial. In fact, we can pare this down
further by considering the non-relativistic limit. The energy emitted by the electron in nuclear
β decay is much smaller than the rest energy of the nucleus; for example, a tritium nucleus at
rest hardly moves after undergoing β decay to 3He, thus such an approximation is well within
reason. In this limit the axial current differs from the vector by a spin flip. This can be seen,
for example, from the non-relativistic Dirac equation or by considering the effect of the γ5 in the
Dirac fermion basis.

Now we’d like to use this observation to further simplify our analysis. Independent of the
non-relativistic limit, we know that we can appeal to cases where either the A or V operator
vanishes. For example, A = 0 when the initial and final states are spin zero since a spin-less
particle vanishes when acted upon by a spin-changing operator. Said differently, the vector and
axial vector are parity odd and even respectively. The external states have a definite parity and
since QCD respects parity, only one term can be non-zero. Fewer matrix elements mean fewer
calculations, which makes us happy.

In nuclear physics these N → N ′ transitions between J = 0 states are called a superallowed
β decays. In such a transition one of the neutrons within the nucleus N converts into a proton to
produce nucleus N ′. By definition nothing else has changed, certainly not spin. Now we can be
very slick and invoke an approximate symmetry: in the limit of exact isospin symmetry, nothing
changes when we make this n→ p transition in the nucleus. The n and p are just states of isospin
+1/2 and −1/2 respectively. This limit involves ignoring the mass differences and electric charges
of these particles, but as far as QCD is concerned, it is almost as if nothing happened. The QCD
transition matrix element should thus be unity.
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This is a deep and useful tool for us: initially we have no right to expect to be able to
say anything about this matrix element, but since we have some approximate symmetry which
becomes exact in a well defined limit, we can sneakily exert some control over what’s going on. In
this case, isospin (as far as QCD is concerned) is broken by δm = md −mu ≈ 1.4 MeV� ΛQCD.
We thus expect isospin breaking to give one or two percent corrections. In practice one can use
a model to estimate the size of these corrections. Before going into some details of how isospin
helps us do this calculation, the result turns out to be

|Vud| = 0.97425(22) =⇒ λ = 0.2255(10). (8.2)

Look at how many significant digits we have! Of course, here we don’t care at all about those
digits—but this is certainly an experimental triumph that we have such accuracy despite QCD.
Let’s sketch how we can get this result.

The most general decay amplitude A→ B takes the form:

Mµ = 〈N ′(p′)|Aµ + V µ|N(p)〉. (8.3)

We shall choose spin-less initial and final states JN = JN ′ = 0 so that 〈N ′|Aµ|N〉 = 0. Thus this
reduces to the form factors that we introduced in (7.35),

Mµ = 〈N ′(p′)|V µ|N(p)〉 = f+(q2)(p+ p′)µ + f−(q2)qµ. (8.4)

Now we invoke the isospin limit where mN = mN ′ . Note that in this limit the decay cannot occur
kinematically! This is okay. In the isospin limit I can calculate the hadronic matrix element—the
matrix element doesn’t care about kinematics. Since the real world is very close to the symmetry
limit, the matrix element at q2 = 0 should be very close to its true value. In other words, q2 is
very small relative to Λ2

QCD so that

f±(q2) ≈ f±(0). (8.5)

Example 8.1. We can test this assumption by looking at the spectrum of this decay with respect
to q2. If f± is constant then the spectrum is a straight line. This is precisely the dominant feature
in the so-called Kurie plot of tritium β decay.

If we wanted, we can go on and calculate the corrections to this approximation. For the
moment we will only focus on the ‘big picture’ of this process; later on we will actually calculate
the corrections to a matrix element.

In the isospin limit we have yet another very helpful simplification: f−(q2 � Λ2
QCD) = 0! To

see this we invoke the Ward identity,

0 = qµMµ = f+(q2)(p2 − p′2) + f−(q2)q2 = f+(q2)(m2
A −m2

B) + f−(q2)q2. (8.6)

Isospin tells us that mN = mN ′ so that the f+ term vanishes. This means that f−(q2)q2 = 0.
Note that we are not treating q2 = 0 here, even though we are implicitly assuming that q2 → 0
to get to this equation; we know that q2 isn’t physicaly exactly zero in the way that mA and mB

are exactly equal in the isospin limit. Thus we conclude that f−(q2) = 0.
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Now we’ve reduced everything to a single form factor, f+(0). We should be very proud of
ourselves. Like any good infomercial, however, we have one last “but wait, there’s more!” trick to
pull out. It turns out that while we’re working in the isospin limit, f+(0) doesn’t even need to be
determined experimentally—we can figure it out simply using group theory!

The vector operator giving us the non-relativistic contribution to this matrix element changes
I3 by one unit; this is precisely the difference between N and N ′ as far as isospin and QCD is
concerned. In terms of quarks, this is because V µ = ūγµd and each of the quarks changes isospin
by 1/2. Since this is a ∆I3 = 1 operator, we know that is is proportional to the usual SU(2)
raising operator acting on isospin space,

V |j,m〉 ∝
√

(j −m)(j +m+ 1)|j,m+ 1〉. (8.7)

The overall coefficient can be determined, but the point for us is that we don’t care since we’re
just want to take the ratio with µ→ eνν̄ anyway. The coefficient above is just a Clebsch-Gordan
coefficient and tells us that, finally,

〈N ′(p′)|V µ|N(p)〉 ∝
√

(j −m)(j +m+ 1)(p+ p′)µ, (8.8)

where we stress that the j and m are isospin numbers. This is an incredible result: we started with
some hadronic matrix element that we knew nothing about. Using Lorentz invariance, specific
decay channels, and approximate isospin symmetry we were able to get rid of all QCD unknowns
and end up with expressing everything in terms of a single number that comes from group theory.
After taking into account corrections to the approximations we’ve made, one can extract the value
for Vus in (8.2).

8.1.2 Neutron β decay

Let us briefly comment on the other measurements of Vud. Consider the free neutron decay process
n → peν̄. While näıvely this appears to be very similar to the nucleon calculation, the external
states are different—the hadronic states are now necessarily spin-1/2 so we can’t get away with
using the JN = JN ′ = 0 trick to get rid of the axial contribution. This ends up giving six matrix
elements to calculate which nontrivially reduce to

GV = 〈n|V µ|p〉(p+ p′)µ (8.9)

GA = 〈n|Aµ|p〉(p+ p′)µ. (8.10)

The relevant quantity turns out to be the ratio of these matrix elements, gA ≡ GV /GA. This is a
ratio between two hadronic matrix elements with no symmetries forcing any obvious hierarchies
between the two terms so that we expect gA ∼ O(1). Indeed, it turns out that gA = 1.27.

Example 8.2. How does one measure gA? We can distinguish the V and A matrix elements by
their angular distributions so that the angular dependence of β decay is a probe of gA.

Vud depends on the neutron lifetime and gA as

|Vud|2 ∼ τn × (1 + 3g2
A)(1 + radiative corrections). (8.11)

We can calculate the right-hand side to determine Vud; it turns out to have roughly the same value
and precision as the nuclear matrix element method. This should be very reassuring since this
method carries different hadronic assumptions. (Dimensionless?) For two recent reviews, see [46]
and [47].
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8.1.3 Pion β decay

Finally, for pion β decay, π+ → π0eν, we can see immediately that a very nice feature is that the
hadronic matrix element is between two spin-0 states.

〈π0|O|π±〉. (8.12)

The pions live in an I = 1 isotriplet and are much simpler objects than nuclei. It even turns out
that the calculation of the corrections to the isospin limit are much easier for pions. In fact, this is
the cleanest way to measure Vud. Why, then, are we only mentioning this decay as a remark after
the nucleon and neutron decays; why isn’t this the best way to measure |Vud|? It is suppressed by
phase space! The π± and π0 are nearly degenerate so that the branching ratio is on the order of
10−8. Experimentally we are limited by the total number of these decays that we measure.

Example 8.3. Note that the neutral pions are not difficult to detect experimentally. Due to the
axial anomaly π0 → γγ is the dominant decay (98.8%) and it’s easy to tag two photons with an
invariant mass of mπ = 135 MeV.

8.2 Measuring |Vus|
8.2.1 K0,+ → π−,0`+ν

Moving on, how would we propose to measure Vus? There’s an obvious choice: kaon decay. The
dominant semileptonic decay is K0,+ → π−,0`+ν, with a decay rate of 8.4%. We would like to
apply the same slick maneuvers to determine |Vus| that we used for |Vud|; to do this we need an
approximate symmetry to give us a handle on the solution in the unbroken-symmetry limit. Here,
again, we have an obvious choice: the generalization of isospin to include the strange quark is
just SU(3) flavor. In fact, if we stare at this long enough we see that this process with respect to
SU(3) flavor symmetry is really just like pion β decay, π+ → π0`+ν, with respect to isospin.

However, we do have reasons to be very skeptical. For example, we know that while SU(2)
is broken by effects of the size (md − mu)/ΛQCD ∼ 1%. Thus, with some exceptions (such as
the difference in the proton versus neutron lifetimes), we expect isospin breaking effects to be
small corrections. For SU(3) flavor, however, we have a breaking on the scale of ms/ΛQCD ∼ 20%.
While this is still a valid symmetry limit to expand about, we now expect the precision to be rather
poor compared to the precision of our experiments. There is a second reason why we should be
skeptical that our previous bag of tricks will work: in our measurement of |Vud| we assumed that
f(q2) ≈ f(0). We justified this because q2 � Λ2

QCD. In this case, however, because the kaon
and pion masses are appreciably different, the momentum transfer is not small. It seems like this
approximation should also be very poor.

The SU(2) subgroups of SU(3). Let’s pause for some group theory. We know that SU(2)
isospin lives inside of the bigger SU(3) flavor symmetry. In fact, we know that there are other
SU(2)s that live inside SU(3). We can see these by looking at the root diagram of the octet,
which we reproduce below. Each dotted line corresponds to an SU(2) subgroup of SU(3). We
can identify these SU(2)s as the familiar isospin (u↔ d), v-spin (u↔ s), and u-spin (d↔ s).
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π+

K+K0

π−

K− K̄0

η

π0

These were named by Harry Lipkin—author of an excellent representation theory text for
physicists [48]—as a pun: ‘I-spin, u-spin, v- (we) all spin for iso-spin.’ While we know that
SU(2) isospin is a much better symmetry than SU(3) flavor, both SU(2) u-spin and SU(2)
v-spin are as badly broken as SU(3) flavor since they both suffer from a breaking on the order
of ms/ΛQCD. Technically, u-spin has a small advantage over v-spin since it is not broken by
electromagnetism, but since α ∼ 1%, this is a small concession compared to its ms/ΛQCD

breaking. Finally let us remark on the shift in mindset that we’ve been espousing: as theorists
we like to think about the symmetry limit in such a way that we only care about the symmetry;
this is wrong. The more constructive point of view is to think as phenomenologists, where the
main aspect that we care about the symmetry limit is how the symmetry is broken.

Now that we’ve vociferously noted our objections to SU(3) flavor due to the size of its breaking
and the small q2/Λ2

QCD limit, we can proceed with the calculation guilt-free and see what happens.
We are interested in the two decays,

K0 → π−e+νe (8.13)

K+ → π0e+νe. (8.14)

Actually, we should be honest: we don’t actually see K0s, the neutral kaon mass eigenstates are
denoted by KS,L (“K-short” and “K-long”) due to mixing. This is an entire rich and fascinating
story in itself, but we’ll leave this for later. If you are very serious, then you should replace K0

with KL, but for our current purposes we can be näıve.
What is the difference between these two decays? They have different charges. This comes

from the fact that the K0 decay has a spectator d̄ quark while the K+ decay has a spectator ū.
Thus the two decays are related by isospin! Thus to the extent that isospin is approximately true,
it is sufficient to determine the form factor for only one of these process since the other will be
related by symmetry.

Let start by writing out the matrix element,

〈π(pπ)|s̄γµu|K(pK)〉 = f+(q2)(pπ + pK)µ + f−(q2)qµ, (8.15)

where we haven’t yet specified K0 or K+ decay.
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Example 8.4. Relating the kaon decay form factors. We know that K0 is an isospin |1
2
,−1

2
〉

state. This is related to K+ by

J−|j,m〉 =
1√
2

√
(j +m)(j −m+ 1)|j,m− 1〉. (8.16)

Thus we see that

fK
+

+ (0)

fK
0

+ (0)
=

1√
2
. (8.17)

What about the other decay constant, f−(q2)? In (8.6) we invoked the isospin symmetry limit
to explain why this term should vanish. In the case of kaon decay, we replace isospin with SU(3)
flavor this argument becomes rather fishy: after normalizing f+ to unity, we would at best be
able to say that f− is on the order of 20%. Fortunately, there’s another argument available to
allow us to neglect f−: the contributions of the f− form factor to semileptonic kaon decays are
proportional to the lepton mass. Thus for decays with electrons, these decays are suppressed by
factors of me/mK . This is essentially the same chiral suppression we encountered in Problem 7.2,
though here we have a one-to-three body decay. The point is that the amplitude associated with
this term goes like

M(f−) ∼ f−(q2) (pe + pν)µūeγ
µuν , (8.18)

where we’ve used pπ − pK = pe + pν . Contracting the Lorentz indices we obtain

M(f−) ∼ f−(q2) ūe(/pe + /pν)uν (8.19)

∼ f−(q2)me ūeuν , (8.20)

where we’ve used the equations of motion for the leptons, /peu(pe) = meu(pe) and /pνu(pν) = 0.

Example 8.5. That’s a nice argument, why didn’t we use it before? Let’s recall what
just happened: in pion β decay we had a nice symmetry argument for why f−(q2) = 0. We then
moved to kaon decay, and found that this argument is no longer so nice since SU(3) flavor isn’t
as precise as SU(2) isospin. So instead, we cooked up a different reason why the contribution to
the amplitude mediated by this term is suppressed anyway. If this ‘dynamical’ reason was there
all along, why didn’t we apply it to pion decay?

At first glance one might say that pions are lighter than kaons, and so the mass suppression
shouldn’t be as dramatic. However, pions are only a factor of about 4 lighter than kaons, which
should not be a big difference compared to the size of me. This line of thought, however, is a red
herring! The point isn’t that me � mK , but rather that me � (mK −mπ). The reason why this
argument doesn’t hold for pion decay is that me is not much smaller than (mπ+ −mπ0).

Example 8.6. What about muons? The next obvious question is whether f−(q2) can still be
neglected when considering semileptonic decays into muons, e.g. K → πµν. The answer is, as
you would expect, no since mµ ≈ 100 MeV is certainly not very small compared to the meson
mass difference. This is why we were very specific in (8.13) and (8.14) to specify the outgoing
electron rather than a general lepton. For semileptonic kaon decays into muons, we say that we
are “sensitive to f−(q2).” This is a useful process not so much for measuring |Vus|, but for checking
predictions of the form factors from lattice calculations or chiral Lagrangians.
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Now it’s time for us to face the music. To get to this point we assumed that q2 � ΛQCD and
that SU(3) breaking is small. These manifest themselves into the statements

f(q2) = f(0) (8.21)

f(0) = 1, (8.22)

respectively. While the analogous assumptions were completely sensible for pion decay, we’re now
well outside the regime where we would expect these to give reasonable results. It turns out,
somewhat magically, that these a priori poor approximations work out much better than we ever
had a right to expect.

First consider f(q2) = f(0). One can check this by plotting the decay spectrum with respect
to energy and observing that that it is a straight line. It ‘turns out’ that the expansion in q2 takes
the form

f(q2) = f(0) + λq2 + · · · . (8.23)

where λ ∼ 0.04 fm2 and the higher order terms are not measured. Why should the coefficient be so
small? Work in progress: need to write this in a dimensionless way! This is probably
something like q2/f 2

π? A not-so-satisfactory hand-waving answer is that to good approximation
the kaon and pion are point-line. Since the form factors really probe the structure of the particles,
the small coefficient is telling us that the process is not sensitive to any meson substructure. As
long as q2 � ΛQCD this is what we would expect; form factors should be very small when one
probing something which is ‘smaller’ than the probe.

Next let us consider the approximation f(0) = 1. It turns out that the value we find is

f(0) = 0.961± .008. (8.24)

Näıvely we would have expected f(0) = 1 ± 20%, how did we get something which is more like
1 ± 4%? There’s a hint here if we play with some numerology: how is 4% related to 20%? It is
the square!

(20%)2 = 4%. (8.25)

Besides writing a trivial numerical identity, this is a big hint: it seems like the actual correction
to our symmetry-limit isn’t linear (20%), but rather second-order. Thus our expansion about
the symmetry limit is somehow slightly different from the näıve expansion that we would have
written. Somehow f(0) = 1 up to second-order in SU(3) breaking.

This has a fancy name, the Ademollo-Gatto theorem [49]. The argument doesn’t quite
work for f−(q2), but as we argued above, we don’t care since we already have a nice me/mK

suppression on this term. In the spirit of this course, we present a heuristic argument22 for why
the Ademollo-Gatto result should be intuitive. We start by noting that the f+(q2) form factor of
the (p+p′)µ term in the matrix element should be unity for q2 = 0 and in the limit where SU(3) is
restored. This is because f+(0) should be understood to be proportional the overlap of the s and u
wavefunctions which approaches unity in the unbroken SU(3) limit. Clearly this is the maximum

22This was beautifully explained to us by Shmuel Nussinov over dinner.
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value of such a quantity. The heart of the Ademollo-Gatto theorem—and the rason why f+ ends
up being so well behaved despite the breaking of SU(3)—is that at the deviation of a function
expanded about a critical point (such as a maximum) is always second order, tautologically.
Note that the observation that the form factor should be interpreted as a wavefunction overlap
is already something that we met with the ‘decay constant’ of positronium in Example 7.3. A
similar theorem, Luke’s theorem [50, 51], exists for the limit of large symmetry breaking where
the critical point is a minimum.

Finally, getting back to our main task, we can use the above techniques (and include correc-
tions) to obtain

Vus = 0.2257(21). (8.26)

Ademollo-Gatto from the current algebra. A cute and slightly more rigorous way of
proving the Ademollo-Gatto theorem for the vector form factors can be presented in light of
the current algebra mentioned in Section 7.4. A very rough sketch of the procedure is to note
the commutator of the SU(3) generators

[
Q4+i5, Q4−i5] = Q3 +

√
3Q8 = QEM + Y, (8.27)

where Q4±i5 = (Q4± iQ5)/2. One can then consider taking the expectation value of both sides
with respect to an octet state, from which we obtain

(QEM + Y )H = −|〈H ′|Q4+i5|H〉|2 +
∑

m

|〈m|Q4−i5|H〉|2 −
∑

n

|〈n|Q4+i5|H〉|2, (8.28)

where H ′ is another state in the same octet. For example, for H = Σ−, H ′ = Λ or Σ0.
The states 〈m| and 〈n| are not in the same octet. In the appropriate limit, it turns out that
〈H ′|Q4+i5|B〉 → f1(0). Taking such a limit and rearranging terms we obtain

f1(0)2 = −(QEM + Y )B +O(δ2), (8.29)

where δ = (MH −MH′)/MH is a parameter for SU(3) breaking. This is further explained in
the review article by Cabbibo et al. [52].

8.2.2 K+ → π+π−eν

Now that we’ve shown how to determine Vus, we can go on to see how we can cross-check this
value. Recall that we don’t actually care about the precise values of these CKM matrix elements!
For our purposes we can use the Wolfenstein parameterization for a good estimate and we can
look up the value in the PDG when any ‘honest’ precision is required. Our goal is to see how
physics is done, and this requires checking and cross checking our parameters through orthogonal
experiments to really test the Standard Model.

The next |Vus|-sensitive process we can look at is the four-body decay

K+ → π+π−eν. (8.30)
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Back in ancient times like the 1960s, this decay was known as23 K`4. Since this is a one-to-two
hadron decay with two additional leptons, the whole story becomes more complicated. On the
plus side, we may take some experimental solace that the two charged pions are at least easy to
identify in a detector.

We may parameterize the matrix elements in terms of three independent momenta. We chose
these to be the momenta p± of the charged pions and k of the kaon so that the vector and axial
matrix elements are

〈π+π−|Aµ|K〉 = C [f1(p+ + p−)µ + f2(p+ − p−)µ + f3(k − p+ − p−)µ] (8.31)

〈π+π−|V µ|K〉 = C ′gεµαβγkαp+βp−γ. (8.32)

The axial matrix element is a sum of three terms that are linear in linearly independent combi-
nations of the basis momenta. The vector matrix element, on the other hand, is composed of a
contraction of all three momenta with the totally antisymmetric εµαβγ tensor as required by parity.
This is clear since the vector matrix element has the opposite parity of the axial matrix element
and the only way to construct such a one-Lorentz-index quantity out of four-vectors necessarily
requires the intrinsic parity of the ε tensor.

Example 8.7. We can immediately identify one of the fi factors to discard, can you see which
one? By the same argument that we’ve seen several times now, we know that the f3 form factor
is proportional to the electron mass upon contraction with the leptonic part of the full matrix
element.

The prefactors C and C ′ are overall normalizations

C = − i

fπ
(8.33)

C ′ =
1

4π2f 3
π

(8.34)

which we pull out to normalize f1 = f2 = g = 1. The factor of 4π2 is very familiar—in fact,
it’s almost ‘dimensionful’ since it carries dimension of loop number. Indeed, this really is a loop
effect since the vector matrix element is related by SU(3) to the matrix element for γ → 3π by
an SU(3) flavor rotation. Note that γ → 3π is of course a nonsensical physical amplitude, but it
is a nonzero matrix element coming form the axial anomaly.

The normalization of f1 and f2 is more subtle and comes from the current algebra techniques
mentioned in Section 7.4 (they are not simply Clebsch-Gordan coefficients). These come from soft
pion techniques where one uses LSZ reduction and current commutation relations to relate the
amplitude for a soft pion emission to an amplitude without the pion. In the case of K → ππeν
there are two pions which one may take to be soft. One limit givse f1 = f2 while the other gives
f1 + f2 = 2C. Note that these relations hold in the limit of soft pions, i.e. the limit p± → 0. In
principle f1 and f2 are functions of three dynamical scalars24: k · p+, k · p−, and p+ · pi. However,

23Similarly, K → πeν was known as K`3. Naming conventions in physics have gotten more colorful, but aren’t
necessarily any better. At least these days we like to believe that we have more interesting objects to name than
scattering amplitudes.

24To be precise, in the soft pion manipulations one takes the pion off shell so that p2± becomes a ‘dynamical’
variable as well.
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in the soft pion limit these are all small. Experiments confirm that there is no strong dependence
on the external momenta.

The mystery of f3. One of the mysteries of the ancient world was the failure of näıve
current algebra techniques to sensibly predict the f3 form factor (even though we already
know f3 is me/mK suppressed). While the two constraints on f1 and f2 were consistent,
the f3 constraints coming from taking each pion to its soft limit gave what appeared to be
contradictory predictions:

f3 = 0 = f+ + f−, (8.35)

where the f± come from the K → πeν decays. In other words, f3 seems to vary strongly with
the momenta. In 1966 Weinberg solved the puzzle by identifying the p± dependence of f3 as
coming from a kaon pole coming from the following diagram, [53]

K+

π+ π−

e

ν

Aµ
K+

This diagram only contributes to f3 so that one ultimately finds

f3 = (f+ + f−)
k · p−

k · (p− + p+)
, (8.36)

which indeed gives the correct interpolating behavior between the two single-soft pion limits.

Having set up the problem thusly, one can go on to do the same analysis that we presented
for three body semileptonic kaon decay (K`3). The procedure is the same, though there are more
coefficents and the entire ordeal is generally more complicated and not as fun. The punchline
is that one can indeed make an independent measurement to confirm the value of the previous
method. As we said, in this section we will care less about the actual values of the Standard Model
parameters but rather we will focus on the way in which they are measured and cross-checked.
(These are ultimately experimental matters but, as theorists, looking up a number in the PDG is
our way of ‘doing an experiment.’)

8.2.3 Hyperon decay

Moving on from the mesons, another way to measure |Vus| is to look at the decays of mesons
containing strange quarks and no heavier quarks, the hyperons. These include the Λ, Σ, Ξ, and
Ω baryons. Just as we looked at neutron β decay n→ peν to measure |Vud|, we can also measure
Λ→ peν in the analogous way to measure |Vus|.
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Example 8.8. Λ lifetime versus n lifetime. Why does the Λ have a much smaller lifetime
than the neutron? If you answer that |Vus| � |Vud|, then wake up. This is a trick question. The
amplitude for the decay is slightly smaller because |Vus| = λ|Vud|, where λ ≈ 0.2 is the Wolfenstein
expansion parameter. The correct answer is that n decay is very phase space suppressed.

The upshot of looking at baryons is that we have many more baryons to work with and that
we can measure all of them, at least in principle. The SU(3) baryon analysis depends on two
parameters that encode the two irreducible matrix elements for an octet current between two
octets. In particular, given two SU(3) flavor octet states Bn and Bm and some octet operator Ok,

〈Bn|Ok|Bm〉 = FOfknm +DOdknm, (8.37)

where fknm are the SU(3) structure constants and dknm are group theory factors defined by

{
λk, λn

}
= 2δkn + 2dknm. (8.38)

This is just the same program of defining form factors to parameterize our ignorance about QCD
matrix elements. Note that this expansion implicitly includes the assumption of SU(3) flavor,
thus we are neglecting the mass difference between the light quarks.

Thirty years ago when you say ‘D term’ and ‘F term,’ everybody knew what you were
referring to. You were referring to the SU(3) invariants in hyperon decay. And now
if you say ‘D term’ or ‘F term,’ everybody thinks you’re talking about supersymmetry.
Why do they use the same name? Why would they use D and F? Everything comes
from the 60s –Yuval

So this is a pretty good deal, we have two form factors in the SU(3) limit and several baryons
to make measurements with. One can again turn the crank by following through the calculations
and then doing the experiments. There are lots of tricks one can further use to keep a handle on
the breaking terms, and at the end of the day one finds that one can measure |Vus| with the same
precision as the kaons. For a nice review of the current state-of-the-art for semileptonic hyperon
decays, see the review by Cabibbo, Swallow, and Winston [52].

Until about 10 years ago, there was a 3σ discrepancy in these measurements, but it has since
disappeared. To quote Yuval,

3σs disappear. Most of them. It’s an amazing fact of life. Only 1% disappear because
of statistics, 99% disappear because of systematics. 0.0000007 survive as real effects.

8.2.4 τ → K−ν

Yet another measurement of |Vus| comes from the decay of the τ . Recall that the τ is so heavy
that its decays prefer to hadronize. In this sense, the τ is almost a hadron. Our strategy is to
divide out the hadronic uncertainties by comparing the ratio of two decay rats,

τ− → K−ντ τ− → π−ν. (8.39)
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In the limit of SU(3) flavor, the ratio simply gives

R =
Γ(τ− → K−ν)

Γ(τ− → π−ν)

SU(3)
=
|Vus|2
|Vud|2

. (8.40)

This is too rough for us, let us at least quantify the dominant corrections from the SU(3) limit.
One correction is phase space, since the K has mass approximately equal to 500 MeV while the
pions are around 140 MeV. Yuval also interjects another mnemonic,

What is the mass of the τ? 1,777 MeV. That’s 1 and then 777, like the casino.

On top of this, we also have a correction from hadronic effects that we know to high precision.
What is the hadronic matrix element here? It’s just K/π goes to vacuum, thus there are factors
of decay constants! Hence another breaking effect is fK versus fπ. We end up with a revised ratio,

R =
Γ(τ− → K−ν)

Γ(τ− → π−ν)
=
|Vus|2
|Vud|2

× (Phase Space)

∣∣∣∣
fK
fπ

∣∣∣∣
2

. (8.41)

The powers of two should be clear since we are comparing branching ratios, not amplitudes. Let
us make a remark about the measurement of fK and fπ. To use the above method to determine
|Vus|, we need a measurement of fK that is somehow ‘orthogonal’ to the fK |Vus| combination
above. One would want to measure fK through leptonic decays such as K → µν, but this gives
something proportional to the same combination fK |Vus|. This is also true for the pions, which is
why we focused on β decay rather than π → `ν to measure |Vud|. It turns out, then, that for fK
we really depend on a lattice QCD calculation of fK as an independent input.

The best way to use the τ is to look at inclusive decay. We’ll avoid the details, but the
main idea is that the τ is heavy enough that at mτ one can really treat QCD perturbatively,
αs(mτ ) ∼ 0.3. You can calculate how many light and heavy quarks you produce and really trust
your perturbative calculation.

The best way to use τ decay: inclusive tau decay. The tau is heavy enough such that when
it decays we can really treat QCD perturbatively αs(mτ ) = 0.3. We can calculate the number
of light and heavy quarks. The inclusive decay has no form factors, which makes it theoretically
very nice, but currently our limiting factor is the number of experimentally observed τ decays.

8.3 Measuring |Vcs|
The values for |Vus| and |Vcd| are not measured very well. The errors are much much larger than
those for Vud and Vus by factors of ten. The reason is clear: the charm quark mass lives in the
barren no-man’s-land where it’s too heavy for SU(3) flavor symmetry but not heavy enough to
treat in the heavy quark limit. Or, in the timeless words of Briney Spears,

Feels like I’m caught in the middle
That’s when I realized—
I’m not a girl, Not yet a woman.
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Later in the song Spears sings the line “I’m not a girl, there’s no need to protect me...,” from, I
can only assume, the large corrections associated with quarks which cannot be reasonably treated
in either the SU(3) flavor or heavy quark limit.

It turns out, actually, that the best way to work with charm decays is to use lattice QCD
techniques. We will present a brief introduction to lattice techniques in Section 10. For now, let
us simply state that lattice QCD is ideal for effects that are on the order of ΛQCD and the charm
mass is about a factor of few larger than this. The approach is to latticize spacetime so that
one immediately has UV and IR cutoffs associated with the lattice spacing and the lattice size,
respectively. Thus one expects that such techniques should not be able to capture effects that are
much smaller or larger than ΛQCD due to these cutoffs. In other words, the QCD effects that are
precisely at ΛQCD are those which should be best captured by lattice techniques.

8.3.1 D → Keν

So what process do we want to look at to probe |Vcs|? The obvious choice is D → Keν. Just as
the case for K → πeν we pick the electron final state in favor of the muon final state since this
gives us one less form factor to worry about; f− gives an effect that is suppressed by m`/mD. The
remaining problem, as we mentioned above, is that we really have no idea what f+(0) is. The
lattice gives us f+(0) = 0.7, but we even don’t know if q2 = 0 is a good approximation. Note
that this has indeed shifted quite a bit from the previous symmetry limit where f+(0) = 1. Going
through the same rigamarole, we end up with a measurement

Vcs = 0.98± 0.01exp ± 0.10thy (8.42)

This is indeed approximately equal to one. There’s a pretty small experimental error, but by
comparison the theory error is huge. Compare this to the case for Vud where the error was in the
fourth digit! Here we give our best effort with lattice QCD, but we’re still left with 10% error.
This is not systematic error, this is just theory error.

8.3.2 D+
s → `+ν

Now we can hope that alternate methods to measure |Vcs| might give more insight. In that spirit,
let’s now look at the pure leptonic decays of the Ds. It should be clear why we use Ds, since this
is the meson which will give a factor of |Vcs| when it decays. We are thus interested in the decays

D+
s → `+ν, (8.43)

where the ` can be any of e, µ, τ . Each choice has its own pros and cons. The electron has the
smallest branching ratio due to chirality suppression, so we can forget about it. Now we have to
choose between the muon and τ . On the one hand, chirality suppression prefers the τ decay, but
on the other hand the τ is constrained by phase space since mτ .MDs , where MDs = 1970 MeV.
The muon gets more chiral suppression, but enjoys a much bigger phase space. Theoretically
these effects even out and both are useful. Experimentally, on the other hand, the τ is a pain to
measure since it hadronizes while the muon is a very clean signal. Enterprising experimentalists,
however, have been able to use both modes with success.
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Before we can go on to extract |Vcs|, however, we need to know fDs . This is comforting, since
if there’s one thing that lattice people really know how to calculate accurately, it should be fDs :
the c is not too heavy, and the s is not too light relative to ΛQCD. Indeed, the simplest things for
the lattice to calculate are masses and decay constants, and fDs should be ideal—it’s a number
that lattice techniques were born to predict. Because there’s no such thing as an ‘easy’ lattice
calculation, there was of course a 3σ disagreement. Like nearly all 3σ effects, it ended up being
pushed down to 1σ and forgotten; but in this case the reconciliation was only done one month
prior to this lecture and was performed by the dean of Cornell’s College of Arts and Sciences [54].

The lattice gives a prediction for the ratio of fDs/fD, from which can reconstruct and even
better measurement for |Vcs| than we had for the semileptonic decay,

|Vcs| = 1.030± 0.038, (8.44)

where the error is basically theoretical. Does this look strange to you? |Vcs| > 1, but clearly a
‘sensible’ this is within error25. Such a thing happens all the time—we measure something which is
supposed to be the sine of an angle, but it ends up also being larger than unity. The point is that
it boils down to how we define what we measure. Ultimately we’re not necessarily measuring that
sine, it is usually the case that we are measuring this indirectly with all sorts of errors propagating.

8.3.3 W → cs̄

There is yet another way to measure |Vcs| is the W boson decay channel W → cs̄. This is the
most direct measurement of |Vcs|. Can we actually measure this?

Example 8.9. Quick calculation: the branching ratio of W → cs̄. Neglecting higher order
terms in the Wolfenstein expansion parameter λ, a W in its rest frame can decay into any of
the three lepton–neutrino pairs or any of the two active generations of quarks, u-d or c-s. Note
that it does not have the rest energy to decay into third generation quarks. The quarks have an
additional factor of three due to color so that there are nine possible decays. We can approximate
each as having the same rate so that the second generation quark decays occur 1/3 of the time.
This is an appreciable rate and so we expect it to be tractable experimentally.

There’s an immediate problem. How are we going to actually see W → cs̄? What we really
see is W going to two jets. And as we know from West Side Story,

When you’re a Jet,
you’re a Jet all the way
From your first cigarette
To your last dying day.

The problem is that unlike charmed—and especially bottom—jets we cannot really tag a strange
jet. (Tony was a strange jet because he fell in love with Maria, the sister of the leader of the rival
gang, the Sharks.)

Now an experimental aside. We can identify jets containing a b or c quark by measuring
displaced vertices. This boils down to the lifetime of the b and c mesons.

25To be frank, even if it were not within error, then we would say that at some point someone underestimated
the error.
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Example 8.10. The lifetime of the B0 and D0 mesons. Which has a longer lifetime, the
charmed or the bottom mesons? We can see that the D0 decay goes like |Vcs|2 while the bottom
goes like |Vcb|2. We know from our Wolfenstein parameterization that the latter is suppressed by
(λ2)2. On the other hand, we should also account for the phase space. From näıve dimensional
analysis (NDA) we can write down

Γ ∼ mnG2
F , (8.45)

where m is the meson mass, n is some integer, and GF contains the necessary M−2
W factors from

the W propagator. In order to get the correct overall dimension we must have n = 5, so that the
ratio of the two branching fractions scale like

R =
Γ(b)

Γ(c)
=

(
mB

mD

)5

λ4. (8.46)

It turns out that the phase space factors nearly cancels the Wolfenstein suppression leaving R ∼
0.3, so that they lifetimes are actually comparable. Note that since τ ∼ 1/Γ, this means that the
B has a longer lifetime by a factor of about three.

What we end up with are B mesons which give a nice, observable displaced vertex while the
D meson gives a slightly harder-to-measure displaced vertex. For W decays the b quark isn’t an
active generation, so any displaced vertex is a signal for charm.

The W → cs̄ measurement, as done by the Delphi experiment, one of the four LEP experiments
that ran at CERN. The measurement yielded,

Vcs = 0.94± 0.29stat ± 0.13sys. (8.47)

This number is constrained by the number of W bosons that they measured.

Remaining questions: How do we get around the problem of not being able to tag the strange
quark? Why was Delphi the only experiment to do this measurement? (I think we answered
these but I forgot.)

8.3.4 W → hadrons

Another |Vcs| measurement which all of the LEP experiments were able to was to look at W →
hadrons. We can normalize this to the rate for W → leptons,

R =
Γ(W → h)

Γ(W → `)
= N eff

c

∑

u,c,d,s,b

(Vij)
2 × (Phase Space) (8.48)

Using the same approximation that we did in Example 8.9, we find that R ≈ 2. We can write out
the branching ratio of the W to leptons as

1

Br(W → `)
=

Γ(W → h)Γ(W → `)

Γ(W → `)
= R + 1. (8.49)
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Thus measuring the branching ratio to leptons very precisely gives R so that the theoretical
situation is very nice. In order to measure this precisely we need to include QCD corrections,
which we are able to do since we are in a regime where we are able to do perturbative QCD. For
example, we need to write down the effective number of colors N eff

c ≈ 3 +O(αs) ≈ 3.3.

Please provide more information about this!! This is a very strange thing to define and
seems to violate SU(3)color. Please provide more information on this—references?

The point is that this measurement ultimately gives the sum

|Vud|2 + |Vus|2 + |Vub|2 + |Vcd|2 + |Vcs|2 + |Vcb|2. (8.50)

Of these, the only terms that are not small are |Vud| and |Vcs|. Since the former value is well
known to very good precision, we can take this to be a measurement of |Vcs|. Experimentally the
number is quite precise

∑

u,c,d,s,b

|Vij|2 ≈ 2.002± 0.027. (8.51)

If you take it as a measurement of Vcs, then this measurement has the best error, but clearly is
an indirect measurement since it really probes the above sum.

8.4 Measuring |Vcd|
Now let’s quickly see how to measure |Vcd|.

8.4.1 Peculiarities of D∗ decays.

Before reviewing the D meson decays that tell us about |Vcd|, let us pause to make a remark about
an interesting fact about the vector meson D∗How does this particle decay? It should certainly
decay to the pseudoscalar, D∗ → D(stuff). The ‘stuff’ can be either a pion or a photon,

D∗ → Dπ (8.52)

D∗ → Dγ (8.53)

Which one dominates? At first glance, we would say that the pion emission dominates since it is a
strong process while the photon emission is electromagnetic. In other words, the D∗ is a resonance
in the sense of Section 3.1. The strong decay should then dominate by a factor of αs/α� 1. This
is indeed what happens the kaons, where K∗ → Kπ is the dominant decay mode.

However, there is an amazing coincidence in nature that the mass difference between the D∗

and D is just a little larger than the pion mass

(m2
D∗ −m2

D) & m2
π, (8.54)

such that the phase space suppression of D∗ → Dπ is almost the same as the ratio of coupling
constants so that the rate for is only a factor of two larger than D∗ → Dγ. The ratio αs/α is very
large, but recall that the phase spaces closes extremely quickly. Heuristically,
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Γ

∆m2
Dm2

π

so that the decay rate lies roughly halfway down the steep precipice because the mass splitting
between the vector and pseudoscalar D mesons, ∆m2

D ≡ m2
D∗−m2

D, is finely tuned relative to the
pion mass. There’s no deep reason for this, it is a complete accident.

We can use isospin symmetry to relate this decay to trivially relate this process to

D∗0 → D+π− (8.55)

D∗0 → D0π0 (8.56)

D∗+ → D0π+ (8.57)

D∗+ → D+π0. (8.58)

The relations between these processes in the isospin limit is broken by the mass difference between
D∗ and D0, which ordinarily is negligible. However, because of the delicate phase space tuning,
the isospin breaking effects are order one. For example, D∗0 → D+π− is completely forbidden
because the isospin-breaking mass differences barely pushes it out of the kinematically allowed
region. On the other hand, the D∗+ decays are pushed further into the kinematically allowed
region and away from the steep drop so that pion decays indeed dominate over the photon decay:
Br(D∗+ → D0π+)≈ 67.7% and Br(D∗+ → D+π0)≈ 30.7%. The upshot with these decay modes
is that they can teach us a lot about the strong interaction since we can reliable calculate the
photon decays.

Now let’s pause to remind ourselves that the story of isospin splitting is something that we
already know very well from our physics childhood: it’s simply hyperfine structure of the hydrogen
atom26 with ‘hydrogen’ replaced by ‘meson’. The mass difference between the D∗ and D is just
the analog of hyperfine splitting due to the magnetic interaction between the proton and electron
in hydrogen. The pseudoscalar D is the singlet and the vector D∗ is triplet of the spin-spin
interaction.

Example 8.11. B∗ decay. Based on the analogy to the hyperfine splitting of hydrogen, what is
the dominant B∗ decay? Recall in the hydrogen atom that the spin-spin coupling goes like 1/mp

due to the dipole moment of the proton. Thus we expect the splitting to go like 1/mB∗ . Given
that the B meson masses are roughly a factor of three larger the D masses—coming from the
relative c and b quark masses—we expect the ∆mB ≡ mB∗ −mB splitting should be a factor of
three smaller than the ∆mD splitting. Since ∆mD ∼ mπ ∼ 140 MeV, we expect ∆mB ≈ 50 MeV,
which is smaller than the pion mass and hence the dominant B∗ decay is B∗ → Bγ.

26To zeroth order all of physics reduces to the harmonic oscillator. The first order correction to this statement
is the hydrogen atom. You should know everything about the hydrogen atom.
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8.4.2 D± → `ν

A natural process to start with is D− → `ν. This is just the same semileptonic pseudoscalar
meson decay that we’ve been used many times now. Let’s repeat the same spiel. We can again
ask which particular lepton we should consider. We know that there is a chiral suppression, so
the electron branching ratio will be very small. This leaves us with the muon and tau. The tau,
however, is hard to measure experimentally and suffers from phase space suppression. The D±

are made up of a d and a c quark so that this probes Vcd. The problem, of course, is that the
factor of |Vcd| always comes along with the decay constant, which we have to get from the lattice.
Combining the phase space and chirality (mµ) suppression, this process is very small. Another
way to say this is that as its mass gets heavier, it becomes easier for the heavy quark to decay by
itself without the contact interaction with the light quark. The only way for a pion to decay is
through an interaction between its valence quarks and the W , but the charm quark in the D can
decay by itself with the other quark simply acting as a spectator. The natural mass scale for charm
decay is mc. The decay factor, fD ∼ ΛQCD. When the mesons are light, mquarkf ∼ 1. However,
as the quark mass becomes heavier than the QCD scale, the spectator decays are enhanced since
the rate goes like Γ ∼ m5. In particular, instead of decays of the form

c

d

W

one has to consider

c s
d

W

8.4.3 D → π`ν

The best way to determine Vcd is through the semileptonic decays,

D± → π0`±ν (8.59)

D0 → π±`∓ν. (8.60)

The two decays are related by isospin and so give the same information. Isospin breaking effects
are small since there is no phase space miracle, unlike the D∗ decay we mentioned above. There is
still a problem: while the D± and D0 are related by isospin, the Ds and πs are not related by any
symmetry. This is troubling since it takes away one more symmetry limit that we had to simplify
our analysis. Compare this to the kaon decay K → π`ν where we had SU(3) flavor to relate the
left- and right-hand side of the decay equation.
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Again drawing from our bag of tricks, we can still write down a ratio of independent decay
rates in which the final states are related by SU(3) flavor,

Γ(D → K`ν)

Γ(D → π`ν)

SU(3)
=
|Vcs|2
|Vcd|2

. (8.61)

We can estimate the error from phase space in the usual way. The correction for the form factor
f+ is measured from the lattice. The important point about the lattice measurement is that this
is done by plotting f+(0) over an unphysical mass strange quark mass m̃s and then extrapolating
to the physical value. There are many papers on whether one should us linear versus quadratic
extrapolations (giving a systematic error), but nice thing is that the ratio of these values between
m̃s = ms and m̃s = mc is much less sensitive to this error. Of course, one could have avoided using
the ratio altogether by directly calculating D → π`ν using the lattice from the very beginning.
In this case one has to extrapolate the mass of the kaon down to the pion mass scale, but this is
within the regime in which lattice techniques are effective.

8.4.4 Neutrino scattering

A surprising method for measuring |Vcd| which claims to have the smallest uncertainty is neutrino
scattering against a fixed target. We know that the fixed target is composed of matter: u and
d quarks. However, as any LHC physicist will tell you, it is also composed of sea quarks27.
In particular, we expect the light (u, d, s) quarks to pop out of the vacuum with some parton
distribution function. This is a huge hadronic uncertainty.

For now let’s be näive and only assume u and d quarks in the target. We can tag a charm final
state by looking for a pair of muons since this must come from the process

ν + d→ µ− + c→ µ− + µ+ + ν. (8.62)

The cross section goes like σ ∝ |Vcd|2 and one can set cuts for hard 30 GeV muon to isolate the
charm decays against backgrounds with ν + u → µ+ + s. (In other words we take the data as a
function of Q2 and perform nice cuts.) What is nice about this is that we are looking at inclusive
decays, unlike our previous exclusive decays. We don’t care about how the remnant of the charm
hadronizes, we only tag on the muons. This gives us a different set of hadronic uncertainties which
we will discuss later.

The problem, however, is ν + s → c + µ coming from interactions with strange sea quarks.
Note that the ratio of these cross sections is

|Vcs|2
|Vcd|2

∼ 20, (8.63)

i.e. the Cabbibo angle squared is 5%. The background rate is twenty times larger, but is suppressed
by the density of s versus d in the target. This latter suppression is only on the order of hundreds,
not billions and so limits our accuracy.

27When typing up lecture notes, the phrase ‘sea quark’ is very problematic. I suspect this is why this phrase has
fallen out of favor.
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One thing we can do is to also look at anti-neutrino beams while tagging on a single muon,

ν̄ + u→ µ+ d. (8.64)

The sea quark background here comes from a sea c. Fortunately, the c quark is not much of a sea
quark because it’s heavy. (Can you imagine what it was like typing this?) Thus this anti-neutrino
process effectively only measures the constituent quarks so that this cross section can be used to
subtract the sea s contribution in the ν scattering.

The hadronic physics involved in this measurement is completely orthogonal to that of the
semileptonic D → π decays. Having these two processes agree gives much more confidence in the
result.

9 Intermission: Effective Field Theory

This material is based on a guest lecture by Flip Tanedo and is somewhat out of
the main narrative of the course. It should be treated as an intermission in which
some useful background information is presented idiosyncratically to better support
subsequent lectures.

Our main goals in this section is to introduce the ‘philosophy’ of effective field theory, go
through an illustrative example, and highlight a few topics which seem to be glossed over by
most QFT textbooks. There is a very long list of very good review articles on these topics, a few
that I have found to be very influential are Hollowood [6], Manohar [7], Burgess [55], Georgi [56],
Polchinski [57], Rothstein [58], Skiba [59], Strassler [60], and the book by Manohar and Wise [61].

Why is the sky blue? (From Manohar [7].) The game-show answer is a phenomenon
called Rayleigh scattering. The idea behind this phrase is that the scattering cross section
of light against the atmosphere depends on frequency in some positive power so that higher-
frequency (e.g. blue) light dominates in these interactions. This is high-school physics. To
get to university physics, we should write down an effective theory. Let us describe the
nitrogen molecules in the atmosphere by some field Ψ. This field has the usual non-relativistic
Schrodinger kinetic Lagrangian but also interacts with photons. The interactions of interest
are those at low energies such that the photon does not probe the Nitrogen substructure—it is
non-ionizing and doesn’t otherwise change the state of the Nitrogen molecule. The interaction
Lagrangian thus looks like

Lint. =
c

Λ3
Ψ̄ΨFµνF

µν (9.1)

=
c

Λ3
Ψ̄Ψ(E2 −B2). (9.2)

Here we’ve just written out the lowest-order Lorentz- and gauge-invariant coupling between
the Ψ and the photon. Since we know that the electric and magnetic fields are gradients, they
are proportional to the frequency E ∼ ω. Thus the amplitude for scattering induced by this
term goes like ω2, from which we deduce that the cross section goes like σ ∼ ω4. This is indeed
the famous frequency dependence in Rayleigh scattering.
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9.1 EFT is not a dirty word

Thus far we’ve made significant progress in our study of flavor physics. We’ve come to understand
the flavor structure of the Standard Model and have slogged through the use of approximate flavor
symmetries to allow us to subject elements of the CKM matrix to multiple experimental cross-
checks. Underlying everything we have done, however, is the notion of effective field theory
(EFT).

In words, EFT is the separation of ‘relevant’ infrared degrees of freedom from ‘irrelevant’ UV
information. The choice of words is certainly loaded from what we know about the renormalization
flow of (ir)relevant operators, but the nomenclature is also unfortunate since it suggests that the
UV information is somehow being discarded. This is wrong and leads to a somewhat pejorative
connotation when we would like to debunk. To start, let’s provide a definition in terms of the
following equation,

LEFT =
∑

i

CiOi. (9.3)

An effective field theory is one where we have factorized information about possibly-but-not-
necessarily unknown UV physics from low-energy ‘active’ degrees of freedom. The UV information
lives in Ci, the Wilson coefficient, which is simply a number—a coupling which generally de-
pends on the scale at which it is probed. The IR information lives in Oi, the effective operator.
These are composed of all of the ‘low energy’ excitations that are physically accessible at the scales
where the EFT is valid.

We’ll formalize these notions as we get to use them more, but let us highlight a few important
points:

• We have not “thrown away” any information, the point is that we’ve just separated infor-
mation into Ci or Oi. (It is true, however, that the map sending UV information into Ci is
not invertible.)

• The sum over Wilson coefficient should run over all allowed operators, including non-
renormalizable operators (unlike our model-building rules in Section 2).

• Implicitly we have introduced a scale Λ, below which the EFT is ‘effective.’ In other words,
we have chosen an energy scale so that physics above that scale goes into the Ci while physics
below that scale goes into the Oi.

• By construction, the EFT is only useful (but we’ll see it’s very useful) for answering questions
about physics below Λ.

• This scale also serves to balance the dimension of the effective operators Oi so that very
non-renormalizable (large dimension) operators are suppressed by large powers of 1/Λ.

• The UV physics that we factorize into the Wilson coefficients need not be known.

There is a very näıve and almost dismissive belief that effective theories are somehow lesser
than ‘fundamental’ theories. This belief is somehow planted deep into our consciousness as physics
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students. We can approximate the gravitational acceleration as constant, but only until we start
thinking about more interesting problems involving orbital motion. We major physics rather than
chemistry because the latter is just an application of the former, therefore the former must be
more pure28. We learn that physics is about Taylor expansions and approximations, which can—at
best—reproduce ‘full’ calculations. All of these things leave the impression that something which
is ‘effective’ is just a poor man’s version of the correct tool.

It is important at an ideological level to address this bias and to explain the value of effective
field theory in particle physics. After all, one of the great paradigm shifts in our field came from
Ken Wilson, who taught us that all models of nature should be understood as effective theories.
There are three major ways in which we use EFT.

1. Bottom-up physics, or “phenomenology” (another word that is sometimes used pejora-
tively). Here one does not know the physics that UV completes one’s EFT, but the Wilson
coefficients contain dimensionful factors which point to the scale by which the EFT must be
completed. The canonical example is Fermi effective theory, where

L = − c

Λ2
JµJ

†µ, (9.4)

writing Jµ = Ψ̄γµ(1 − γ5)Ψ and c is an O(1) number. Experiment tells us that we should

expect ‘new physics’ by the scale Λ ∼ G
−1/2
F ≈ 300 GeV. Of course, we now know that the

W boson appears at 80 GeV and ‘UV completes’ this theory; as is often the case Nature
saves the day with some wiggle room left to spare.

Note that experimentally this is where we are in particle physics: we have discovered and
measured the properties of fermions and massive gauge bosons. We can write down a
Lagrangian for the observed particles containing terms such as ∆L = 1

2
mWW

µWµ. Clearly
such a Lagrangian suffers from non-unitarity at high scales and is not the Standard Model,
in fact, it is a non-linear sigma model. The Standard Model one possible UV completion
that introduces a Higgs turn this theory into a linear sigma model. For more on this point of
view, see the excellent lectures by Nima Arkani-Hamed on low energy supersymmetry [62].

2. Simplify calculations. On the other hand, it may be the case that we know the UV physics
perfectly well. For example, beyond the Standard Model (BSM) model builders focus on the
structure of physics at the TeV scale.

28http://xkcd.com/435/
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TeV
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ΛQCD

BSM: SUSY, XD, . . .

EWPT

Brown muck

Flavor

Multi-loop RG

TeV-scale model building is a great enterprise, but ultimately all respectable models have
to be matched against experiments, and—-for the time being—the most constraining exper-
iments live not at the TeV scale, but at the weak scale in the form of electroweak precision
tests (EWPT) and at the hadronic scale (ΛQCD) in the form of flavor constraints.

We are wise enough to know that we cannot just brazenly compare a theory at the TeV
scale with constraints at different scales; at least in principle one has to run the theory down
to those scales via the renormalization group. Generally going form the TeV scale down to
MW is no problem since all of the effective couplings (even SU(3)c) are perturbative and the
scales are only one order of magnitude apart. However, running down to ΛQCD is a different
story completely! This is the domain of Georgi’s brown muck and adventurers are required
to slog through with multi-loop calculations to maintain any control over anything. This is
hard work!

Fortunately, these RG effects really are dominated by the renormalization of low energy
degrees of freedom that we already know and are familiar with: the usual quarks (at least
those with masses lighter than the energy scale being probed) and gluons. Sure, there are
some small contributions from gluinos or KK quarks or whatever exotica might be charged
under SU(3)c; but these contributions to the RG must be small because this physics has
been effectively integrated out way up at the TeV scale! Thus all we need are some very
technically capable groups to actually do the multi-loop RG calculations from MW to ΛQCD

for an effective theory composed of gluons and quarks whose masses are below the energy
threshold as we run the RG scale down. (There are ‘threshold corrections’ as one flows past
each quark mass.) At the hadronic scale we can sensibly place constraints on the Wilson
coefficients and use this to compare to the parameter space back at MW (and ideally back
at the TeV scale).

Thus one finds several flavor physics updates where theorists and experimentalists convert
experimental bounds to constraints on Wilson coefficients at, say MW . Then any TeV
scale model builder can take their theory and write down the MW -scale Wilson coefficients
in terms of their TeV scale parameters. One can then interpret the bounds on the Wilson
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coefficients from low energies (which enterprising flavor physicists have done for us) as bounds
on combinations of the ‘more fundamental’ parameters of the UV theory.

3. Strong coupling. In this case the UV physics may or may not be known, but is is intractable
by perturbative methods. Such is the familiar case with QCD: we’ve already waxed poetic
about how our scattering amplitudes are well defined for asymptotic states, but because
quarks are strongly coupled, single-quark asymptotic states do not exist. Instead, we must
write down our scattering amplitudes in terms of hadrons, which are the effective degrees
of freedom in the regime below ∼ MW . A more sophisticated example is the description of
light mesons and baryons using chiral perturbation theory.

However, this is in fact a much more general phenomenon in theoretical physics and one
that is much deeper that sometimes your low energy degrees of freedom are dramatically
different from those of your UV degrees of freedom. Two excellent examples in modern
theoretical physics—but certainly not the only two—are the AdS/CFT correspondence and
Seiberg duality. In both cases, one theory becomes strongly coupled and intractable as you
flow into the IR, but we have strong evidence to believe that there there are dual theories
which are weakly coupled precisely in the regime where the original theories are strongly
coupled. These dual theories a priori look nothing like one another and have different
degrees of freedom. The duality is a prescription for taking a UV model and assigning
Wilson coefficients to the effective operators of the IR dual29.

9.2 A trivial example: muon decay

Let us now consider the four-Fermi effective theory and use it to describe muon decay. We would
like to approach this EFT as a tool to simplify calculations. We already know the Standard Model
and we know that the effect is described by the following diagram:

νµ

µ
W

νe

e

Using the Standard Model, we can straightforwardly calculate this,

MSM =

(
ig√

2

)2

ūγµPLu
−i

p2 −M2
W

ūγµPLv. (9.5)

We now want to use this as a toy example to see how four-Fermi theory can simplify our
calculations given a known UV theory. Let us recall that our (V −A) four-fermi Lagrangian takes
the form

L4F = CJµJ
†µ ≡ C

(
Ψ̄γµ

(
1− γ5

)
Ψ
) (

Ψ̄γµ
(
1− γ5

)
Ψ
)
. (9.6)

29There are some differences. For example, with dualities one actually has a one-to-one map between the two
models, whereas for an EFT one cannot reconstruct the UV Lagrangian from an EFT Lagrangian.
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The γµ(1− γ5) structure is typically called (V − A) and made sense back in ancient times when
people used four-Fermi theory. These days we know better that these factors should be thought
of as chiral projectors. This term in the Lagrangian gives us a Feynman rule for the insertion of
this operator:

νµ

µ νe

e

Here each black dot is understood to represent a Jµ fermion bilinear, but the two black dots
together should be understood to mean a single vertex coming from the JµJ

†µ operator.
Note that the amplitude is now trivial to read off, it’s easier than (9.5)—it’s not even tree

level! It’s just a single-vertex with no internal propagators,

M4F = C
(
Ψ̄γµ

(
1− γ5

)
Ψ
) (

Ψ̄γµ
(
1− γ5

)
Ψ
)
. (9.7)

So far the grand promise of EFT seems to pan out, this calculation is indeed ‘simpler,’ just don’t
expect trumpets to sound for such a meager victory. The next step is to use this to determine C.
Technically what we’re doing is an operator product expansion and taking the lowest order
term in p2, but we needn’t quibble over fancy words. Intuitively we are just saying that the energy
scale of the process, p2 = m2

µ, is much smaller than the W mass so that p2 � M2
W and we can

neglect the p2 term. Thus we can determine the four-Fermi Wilson coefficient,

C =
g2

8M2
W

≡ GF√
2
. (9.8)

Now we have a predictive theory of low energy fermion scattering that includes µ → eνν̄. This
theory holds for energies below MW . Note what’s happened here: when we were doing bottom-
up EFT, four-Fermi theory gave us a cutoff Λ4F ≈ 300 GeV. Now, however, we know what the
UV completion is, so we can say that L4F holds for s2 < M2

W . Note that the UV cutoff lives
comfortably below the scale at which the theory actually loses perturbativity.

Let’s compare the two calculations. The Standard Model calculation

• is tree-level

• is valid—in principle—at any energy scale

• is renormalizable, by construction.

On the other hand, the four-Fermi theory

• is ‘not even tree-level’

• is only valid in the range s2 < M2
W
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• is non-renormalizable, and that’s okay.

One way of addressing the non-renormalizability is to say that “this means that four-Fermi theory
is an EFT,” but this is a tautological statement. In fact, the Standard Model is also an EFT
in the sense that it is a theory whose cutoff is taken to infinity so that all irrelevant (i.e. non-
renormalizable) operators vanish. This is the Wilsonian perspective for EFT and is well-document
in Hollowood’s lectures [6].

So far there’s been a missing link. We’ve done the matching (9.8) which defines the Wilson
coefficient in terms of the UV parameters. But there’s a question we could have asked:

At what scale do we match, (9.8)?

This is a silly question. (9.8) is a tree-level relation. It doesn’t really matter at what scale we do
the matching! Well, not quite. There are in fact two important reasons why it does matter:

1. The scale at which the EFT is defined to match the full theory is the factorization scale.
Below this scale we expect our EFT to capture the dominant effects of our theory, while
above it we make no promises.

2. Näıvely, this relation does change as one flows to lower scales due to RG effects.

9.3 The trivial example at one loop

Let us now move on, then, and see how this theory behaves at loop level. Our goal will be to
understand how the full theory and EFT behave as we run down to lower scales. In particular, we
would like to understand the nature of the factorization scale and the deviations (if any) of our
EFT from what we would obtain if we had just used the full theory. The overarching motivation
for all this is that we already know that a key part of flavor physics is being able to do multi-loop
RG evolution from MW down to ΛQCD, it is thus rather important to understand the way this
process occurs.

At scales below MW , the primary renormalization comes from QED. This is, of course, rather
weak at these scales, but we should think of this as practice for QCD loops when we replace muon
decay by a hadronic process. We begin by drawing representative lop diagrams in the full theory:

γ

W

γ

W

The first diagram is manifestly finite by power counting. The second diagram is not finite: it has
a log divergence. Näıve dimensional analysis (NDA) tells us that the bosons go like 1/k2 (in a
convenient gauge) and the fermion goes like 1/k, but recall that the three gauge boson vertex has
a power of momentum as well. This is okay: such divergences not problematic and we already
knew so much when we said that the Standard Model is renormalizable. In particular, upon
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wavefunction renormalization of the active fields, the divergence in this diagram is cancelled and
there is no need to introduce any counter term.

Let us compare this to the analogous loops that we might draw in the effective theory:

The diagram on the left corresponds to the box diagram in the Standard Model. We can note
immediately that this diagram is now divergent because we’ve shrunk the W propagator into a
single vertex. This is not removed by wavefunction renormalization. To the extent that there are
actually any divergences in EFT, this is an actual divergence. We knew this was bound to happen
since our four-Fermi EFT is non-renormalizable. The point, however, is that there never really are
any divergences in an EFT because an EFT is always defined with a cutoff and a renormalization
prescription. For an EFT which is renormalizable (like the Standard Model), this cutoff can be
taken to infinity and forgotten. For non-renormalizable theories, we absolutely must define a UV
cutoff and a prescription for making physical predictions. Thus for this diagram we must introduce
a new counter term δJJ so that the effective Lagrangian contains the term

L4F = (1 + δJJ)JµJ
†µ ≡ ZJµJ

†µ. (9.9)

This is fine, it’s no cause for worry; this is just part of life working with a non-renormalizable
EFT. Note that the counter term implicitly demands that it be accompanied by a prescription for
its definition: you must subtract off the divergence, but you are also free to tune the finite parts
as well. Thus this diagram can be made to match the analogous SM contribution. This is not a
test of the validity of EFT, anymore, it is just fixing a free parameter that the EFT had hidden
at one-loop. On the other hand, one will note that this does have predictive merit, since fixing
this parameter so that the µ → eνν̄ diagram matches at one-loop also trivially makes sure that,
for example, the analogous µē→ νν̄ diagrams match as well.

Now let us move on to the EFT diagram on the right. This clearly matches the second diagram
in the Standard Model with a photon insertion on the W propagator. One might argue that such
an effect cannot ever hope to be captured in the EFT since the EFT does not know about the
W boson. Indeed, if we only accounted for the O = JµJ

†µ operator in our EFT, then this is an
effect that we would miss. However, this effect is suppressed by the W boson propagators which
prevent such diagrams from being appreciable for s � M2

W . In fact, in this case we could look
at this as the statement that our EFT breaks down when this diagram becomes appreciable, i.e.
when s ∼M2

W . This is a valid point.
On the other hand, we can also extend our EFT by including a higher order operator. There’s

nothing wrong with this; we know that higher-order operators are generated at loop-level and so
within the EFT we should include these effects. Of course, the slippery slope of non-renormalizable
theories is that each higher-order operator begets even higher order operators that each require
their own counter terms so that in principle there are an infinite number of new parameters that
we should tune. (This is the real issue with non-renormalizable theories, not that there are any
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‘actual’ divergences.) In practice, we avoid this by only taking a finite number of operators. For
example, we could have just taken the leading terms in 1/Λ, in which case we would only have
the four-Fermi operator, O = JJ . If we want to include the effect of a photon coming off of an
internal W in our EFT, we have to include a new operator which induces a vertex of the form:

We already know how to write down this operator: we just write down the lowest-order gauge-
invariant combination that gives us four fermions and a gauge boson. The correct operator is

∆L4F = C ′
(
Ψ̄γµ

(
1− γ5

)
Ψ
) (

Ψ̄γν
(
1− γ5

)
Ψ
)
Fµν . (9.10)

We remind ourselves that Fµν is gauge invariant for a U(1) gauge field (otherwise one would need
to take the trace of the square). One might also have thought to write down objects where the
photon appears through a covariant derivative, but these vanish through the use of the equations
of motion30. Very näıve dimensional analysis of the external fields (just looking at the 5-point
diagram) us that the operator is dimension 5, which might have led us to [very] näıvely think that
C ′ ∼ O(1/M3

W ). This should cause us to pause since we know that the corresponding graph in
UV theory takes the form

and thus to leading order we expect the EFT term to go like 1/M4
W . The resolution is clear:

gauge invariance forced (9.10) to contain a factor of Fµν , which makes the operator dimension six
so that C ′ ∼ 1/M4

W . Note that in both the EFT and UV theory there is a linear dependence on
the external momentum coming from the derivative in Fµν or alternately the momentum factor
appearing in the three gauge boson vertex.

We can interpret this dimension 6 term as an estimate for the ‘error’ of the low energy EFT
where we only include the four-Fermi interaction; other corrections include those that occur from
taking higher derivative terms in the operator product expansion. We can see that indeed, our
EFT becomes unreliable above energies on the order of O(MW ).

Before closing this discussion, let us qualitatively discuss the loop integrals involved in these
processes. The one-loop correction to the effective four-fermion vertex, for example, has an integral

30That the classical equations of motion should hold in as an operator relation in the quantum theory is a highly
non-trivial statement, but turns out to be true. This fact is used extensively when writing out a complete basis
of electroweak precision operators [63, 64, 65]. For discussions of this fact, see Section 12 of Politzer [66], Chapter
7.7 of Weinberg volume I, Georgi [67], or Arzt [68]. We thank Witek Skiba for explaining this point to us; see his
TASI lectures [59] for further discussion of the topics in this footnote.
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that takes the form
∫ MW

p

d̄ 4k
1

k4
. (9.11)

As we mentioned above, the logarithmic divergence is not removed by wavefunction renormaliza-
tion; we’ll have more to say about this below. What we would like to emphasize, however, is that
this integral can be separated into two pieces:

(∫ µ

p

+

∫ MW

µ

)
d̄ 4k

1

k4
. (9.12)

This is a manifestation of the factorization between UV and IR scales, where µ—which was
hitherto an arbitrary parameter coming from dim reg—plays the role of separating the high and
low scales. This is largely because of the magic of logarithms. This is because the renormalization
factor Z in (9.9) takes the form

Z =

(
1 + α log

M2
W

p2

)
=

(
1 + α log

M2
W

µ2

)(
1 + α log

µ2

p2

)
, (9.13)

so that to leading order in α, (9.12) takes the form

log
M2

W

p2
= log

M2
W

µ2
+ log

µ2

p2
. (9.14)

Still being extremely qualitative, the point of this factorization is that the low-energy logarithm
(log µ2/p2) goes into the renormalization matrix elements of the effective operator while the high-
energy logarithm (logM2

W/µ
2) goes into the renormalization of the Wilson coefficient. In other

words, the Callan-Symanzik equation for an amplitude can be written as

0 = µ
d

dµ
〈out|CiOi|in〉 =

(
µ
d

dµ
Ci

)
〈Oi〉+ Ci

(
µ
d

dµ
〈Oi〉

)
, (9.15)

where 〈Oi〉 is the appropriate matrix element. We’ll say much more quantitative things about
this in Section 9.5.

9.4 Mass-independent schemes

This section is still being written!

9.5 Operator Mixing

10 Remarks on Lattice QCD

We’ve mentioned lattice QCD a few times now, so let us pause to make a few remarks about what
is actually done. We will be necessarily brief, but excellent references for theory/phenomenology
students interested in learning more are the lectures by Sharpe [69], LePage [70], and Gupta [71].
The lattice approach was first proposed by Ken Wilson, who was convinced that the approach
would solve QCD within half a year. Now, forty years later, lattice calculations are just starting
to grow into maturity.
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10.1 Motivation and errors

The basic idea is to discretize spacetime to numerically solve the partition function of QCD,

Z =

∫
Dφe−iS[φ], (10.1)

where φ is shorthand for the quark and gluon fields. In order to calculate this we Wick rotate
and evaluate the action on paths over the discretized spacetime. The Wick rotation is essential to
convert the highly oscillatory integral to one that is exponentially damped and hence numerically
tractable.

Ideally we would like to take the lattice size to infinity and the lattice spacing to zero; this
corresponds to the continuum limit of an infinite spacetime. The fundamental problem (but not
the ‘big’ problem, as we’ll discuss below) with the lattice is that we cannot take these limits
and are restricted both in the IR by finite volume and in the UV by finite lattice spacing. This
introduces a systematic error for any calculation and part of the goal of lattice QCD calculations
is to beat down this error.

On top of this, however, this is also a statistical error coming from the Monte Carlo scans over
a finite number of random field configurations. Thus even if one runs for an arbitrarily long time,
one will eventually run into this statistical error. Problem: I’m confused: shouldn’t the
statistical error decrease with longer running time so that it eventually runs
into a systematic error?

A third source of error comes from numerical relics coming from doing the Wick rotation on
a discrete space. The point here is that while the Wick rotation is perfectly well defined in the
continuum space, it is no longer strictly kosher in discrete space.

The current state of the art calculates make use of a spacetime with dimensions 323×64, where
the time direction has twice the resolution of any space direction. While this may seem relatively
modest, most of the systematic errors come from the particular algorithms used in the numerical
evaluation so that there are more gains from using more sophisticated techniques than from using
a finer lattice.

10.2 ‘Solving’ QCD

Since we are interested in accounting for the non-perturbative effects at ΛQCD, want the IR cutoff
set by the lattice size L and the UV cutoff set by the lattice spacing a to be far from ΛQCD,

L−1 � ΛQCD � a. (10.2)

In practice, the current state of the art values are

L−1 ≈ 30 MeV (10.3)

a ≈ 3 GeV. (10.4)

While we remarked earlier that this is fine for transitions like c → s or describing the φ = ss̄
meson, it seems like the IR limit is still hopelessly larger than the up and down quark masses
and the UV limit is much smaller than the bottom quark mass (and only marginally within the
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range of the charm). Physically, the lattice is unable to take into account the up quark because
at mu ∼ 5 MeV, it is bigger than the entire lattice! Similarly, there’s no way for the lattice to
currently take into account the effects of a ‘real’ bottom quark in its path integral.

Thus in order to make use of the lattice beyond the narrow range of mesons in the ‘sweet
spot’ near ΛQCD, physicists have to use as many analytical tricks that they can before passing
the problem to a lattice calculation. For example, for pions we must first make full use of chiral
QCD before submitting a job to a supercomputer (or, in modern days, a grid computing farm).
Similarly, for heavy quark mesons one must extract everything we can with heavy quark effective
theory before going to the lattice. The point is that we don’t need to pass the full theory to the
lattice, only an effective theory.

10.3 The Nielsen-Ninomiya No-Go Theorem

While all of the above considerations are generic problems for lattice calculations, there is one
particular ‘big problem’ in lattice QCD associated with fermions: the Nielsen-Ninomiya no-go
theorem [72]. It turns out that chiral fermions are very difficult to generate on a discretized
space time. For new physics model builders this is almost a perverse joke: in supersymmetry
one introduces quantum extra dimensions to double the particle spectrum. Meanwhile, it has
been known for over three decades that by quantizing spacetime itself (i.e. latticizing Minkowksi
space) one multiplies the fermion spectrum by a factor of sixteen (24, where four is the number of
discretized dimensions).

Näıvely one can just divide by this factor of 16, but—just like in theories of an ordinary extra
dimension—this makes it tricky to generate the usual chiral fermions of the Standard Model. It
is generally very difficult to restore chiral symmetry on the lattice, though several ideas exist.

The best idea so far, by David B. Kaplan, is very computationally demanding. The idea is to
introduce an unphysical fifth lattice dimension. By adding a domain wall in the extra dimension
one can set boundary conditions to generate a chiral fermion. This has a nice analogy to the
Brillouin zone in solid state physics. For a nice review, see [73]. Contemporary model builders
may recognize this as simply an early manifestation of the split-fermion idea.

Domain wall fermions appear in many contexts. One modern application is the split
fermion scenario, which is reviewed in [74]. The basic idea is to try to explain the hierarchies
in the fermion masses and mixings by assuming an extra dimensional scenario where the
fermion wavefunctions are localized in different parts of the extra dimension. Assume, for
example, that one has a 5D scalar that obtains a vev,

Lφ = (∂Mφ)2 − λ

4

(
φ2 − v2

)
. (10.5)

This gives kink solutions such that φ → ±v as x5 → ±∞. Cosmologically as the universe
cools down to temperatures below T < v one can imagine that the field settles into regions
with 〈φ〉 = ±v. Eventually neighboring kink/anti-kink regions will cancel each other out. If,
however, the points at x5 = ±∞ live in different vacua, then one will be left with a stable
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solitonic kink,

V (x5) = N tanh(ax5). (10.6)

In principle this profile can be sharp or smooth depending on a. The kink is what we know as
a brane in field theory, and a determines the brane’s size.

Of course in realistic models one has to compactify the extra dimension so that the x5 =
±∞ points have to be identified. Practically this means that one has to orbifold the extra
dimension; but we won’t worry about these details. The

Now let’s introduce fermions into the game. Unlike free fermions, we will give these fermions
a background field,

LΨ = Ψ̄(i /D − yφ)Ψ. (10.7)

Doing the usual Kaluza-Klein decomposition and determining the eigenvalue equation for the
zero mode profile f(x5) gives,

(∂5 + yφ(x)) f(x5) = 0. (10.8)

The solution is f = e−S where

S(x5) = y

∫ x5

0

〈φ(x5)〉. (10.9)

This is a peaked profile that is stuck to the kink.

We can understand this intuitively. At values far away from the origin, 〈φ(x5)〉 is large relative
to the temperature of the universe, T ∼ 0, so that the fermions want to stay near the kink
where 〈φ(x5)〉 ≈ 0.

In the split fermion scenario, we add flavor-dependent terms Mi to the fermion Lagrangian,

LΨ = Ψ̄(i /D − yφ+Mi)Ψ (10.10)

which localizes the fermions at different points on the extra dimension. The overlap of wave-
functions, say eL and eR, give the masses and mixings. For example, one can have the leptons
and quarks localized apart from one another in order to prevent proton decay in GUT models.
These days people play similar games with Randall-Sundrum models. (Do I even need to
provide references for this anymore?).
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This is a nice idea, but it makes the computation more difficult since one has gone from a four-
to a five-dimensional lattice.

10.4 The quenched approximation

One idea that is often mentioned when discussing lattice calculations of form factors and decay
constants is the quenched approximation. This is the approximation in which one ignores the
fermion contribution to the path integral. The reason for this approximation is purely computa-
tional restrictions: including this contribution using standard techniques leads to a factor of 103

increase in the required processor-hours to preform calculations.
Let us remind ourselves that part of the art of our science is being able to use controlled

approximations to elucidate physics apart from technical mathematics. This has been one of
the central themes to these lectures. The quenched approximation, however, is not a controlled
approximation: there is no continuous approximation parameter to quantify the error. It’s simply
an approximation made out of necessity and justified post-facto with heuristic arguments. There
is no physics in the quenched approximation31.

Like a childhood blanket, the quench approximation is a relic of a time when the lattice QCD
field was in its infancy. In the past ten years there has been remarkable progress leading to real
unquenched calculations allowing lattice physicists to reduce the error on, for example, quarkonia
spectra from 10% to 1%. The point isn’t that the error has decreased, however, but that the error
is under control and quantifiable.

11 Heavy quark symmetry and the CKM

Recall our ‘big picture’ motivation in Section 3.5 where we explained that for the heavy quark
mesons the dominant contribution to the mass comes from the mass of the heavy quark rather
than ΛQCD and that this affects the mixing of these mesons relative to the light mesons. Now
that we’ve squeezed everything that we could out of approximate flavor symmetries to determine
CKM matrix elements associated with the light mesons in Section 8, let us now proceed to lay the
groundwork for attacking the heavy quark mesons. Our strategy will be to make use of a different
kind of handle on these systems, heavy quark symmetry (HQS).

Heavy quark symmetry is different from the symmetries which we are already used to. For
example, in chiral symmetry we know that there is a parameter in the Lagrangian which we can
set to zero to yield a larger symmetry. In heavy quark symmetry we take the limit where the
heavy quark mass goes to infinity. This is not a symmetry which is manifest in the Lagrangian,
but rather one that is specific to particular meson systems. This is why the subject only blossomed
in the 1990s. There is a nice set of review literature:

• A short review by Mark Wise32 [75]

31By now you should get the feeling that ‘quench’ is a very dirty word in our field. The September 2008 magnet
quench in the LHC delayed the LHC time table to design-energy collisions by several years. http://public.web.
cern.ch/press/pressreleases/Releases2008/PR14.08E.html

32Mark Wise’s middle name is Brian. At some point there was a typo on his driver’s license which spelled it as
‘Brain’ so that his official state ID read ‘Mark Brain Wise.’
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• Technical lectures by Benjamin Grinstein [76]

• Neubert’s lecture notes [77] and a detailed review [78]

• The yellow book by Manohar and Wise [61]33

• Finally, the insightful and idiosyncratic TASI lectures by Howard Georgi, which appear to
only be available on his website34.

11.1 The hydrogen atom

All of the essential physics of heavy quark effective theory is contained in the undergraduate
quantum mechanics of the hydrogen atom. Let’s start with the following question:

What is the difference between hydrogen and deuterium?

Deuterium, you’ll remember, is a hydrogen atom with an additional neutron. Chemists—who are,
after all, effective theorists of atomic physics—call these states isotopes and usually treat them as
‘basically the same.’ We know that technically hydrogen and deuterium differ by their quantum
numbers under the Lorentz group: they have different mass and spin. Why, then, is it that these
two ‘technically different particles’ are ‘basically the same’ in chemistry? To put this on more
concrete footing, if you were suddenly transported to a parallel universe where all of the oxygen on
Earth were replaced by oxygen-17, we would survive just fine because for the most part chemistry
doesn’t care about isotopes35.

The reason why hydrogen and deuterium are chemically ‘basically the same’ is that the elec-
trons really don’t care about the nucleus. Or, to put it in more general terms that will be come
the mantra of this section,

The light degrees of freedom are insensitive to the heavy degrees of freedom that source
the potential.

In the hydrogen atom the nucleus just plays the role of the electromagnetic potential about which
we can do non-relativistic quantum mechanics and calculate energy spectra. To leading order the
potential is insensitive to the mass and spin of the actual nuclear source of the electromagnetic
field. What do the corrections look like?

Problem 11.1. An undergraduate quantum mechanics course should be 30% harmonic oscilla-
tor, 60% hydrogen atom, and 10% “other important ideas.” If you are rusty with the quantum
mechanics of the hydrogen atom, pick up a self-respecting textbook and review it now. The ‘big
picture’ intuition that we’ve been developing should help you better appreciate the physics being
done.

33An anonymous faculty member in our group once implied that Yuval ‘borrowed’ his copy of this textbook.
When that faculty member eventually found his copy, he gave Yuval the extra copy he bought. What a friendly
group that we have.

34http://www.people.fas.harvard.edu/~hgeorgi/tasi.pdf
35We can get away with glib statements like this about chemistry because chemists wouldn’t be reading these

notes. http://xkcd.com/435/
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Recall that in the hydrogen atom we can calculate not only the leading order spectra, En, we
can also calculate the energy splittings coming from fine structure (e.g. spin-orbit coupling) and
hyperfine structure (e.g. spin-spin coupling),

En ∼ me
α2

n2
(11.1)

∆Efs ∼ meα
4 (11.2)

∆Ehf ∼ meα
4me

mp

. (11.3)

Note the extra me/mp suppression on the hyperfine splitting. Physically this is telling us that
in the limit of infinite mass one cannot rotate the proton to reverse its dipole moment. The
additional spin coming from the neutron in deuterium clearly changes the hyperfine splitting.

The other difference coming from the larger nuclear mass leads to a different reduced mass.
Recall that the ‘reduced’ in ‘reduced mass’ means we are reducing a two-body problem to a one-
body problem such as the Kepler system. In the rest frame of the Earth-Sun Kepler system both
the Earth and the sun rotate about a common center of mass,

naturally the heavier object orbits with a much smaller radius. In other words, the whole system
is at rest, but the heavy guy has some small velocity. Thus let us use suggestive language and say
that deuterium also differs from hydrogen by the velocity of the nucleus.

The two differences between hydrogen and deuterium lead to energy splitting, but both effects
decouple in the limit where the nucleus is taken to infinite mass since both effects scale like 1/mnucl.

11.2 Heavy quark symmetry: heuristics

The infinite nuclear mass limit is the precise analog to the heavy quark limit that we’ll be using.
The heavy quark mesons which we’ll consider—primarily B mesons36—are just like hydrogen
systems where the binding comes not from electromagnetism but from QCD. In fact, we may
consider a näıve picture where the light quark orbits the b.

We might argue that this is being too näıve. There’s a very big difference between the elec-
tromagnetic potential and the QCD potential: while the former is perturbative, the latter is
hopelessly non-perturbative. Since virtual partons are O(1) effects, we shouldn’t even be able to
say that the B meson is composed of a b and a light quark, say ū.

This is precisely the issue of the brown muck, the dirty nonperturbative physics that should
make the heavy mesons intractable. Our goal is to get around the brown muck without getting
ourselves too dirty; we want to find ways to calculate the things that we care about without having
to understand the intractable physics of the muck. Should this be possible? Yes! In fact, this

36Recall that tops ‘decay before they can hadronize’ and that the D mesons are only borderline ‘heavy.’
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should now sound familiar: this is precisely what we meant when we said that chemists don’t care
about isotopes, and why we don’t have to re-derive all of the details of deuterium.

When the bottom quark becomes extremely heavy, the B meson spectrum becomes indepen-
dent of its the mass and the spin. Mass, for us, is really an index for flavor (e.g. b or c quark).
We can, of course, completely neglect electromagnetism. The clalculation of the ‘energy levels’ of
the B—that is,the spectrum of mesons)—follows precisely as the hydrogen atom. For example,
the B and B∗ states represent the hyperfine splitting, while the higher spin resonances B1, B2 · · ·
are the p-wave states and so on.

Now assume that mc,mb � ΛQCD and that the spectrum of D and quarks have been measured
in nature along with the mass of the lightest B meson. Just as we could figure out everything
about deuterium once we understood hydrogen, we can similarly determine the rest of the B
spectrum simply based on the D spectrum and the lowest B mass as a reference point. Further,
we are able to do this without knowing the physics of the brown muck just as we didn’t have to
re-derive the deuterium spectrum from scratch. The only difference between the Ds and Bs are
the mass of the heavy quark and, as we said before,

the light degrees of freedom just don’t care.

In the heavy-quark limit, the splitting between these states is the same.

Example 11.1. For example, in the mb →∞ limit, we have the relation

mB∗ −mB

mB∗ +mB

= 0. (11.4)

The B and B∗ are degenerate in the heavy quark limit. In the language of symmetry, we say that
these these two states form an SU(2) doublet with respect to the spin orientation of the heavy
quark. (Recall that these are just the singlet and triplet states of the hyperfine structure.)

Further, up to some normalization we know that

〈B|O|D〉 = 1. (11.5)

What we mean by this is that in this transition—once again—the light degrees of freedom just don’t
care. The b→ c transition hasn’t changed the QCD potential which the light quark feels. In fact,
it doesn’t matter what the operator O is that enacts the b → c decay. This is just a statement
about the wavefunction overlap. We say that the B and D form a doublet under a flavor group
SU(2Nf ), where there are Nf flavors and the factor of two comes from the spin orientation.

11.3 Heavy quark symmetry: specifics

We can now see that heavy quark symmetry is very different from the usual symmetries that we
work with in effective field theory. In ‘normal’ effective field theories integrate out some heavy
degrees of freedom. In the chiral Lagrangian, for example, we can take things to zero and see
how we recover symmetries. Heavy quark symmetry is different in a very fundamental way. The
M →∞ limit does not increase the symmetry of the Lagrangian. In fact, we will only ‘integrate
out’ part of the degrees of freedom.
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When we do a regular EFT, we expand about the vacuum and integrate out high frequency
modes. In heavy quark effective theory, we will expand about the background of a single heavy
quark, say a b. In such a background one assumes that the heavy quark is there classically; we
get it ‘for free’ without having to consider how it might pop out of the vacuum. If we want any
additional heavy quarks, however, we have to honestly pay the cost of introducing an additional
high frequency mode to the background.

Note that this background breaks CP since it prefers a particle versus its antiparticle, but that’s
fine; this is like a ‘spontaneous breaking’ of CP in the region around a heavy quark. Eventually
we will see that we should go to the non-relativistic limit, but let us remark that this is different
from so-called non-relativistic QCD (NRQCD)37.

Let’s now consider the spectrum of mesons containing a heavy quark. This turns out to be
very simple and can be done even before dipping into heavy quark effective theory. The main idea
is to consider an expansion in powers of ΛQCD/mQ, where mQ is the mass of the quark. Due to
the ambiguities in defining a quark mass, we should really say that it is some effective mass—a
pole mass, M̄S mass, whatever—which is identified with a physical mass by some prescription.
The mass of a hadron containing this heavy quark, mH , is

mH = mQ + Λ̄ + a/mQ + · · · . (11.6)

This is a trivial parameterization where we’ve explicitly written out the zeroth, first, and second
order terms in our expansion. The leading term just reminds us that in the heavy quark limit
the mass of the hadron and the mass of the quark are basically the same. The sub-leading terms
all depend on the light degrees of freedom; the Λ̄ is just the mass of the light degrees of freedom
and the a term parameterizes the interaction between the light degrees of freedom and the heavy
quark. Note that Λ̄ doesn’t know about the mass or spin of the heavy quark, it is a parameter that
only deals with the light degrees of freedom independent of the heavy degree of freedom sourcing
the QCD potential. Only the interaction term takes these into account; this is just the hyperfine
splitting in hydrogen.

Example 11.2. Consider the case when the hadron H is a B or B∗. One only observes a difference
between the B and B∗ mass at O(1/mQ), i.e. in the a term. On the other hand, the difference
between the B and the Bs masses occurs at O(m0

Q), i.e. in the Λ̄ term.

By now you should have guessed what kind of information is contained in a: (1) reduced mass
or kinetic energy of heavy guy in the meson rest frame and (2) the spin. In fact, we can further
parameterize a as

a = −λ1 + 2

[
J(J + 1)− 3

2

]
λ2. (11.7)

Here the λ1 term is universal and the λ2 term is associated with the spin, J .

Example 11.3. Which spin does J correspond to: the spin or the heavy quark or the spin of the
meson? J corresponds to the total spin of the meson, just as in the case of the hydrogen atom.

37For a review see, for example, [79]. For an unrelated example of how non-relativistic effective theories can be
used in the theory of direct dark matter detection, see [80].
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By dimensional analysis λ1,2 have mass dimension two. In fact, by the method of “there’s only
one other scale lying around,” we can guess that λ1,2 ≈ Λ2

QCD and Λ̄ ≈ ΛQCD.

Example 11.4. For example, consider the ratio of the Bs–Bd mass splitting to the Ds–Dd split-
ting. Heavy quark symmetry predicts that these splittings are the same up to effects on the order
of 1/mc. Applying (11.6) gives

r1 ≡
m(Bs)−m(Bd)

m(Ds)−m(Du)
=

Λ̄s − Λ̄d +O( 1
mb

)

Λ̄s − Λ̄d +O( 1
mc

)
= 1 +O(1/mc). (11.8)

As another example, one can show that

m2(B∗)−m2(B) = 4λ2. (11.9)

It is, of course, not surprising that this splitting only comes from the non-universal part of the a
term. Comparing to actual measurements, we find

λ2(mB) ≈ 0.12 GeV2. (11.10)

We can do the same calculation the charmed mesons and we would also get 0.12, note that the
bottom gives preferable results since the error goes like 1/mQ. In fact, looking at the differences
in the squared masses of the vector and pseudoscalar mesons for the B and the D,

m2(B∗)−m2(B) = 0.47 GeV2 (11.11)

m2(D∗)−m2(D) = 0.55 GeV2. (11.12)

What about the kaon? Of course, we don’t expect this heavy quark symmetry to hold, but it
turns out that m2(K∗)−m2(K) = 0.55 GeV2. What do we get for the ρ and pion? We can neglect
the pion mass, and we recall that mρ = 770 MeV so that the difference of the squared masses is
0.57 GeV2. There’s no reason why these should hold, but it is a notable observation that they do.

11.4 HQET

Now let’s get to the heart of heavy quark effective theory (HQET), where we make use of the idea
that we will expand about the background of a classical heavy quark. We now have to be a little
more formal. Suppose we have a b quark in an on-shell hadron with momentum

pµH = mhv
µ. (11.13)

Here we have introduced the relativistic four-velocity, vµ, in anticipation that we will eventually
take a non-relativistic limit. If the hadron is on-shell and if the quark is indeed heavy, we can say
that the b quark itself is also ‘almost on-shell’ in the sense that to good approximation we know
the momentum of the heavy quark,

pµq = mQv
µ + kµ, (11.14)
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where kµ is a small correction such that kµ � mQv
µ. Let us define a four-velocity for the heavy

quark,

vµQ =
pµQ
mQ

= vµ +
kµ

mQ

. (11.15)

The second term is now manifestly a small correction and in the heavy quark limit, vQ = vH .
Now we introduce a trick. Let us define a projection operator

P± =
1± /v

2
. (11.16)

where /v = vµγ
µ. This projects between particle and anti-particle states. Thus let us define the

projected states,

hv(x) = eimQv·xP+Q(x) (11.17)

Hv(x) = eimQv·xP−Q(x). (11.18)

The overall phase is like the unphysical phase of the Schrodinger equation where the energy is
arbitrary (unless we include gravity). All we’re doing is pulling out the quickly oscillating part of
the Q. These are projection operators in the sense that

/vh = h (11.19)

/vH = −H. (11.20)

Let’s go to the rest frame of the particle vµ = (1,0), then these h and H are just the upper
and lower two components of the four component Dirac spinor. These are just the electron and
the positron. Note that the h and H particle/antiparticle decomposition is different from the χ
and ψ̄ chiral decomposition.

Let’s go ahead and write the heavy quark field as

Q(X) = eimQv·x (hv(x) +Hv(x)) . (11.21)

We can now plug it into the Lagrangian to obtain

L = Q̄(i /D −mQ)Q (11.22)

= h̄viv ·Dhv − H̄v(iv ·D + 2mq)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv, (11.23)

where we’ve defined

D⊥ ≡ Dµ − vµ(v ·D). (11.24)

In the rest frame, v ·D⊥ = 0 so that D⊥ = (0,D). Now let’s integrate out the ‘heavy degrees of
freedom,’ Hv. To do this we solve the Euler-Lagrange equation for Hv which gives

Hv =
1

2mQ + iv ·D · iD⊥hv. (11.25)
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We can use this to eliminate Hv from the Lagrangian,

L = h̄viv ·Dhv + h̄vi /D⊥
1

2mq + iv ·Di
/D⊥hv. (11.26)

Great! Mission accomplished. Note, however, that the second term is rather funny-looking; it has
a derivative in the denominator. Intuitively this is the remnant of the Hv propagator. It is a non-
local term. In order to convert this into a local term—as required for an effective Lagrangian—we
do an operator product expansion in v · D/mQ � 1, since the derivative acts on the light field
and picks up a momentum on the order of ΛQCD. Expanding we get

L = Lkin +
1

2mQ

∑
h̄vi /D⊥

(
i− v ·D

2mq

)n
i /D⊥jv (11.27)

= Lkin +
1

2mQ

h̄v (iD⊥)2 hv +
gs

4mQ

h̄vσµνG
µνhv + · · · . (11.28)

So now we’ve written out the leading-order higher-dimensional operators in our heavy quark EFT.
We should actually look at these two terms with great fondness. The first term is just a factor on
the order of p2/mQ ∼ Λ2

QCD/mQ while the second term is a chromo-magnetic operator. These are
precisely the λ1 and λ2 terms in (11.7), which we had identified from very physical intuition. Let
us define effective operators

O1 +O2 =
1

2mQ

h̄v(iD⊥)2hv +
gs

4mQ

h̄vGµνG
µνhv (11.29)

It just jumps out at you that these terms correspond to kinetic energy of the heavy quark in the
rest frame of them meson and the hyperfine interaction between the heavy quark and the brown
muck. This allows us to identify the physical meaning of the λ1,2 parameters,

〈H(v)|O1,2|H(v)〉 ∼ λ1,2. (11.30)

The ‘perpendicular’ covariant derivative D⊥ is kind of annoying, but fortunately the deviation
between D⊥ and D is third order so that when we work only to second order it can be replaced
by the full covariant derivative, D.

11.5 Measuring |Vcb|
Finally, let’s use heavy quark symmetry to obtain something useful, |Vcb|. As was the case with
SU(3) flavor, we want to invoke heavy quark symmetry to simplify our treatment of the form
factors.

11.5.1 B → D decays

The natural decays to consider are

B → D`ν̄ (11.31)

B∗ → D`ν̄ (11.32)

B → D∗`ν̄. (11.33)
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Note immediately that (11.32) is highly suppressed. Under heavy quark symmetry the rates
for (11.32) and (11.33) should be the same since the B and B∗ (as well as the D and D∗) are
doublets under spin symmetry. However, (11.32) is a lost cause since B∗ decays via B∗ → Bγ
electromagnetically, which is much stronger than weak decay, c.f. Example 8.11. Of course, the B
subsequently decays according to (11.31), but now we cannot make use of the form factors.

We are thus left with (11.31) and (11.32). If we didn’t know anything about heavy quark
symmetry we would say that (11.31) contains two form factors, while (11.33) contains four (one
for the vector and three for the axial), giving six for these two decays. In addition, we can also
use the baryon decay,

Λ1 → Λ2`ν̄, (11.34)

which is essentially the same as neutron decay. This also has six form factors, giving a grand total
of twelve form factors between the three decays. Yuck!

Now for a big surprise: In the heavy quark limit, all of these form factors are either zero or
the same non-zero value, which we can normalize to unity. This allows us to write everything in
terms of a single form factor. Even better, it is easy to understand how actual QCD differs from
the heavy quark limit in terms of an object called the Isgur-Wise function which is universal
and depends only on vb · vc.

Let us work in the specific limit

mb

mc

= const (∼ 3) (11.35)

while simultaneously taking mb →∞. Imagine a B meson to be composed of a b quark surrounded
by brown muck. Consider the velocity of the b to be the same as the velocity of the entire meson,
vb = v and suppose the b decays into a c and let us write the velocity of the c as vc = v′.

Now we would like to ask what would happen if we replaced the B meson with a B∗ or if we
changed the D to a D∗? Would the brown muck also be excited? No, nothing would happen. We
have a theory of QCD where we treat electroweak currents as external sources. If Harry Potter
waved his magic wand and turned the b into a c quark, the brown muck would more or less stay the
same. This is just like our atomic physics analogy where adding another neutron to an atom won’t
lead to a big change in its chemical properties; nothing happens. And when nothing happens, the
intuitive value of the form factor is unity (suitably normalized, of course).

In the limit of v → v′, we don’t care about b versus c, D versus D∗, or any of these ‘magic
wand’ modifications that don’t significantly affect the brown muck. In fact, we don’t even care
how the b→ c transition occurs, as long as it is short distance. This transition could just as well
have come from a vector current, an axial current, some V ± A combination, or Harry Potter’s
magic wand.

Now consider v 6= v′. In the decay B → D this corresponds to the c quark picking up a non-
zero velocity in the meson rest frame. Note that we are not allowed to assume the non-relativistic
limit for the velocity of the c quark, v′. The only thing we know is that the b is non-relativistic in
the meson rest frame. (It is a fallacy to say that ‘everything’ is non-relativistic in the heavy-quark
limit.) The c can be relativistic in the rest frame of the B. In this case, the b decays to c with
some generically-not-small velocity and suddenly brown muck sees the color flow moving. Then
one of two things happen,
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1. The brown muck can follow the color flow. This corresponds to B → D decay.

2. The brown muck can pop things out of the vacuum to produce other things.

This brings us back to the meaning of the form factor: the probability for B → D versus other
decay processes when things are not at rest. The analogous statement in the hydrogen/deuterium
atom is that not only do we take away a neutron, but we give the proton a kick. The form factor
can be interpreted as the overlap between the electron wavefunction before and after the kick and
represents the probability of finding an electron in a given shel after the proton kick. The case with
the brown muck is completely analogous except that we do not know the explicit wavefunction.

There’s one simple option for generating a Lorentz invariant out of v and v′: w ≡ v · v′, where
w is just what we usually call γ, the boost. The form factor is given by some universal function
of only w called the Isgur-Wise function, ξ(w), such that ξ(1) = 1, i.e. when v = v′. In general
w ≥ 1. We don’t know much more about ξ(w), but we can see how far we can go with these
properties.

Let us choose a somewhat different normalization of so that we right the form factors,

1

mB

〈B(v)|V µ|B(v′)〉 = ξ(w) · (v · v′)µ. (11.36)

We can compare this to the ‘usual’ way of parameterizing the form factors,

〈B|V µ|B〉 = F (q2)(p+ p′)µ. (11.37)

Example 11.5. By the way, why is there no (p− p′) term? It is zero in the isospin limit.

Now we would like to calculate the form factors based on the Isgur-Wise function. Let’s look
at the decay of B → D so that we would like

1√
mBmD

〈B(v)|V µ|D(v′)〉 = ξ(w) · (v · v′)µ. (11.38)

In the ‘usual’ notation,

〈B|V µ|D〉 = F+(q2)(p+ p′)µ + F−(q2)qµ. (11.39)

Our hope is to relate the form factors F± to the Isgur-Wise function ξ(w). First consider the case
v = v′ (w = 1). We find

F±(q2)
∣∣
w=1

=
mB ±mD

2
√
mBmD

. (11.40)

HELP: please specify the ξ(w) dependence. In principle there are two form factors, but in
the heavy quark limit they are related so that we only have to determine one of them before we
can start making predictions.

Three remarks are in order:

1. Does this work for B → D∗? Yes, it’s more complicated because the form factors include
more terms, e.g. contractions with ε tensors, but at the end of the day everything is indeed
expressed in terms of ξ(w).
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2. What kind of corrections are there in the heavy quark limit, ξ(1) = 1? There’s a correction
from the finiteness of the heavy quark mass, 1/m2

Q as well as perturbative αS corrections
from soft gluons.

3. Luke’s theorem. If you expand about an extremum, the correction is always second order.
This is why the leading order correction to ξ(w) = ξ(1) + · · · starts at O(1/m2

W ). The point
ξ(1) is an extremum because we’re looking at a situation with ‘maximum wavefunction
overlap.’

Now what do we want to do with all of this? We would like to measure B → D and use the
spectrum to obtain |Vcb|. Ideally we would like to look at the case where w = 1, i.e. where the
charm is at rest, but the phase space—and hence statistics—for this is very small. We must thus
look at all events, plotting the total number events as a function of w. We can then use the data
to extrapolate the curve to the w = 0 case. [Insert plot.] Since we know ξ(1) = 1 we can
expand about this point,

ξ(w) = 1− ρ2(w − 1), (11.41)

and fit for the parameter ρ. There is a small unremovable theoretical uncertainty associated with
this. The number that we get is something like 0.44. (HELP: check this)

11.5.2 Inclusive decays

There is another way to get information about |Vcb|. Consider the decay B → Xc`ν, where Xc

means any state containing a c quark. This is called an inclusive decay. There is a principle
called quark-hadron duality38 which says that information about inclusive hadronic decays tell
us about the parton-level processes. For B → Xc, for example, this duality tells us that

B → Xc`ν ≈ b→ c`ν. (11.42)

The important symbol here is the ‘≈.’ The B decays into something charmed and potentially a
lot of other stuff. When we sum over all of this ‘other stuff,’ we say that this amplitude should
be approximately the same as that of the quark-level b→ c amplitude. Said in another way, one
can predict the rates for inclusive hadronic processes by calculating the quark process.

It is important to stress that despite it’s seemingly innocuous appearance, this quark-hadron
duality is far from trivial. Consider the measurement of the famous ‘R ratio’,

R =
σ(e+e− → hadron)

σ(e+e− → µ+µ−)
. (11.43)

Recall that the plot of R over q2 is one of the famous checks for the existence of quarks. Quark-
hadron duality tells us that this plot should look like a series of step functions with a step at each
quark’s mass threshold, with some smoothing due to phase space. [include plot]

If we compare this to actual experimental plots of the R ratio, we can immediately see the
problem. [include plot] There are lots of peaks associated with hadronic resonances which

38This is a duality from the pre-string theory days, when we [phenomenologists] had more dualities than they
did.
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clearly do not appear in the quark-level analysis. For example, at the ρ resonance, e+e− → ρ→ ππ
has a huge cross section—much larger than one would predict from the naive quark-level diagrams.

Clearly there’s a subtlety in the quark-hadron duality principle. The subtlety is that we must
smear out the data. For example, in Mathematica we can smooth out the data. What is the scale
of the smoothing? ΛQCD, of course! When we smear out features on this order and smaller—that
is when we integrate over these features—we begin to follow the quark-level b→ c`ν plot.

To measure |Vcb| we just have to plot the spectrum of B → Xc`ν, integrate over some region
of q2, and pretend that we’re looking at a plot of b→ c`ν. In the heavy quark limit it’s clear that
the B decay really is the same as the b decay, so that to leading order we’re done. Of course, after
developing HQET we can go further and discuss the corrections coming from λ1 and λ2. [See
long homework problem on this.]

Example 11.6. Operator dependence. Manohar and Wise originally calculated the 1/m2

corrections to B → Xceν from the vector operator. Suppose you wanted to calculate the scalar
operator, as Yuval and Zoltan Ligeti did when they were graduate students. How do you expect
the λ1 and λ2 corrections to relate to to those calculated by Manohar and Wise? The λ1 prefactor
is the same while λ2 is different. This is because λ1 is the correction coming from the kinetic
energy of the heavy quark, which has nothing to do with the operator.

11.6 Measuring Vub

Let us briefly discuss |Vub|. The natural decays to consider are

B → π`ν (11.44)

B → ρ`ν. (11.45)

There’s an obvious problem: we cannot use HQET. In fact, there are problems with statistics
since this process is CKM suppressed since |Vub| ∼ 0.01|Vcb|. The key here is to use soft collinear
effective theory, which we do not have time to discuss further.

One idea we might have is to look at inclusive decays,

B → Xu`ν. (11.46)

However, this doesn’t help either, since ‘Xu’ is not a well-defined signal experimentally—this would
just be ‘hadronic junk.’ For example, an experimentalist can’t tell it Xu apart from Xc: if you see
a charm then you know it goes in Xc, but if you don’t see a charm then it’s not necessarily true
that there wasn’t one. (The Xu is a small theoretical error on the Xc inclusive decay.)

Fortunately, there’s a trick. We can use phase space. There’s a kinematic endpoint in the
energy of the electron which is different for the Xc and Xu decays. The Xu decays allow higher-
energy electrons. [See plot of dΓ/dE`, the Xu line is really small.] The point is that
there’s a little area where the up overcomes the charm in the endpoint region. Experimentally
this turns out to be do-able, but it’s still very hard.
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12 Boxes, Penguins, and the CKM

We’ve taken a grand tour of the CKM matrix elements by looking at flavor-changing tree-level
processes. One set of matrix elements have eluded us: |Vtb|, |Vts|, and |Vtd|. This brings us to the
top.

12.1 The trouble with top

We know that the top is a special case. For one, we know that it doesn’t hadronize—but this is a
good thing from the point of view of measuring CKM elements since it suggests that we can avoid
the worrying about dreaded form factors. On the other hand, we also know that tops are hard to
produce. To date (i.e. in the pre-LHC era) physicists have only produced about a hundred or so
tops in the lab. Compare this to maybe billions of bs and trillions of cs. Experimentally tops are
identified by tagging the associated b (looking at the invariant mass of the W and b jet) so that
it seems hard to measure anything other than Vtb. Further, even if we could get around this—for
example by looking at the mass of decay products—there would still be no way to tell Vtd from
Vts.

What a mess. There are still a few things we can do. For example, we can compare measure-
ments of the top with and without b tagging,

|Vtb|2∑ |Vti|2
= 0.94± 0.30. (12.1)

Another way to do a CKM measurement is through single top production. Tops are more
likely to be produced from gluons than W s, but gluon vertices don’t carry CKM elements. For-
tunately, tops produced from a W can be distinguished from those produced by a gluon since
gluon-borne tops come in particle–anti-particle pairs. The relevant diagram is

d

u

W

b

t

Example 12.1. Tevatron versus LHC. Given the initial states for the above diagram, what
can we say about what kind of collider we should use to probe this? The Tevatron is a proton anti-
proton collider so that there are actual up and anti-down valence quarks. Indeed, the Tevatron
has produced tens of single tops to date. The LHC, which is a proton–proton collider, requires
the anti-down to appear as a sea quark. Actually, this was a trick question: this process occurs at
small x where the parton distribution functions become large so that there is actually an additional
enhancement that makes the LHC not-so-bad at single top production.

This is all we have to say about top decay at tree-level. Unsatisfied? You should be. Fortu-
nately, there’s a sneaky way to get to the top matrix elements: we can look at loop-level processes.
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12.2 Loops, FCNCs, and the GIM mechanism

Now that we’re passing from tree-level to loop-level processes, Yuval makes an obligatory reference
to the circus trees in Gilroy which are grown in such a way that their trunks form loops39.

Now that we’ve resigned ourselves to loop-level processes and the associated loop suppression
factors, a natural set of processes to look for are flavor-changing neutral currents (FCNCs) since
we already know that these vanish at tree-level in the Standard Model. A loop correction to a
tree-level process is hard to observe, while a small effect which is the only source of signal has at
least a chance of being measured well.

One of the well-known morals of flavor physics at loop level is the GIM mechanism, named
after Glashow, Iliopoulos, and Maiani. The underlying principle is that for a unitary matrix, any
pair of columns (or rows) are orthogonal. Most readers will already be familiar with the GIM
mechanism from their courses and reading in particle physics. The first non-trivial point is that
loop-level FCNCs are most sensitive to the heavy (!) quarks running in the loops, so that we can
be sensitive to the top.

In loop-level processes particles go off shell, where we would expect the Appelquist-Carazzone
decoupling theorem to hold [81]. This tells that when we take the mass of the internal particle
to infinity, its effects on physics at much lower scales must vanish. But now we are saying that the
heavy particles in FCNC loops do not decouple. In fact, the result of the amplitude is a function

of the form f(
m2
t

m2
W

), which goes to a constant for large values of its argument. What’s going on?

12.3 Example: b→ sγ

Now a classic example, b→ sγ, first observed at Cornell, about halfway through CLEO’s lifetime.
This was when Yuval was in grad school and his first paper was on this so-called penguin dia-
gram. The curious etymology of this process is best explained in John Ellis’ own words, as cited
in Shifman’s introduction to the ITEP Lectures in Particle Physics [82]. Here’s an example of a
penguin diagram,

The dependence of b→ sγ on the CKM matrix takes the form

M∝
∑

i

V ∗ibVis = 0, (12.2)

where we sum over the internal quarks, i. This product vanishes identically by unitarity. This
tells us that any term independent of the internal quark mass must necessarily vanish. (We’ve

39Yuval once spent fifteen minutes looking at photos of these trees in his office saying ‘Wow! Come look at this! ’
to any student who passed by. Another story Yuval has about Gilroy is the city’s annual garlic festival. When
he was at SLAC Yuval took his family to the garlic festival and said that his son smelled like garlic for a week
afterward and that “it was amazing.”
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drawn this as a chirality-flipping mass insertion in the diagram above.) We can conclude that

M =
∑

i

V ∗ibVisf(mi). (12.3)

We can expand f in a power series. If mi � mW then f(mi � mW ) ∝ m2
i /m

2
W . The W indeed

satisfies the decoupling limit. When we take mi large (say mi = mt), however, the argument is
not valid. Thus we know that f(m2

i /m
2
W ) is linear at small values and constant at large values.

The function f is called the Inami-Lim function, because they did all of these diagrams in the
1980s40 [83].

Finiteness of penguins. The penguin amplitudes are manifestly finite in 4D. One näıve
argument for this is that any divergences are independent of the internal quark mass (say, using
dimensional regularization) so that unitarity kills any divergences. This, however, obfuscates
deeper reasons why the amplitude is finite. One heuristic argument that the loop level must
be finite since symmetries preventing FCNCs prevent any tree-level counter-term. (Note that
this argument does not depend on renormalizability.) However, an even deeper appreciation
for the finiteness can be found in an excellent paper [33]. The summary for 4D penguins is
that there are two sources of suppression that reduce the superficial degree of divergence for
these diagrams:

1. Gauge invariance, in the form of the Ward identity, requires the amplitude to depend
explicitly on the external momentum. This is explained very clearly in [84].

2. Lorentz invariance prevents divergences which are odd in the loop momentum, k. In
other words,

∫
d4k/k/k2n = 0. Since the leading order contribution to b → sγ is even in

k, the next-to-leading term is odd and vanishes.

As a final remark on this, one can also argue that the chiral structure of this process provides
a suppression mechanism. The penguin is mediated by a σµνFµν operator that requires an
explicit mass insertion. This turns out to be equivalent to gauge invariance.

The reason why decoupling is violated is that the are essentially mediated by the longitudinal
part of the W by the Goldstone Equivalene theorem. Thus the coupling to the fermions is
essentially a Yukawa coupling, which goes like the fermion mass. When you have a particle whose
coupling is proportional mass, then it is clear that decoupling fails. Thus the GIM mechanism tells
us that one-loop diagrams carry factors of m2

i /m
2
W , where i is summed over the internal quarks.

12.4 History of the GIM mechanism

In the early days of the quark model, physicists thought there were only three quarks u, d, s. SU(3)
flavor symmetry seemed to describe the light hadronic states well and there wasn’t any motivation
for the fourth quark. The GIM mechanism gave a motivation: it is a way to avoid FCNCs at

40It wasn’t until the 80s that anyone really believed that the top quark might be so heavy!
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tree-level. Recall that if someone with no knowledge of the Standard Model stared at the PDG
for a long enough time, that person might realize that it was very curious that neutral current
processes like KL → µ+µ− were heavily suppressed relative to the charged current processes. In
the 60s people couldn’t reach the precision to see this decay while it’s charged current cousin was
readily measurable. GIM gives a way to understand this: the neutral current process is suppressed
by a loop factor and by a GIM factor,

M∼ g2

16π2

m2
c

m2
W

. (12.4)

Next Gaillard and T.D. Lee calculated at KK̄ mixing, keeping and dropping factors of two some-
what haphazardly as theorists are wont to do. Their calculations gave a prediction the mass of
the c, 1.5 GeV which is remarkably close. It turns out that (like many good theorists) Gaillard
and Lee had luck on their side, since if one follows their calculation somewhat more honestly,
one obtains a value between 0.5 and 10. The charm was finally observed in 1974 at SLAC and
Brookhaven.

An interesting question is which quark dominates the b → sγ penguin? It seems we have
already spoiled the answer since we said that heavy quarks dominate in penguin loops, but we
should be careful since there’s also a CKM suppression associated with the top so that there is a
competition between the large mass and the small CKM elements. Comparing the loops with an
internal top and charm,

Mt ∼ m2
tVtdVts (12.5)

Mc ∼ m2
cVcdVcs. (12.6)

It turns out that the charm wins but that the top amplitude is in the same ballpark. So in
this sense Gaillard and Lee got a little bit lucky once again, since back then nobody would have
believed that the top was so heavy that it might challenge the charm contribution.

Example 12.2. Up-type versus down-type quarks. What can we say about it D → πγ?
What about t → cγ? These should all be small. The processes with external down-type quarks
(and hence interal up-type quarks) are carry factors of m2

t/m
2
W which are not small at all. For

processes with external up-type quarks, on the other hand, the GIM mechanism is very efficient
because m2

di
/m2

W is small for any down-type quark di. In other words, the fact that the s and b
are much lighter than the c and t means that FCNCs are more visible in the down quark sector.

A poor expansion parameter. What should we make of the fact that mt/MW is a poor
expansion parameter? For box diagrams contributing to B → µµ where the top is indeed
the dominant fermion running in the loop it may seem surprising that the approximation
f(m2

t/M
2
W ) ≈ m2

t/M
2
W is still good even though the expansion parameter is now large. It

turns out that this result is off by O(4). You can check the plot of the relevant function in Fig.
5a of the original paper [83], from which one can see that the Inami-Lim function is indeed
reasonably close to the linear approximation even for large values of its argument.
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Example 12.3. FCNCs in the lepton sector. GIM is most effective in the lepton sector.
Given that neutrinos have mass, we would processes like µ→ eγ (the leptonic analog to b→ sγ).
In the Standard Model rate goes like m4

ν/m
4
W ∼ (10−1/1011)4 ∼ 10−48. Loop factors and couplings

give a few more powers, leading to around 10−52. GIM effectively kills leptonic FCNC at one loop.

12.5 Measuring the b→ sγ penguin

One interesting question in b → sγ is the energy spectrum of the emitted photon. In µ → eγ
the spectrum is trivial, it is just a line at the only kinematically allowed energy. For b → sγ, on
the other hand, hadronization allows an actual shape since the actual measurement is B → Xsγ.
Quark hadron duality tells me that to a good approximation I can just say that I have an s quark
and the photon spectrum is just a line. But this approximation relies on smearing. When you
cannot smear then the approximation is not good. In fact, the spectrum is far from the delta
function. The spectrum is called a shape function. This is a truly non-perturbative object
that we do not know from first principles. (Even the lattice doesn’t come close right now—it’s
inclusive, and lattice at best can do one or two hadrons.) The one thing that is good—remember
Vub which relied at the end of the spectrum—is that the shape function in b→ sγ can be related
to Vub. These hadronic unknowns can at least be related to one another so that one measurement
can be used as input into other measurements.

Given the distribution in photon energies, the reality of experiments requires us to put a cut
on the photon energy, bounding it from below. These cuts introduce problems. If we want to
measure the b→ sγ branching ratio and we can only measure part of the spectrum, then we have
to extrapolate to get the rest of the spectrum. Since the spectrum is pure QCD this is very hard to
do with any confidence. Thus the calculation must also be done with a cut; and the lower the cut
the more we trust the calculation. Current lower limits from BaBar and Belle go down to about
1.6 GeV. As we push the cut lower and lower we increase the statistics and reduce theoretical
error, but also we also pick up more background and lose purity. Eventually we get a number for
the inclusive decay B → Xsγ which is published with an explanation for how this cut is taken.

12.6 Measuring b→ sγ versus b→ dγ

How can we distinguish b→ sγ from b→ dγ? Consider the ratio

Br(B → Dγ)

Br(B → Xsγ)
∼
∣∣∣∣
Vtd
Vts

∣∣∣∣
2

∼ λ2. (12.7)

It would be very nice if we could measure this ratio of CKM elements. However, we cannot ex-
perimentally distinguish between Xs and Xd. It’s the same old story: “things which are very nice
theoretically tend to be hard to do experimentally, and if you can measure something experimen-
tally, you don’t really know what you’re doing theoretically.”

Another approach to go is to go make exclusive measurements. We could, for example, look
only for

B → K∗γ. (12.8)
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Note that angular momentum conservation prevents us from considering B → Kγ. The problem
with B → K∗γ is that the branching ratio is much smaller: it turns out to that only roughly 20%
of the s quarks hadronize into K∗s. This is nicer, however, because we once again have a definite
γ energy from kinematics. The theoretical problem is calculating the hadronic part? We need
form factors,

〈B|O|K∗〉. (12.9)

At least we can compare this to B → ρ, allowing us to determine the ratio

∣∣∣∣
Vtd
Vts

∣∣∣∣
2

∼ λ2. (12.10)

Comparing B → ργ and B → K∗γ gives this ratio to SU(3) flavor symmetry breaking effects
since the form factors (and hence a big chunk of the hadronic uncertainties) cancel in the SU(3)
limit. Ultimately small statistics limit the usefulness of B → ργ (the ρ is miserable to identify
because it is so wide), but at least it’s an independent measurement.

Temporary: these will eventually show up in the operator mixing section of these notes.
Five more minutes: the theory of b→ sγ. One of the hardest calculations that’s ever been

done “really” using perturbation theory. g − 2 is one of them, b → sγ is the other one. The
point is that naively all you have to do is calculate these trivial diagrams. This only gives O7.
When we run to the b scale we need other operators, e.g. O8. From the W scale down to the
b scale these mix. The effect is huge. You’ll be off by a factor of six if you miss the mixing
(factor of six enhancement from mixing).

Simple way to think about it. What does it mean to do the running? Just take into account
higher order loop. What happens if you add a gluon to O7 and a QED correction to O8. The
two are the same. Just heuristic to show that they really should mix.

The point is: once you have an effect that, at one loop, changes the result by a factor
of six, then you start to worry about two loop. In fact, you have to start going to higher
loops. (In fact, the ‘tree level’ was already one-loop.) At three level there’s a 10×10 matrix of
anomalous dimensions. The Swiss do it even better than the Germans. It takes a long time
to do the calculation, end up with some un-removable uncertainty associated with setting the
scale. Brings you down to 5% error and probably cannot do much better theoretically. This
is a whole industry, people spend their entire careers doing this.

Example 12.4. Chiral enhancement of b→ sγ. This is one of the most promising low-energy
processes in the search for new physics. This is because b→ sγ is particularly sensitive to charged
scalars; let’s consider the charged Higgs in a 2HDM as a concrete example. The coupling of the
charged Higgs is proportional to the Yukawa so that it’s small in b decays. In b → sγ, however,
there is an interesting enhancement that makes it dominate over many other b decays. Consider,
for example, b→ cτν41. [Draw SM diagram with vector and with charged Higgs.]

41Yuval calculated the QCD correction to this process—to good approximation it “got him his first postdoc.”
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How relevant is the charged scalar relative to the vector? The bcH± and τνH± couplings
go like mb/v tan β. For the W -mediated decays one has couplings which go like g/

√
2. In the

approximation where mW and mH are the same the the ratio of the vector to scalar amplitudes is

g2

ybyt tan2 β
, (12.11)

so that it’s not usually easy to probe the charged Higgs. The point, however, is that the charged
Higgs diagram it is a tensor operator,

mbσµνF
µν , (12.12)

where the ‘mass insertion’ mb is required because the σµν connects opposite-chirality states.
There’s no way to generate vector operator since s̄γµbA

µ is not gauge invariant. In the charged
Higgs diagram we get the mb insertion ‘automatically’ from the Yukawa coupling. The vector
diagrams, on the other hand, require an additional mass insertion giving a mb/mW suppression
and enhancing the relative importance of the charged Higgs diagrams that is largely independent
of tan β. (I don’t understand this.) This allows us obtain a bound on the mass of the charged
Higgs, mH+ > 300 GeV in the limit where we can neglect other diagrams. (In SUSY the other
penguin diagrams weaken this bound.)

13 Meson Mixing and Oscillation

Mixing and oscillation are two of the key ideas in flavor physics and always come hand-in-hand.
As a point of nomenclature, it is useful to distinguish between the two very closely related ideas.
Mixing is a theoretical statement that tells us that the flavor eigenstates are different from the
mass eigenstates. For example, in SUSY we know about the mixing of the gauge-eigenstate bino
and winos into the charginos. In mesons we have the flavor and the mass states. Oscillation, on
the other hand, is the time evolution of a flavor state into another flavor state because they do
not match the energy eigenstates.

Given a superposition of two Hamiltonian eigenstates that mix, the oscillation frequency is
ω = ∆E (where ~ is one); in the rest frame this is just ∆E = ∆m. Thus oscillations are a way
to use quantum mechanics to measure this ∆m, even when the absolute mass scales are hard to
probe directly.

The most famous example is kaon mixing between the K = (s̄d) and K̄ = (d̄s). In the absence
of the weak interactions, these states have degenerate masses. The same thing is true about the
K+(s̄u) and K− = (ūs). In QCD the K and K± states are protected by U(1) flavor symmetries,
a K does not mix with K̄ nor does a K+ mix with a K−.

The story changes once we turn on the weak interactions. The charged kaons still cannot
mix since U(1)EM steps in place of the broken flavor symmetry to protect against the mixing.
However, the K and K̄ are left unprotected and the can mix into one another, even in the
Standard Model. Those that have been paying attention (and don’t already know the punch line)
should be perturbed by this: while there’s no explicit flavor symmetry protecting against K–K̄
mixing, we also know that the Standard Model Lagrangian doesn’t have flavor-changing neutral
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currents. Since both the K and K̄ are neutral states, shouldn’t this flavor-changing neutral effect
be prohibited?

No, though it is suppressed. At his TASI 2008 lectures, Herbi Dreiner likened SUSY model-
building to ‘sex in Scandanavia’ because “anything that isn’t explicitly forbidden is tacitly al-
lowed.” This is also true for flavor-changing effects: K–K̄ mixing isn’t explicitly forbidden by
symmetries, and so we should expect them to happen. In this case, however, FCNCs are so scan-
dalous that it is not practiced openly—that is, it isn’t advertised in the Lagrangian and is hidden
at tree-level. The flavor-changing K–K̄ mixing occurs only at loop level due to box diagrams of
the form

Marginally inappropriate references aside, what does this mean? Is it mysterious or magical
that such an oscillation occurs? No, not at all. This is clear if we forget about the quark
constituents and just treat the kaons themselves as quantum fields in their own right. The K and
K̄ are just states of a single complex scalar field. The box diagram above is then a two point
amplitude between the field and its conjugate—but we know exactly what this is, this is just a
loop-induced mass term. Once again, you can admonish such a thing and have it hidden from
tree level, but unless you explicitly prohibit it, you can expect it to still happen.

The bottom line is that everything can mix if they have the same unbroken quantum numbers:
SU(3)c, U(1)EM, and Poincaré. Though in the latter case spin-0 and spin-1 states can effectively
mix when placed in a system that breaks Lorentz invariance, for example axion-photon mixing in
a magnetic field.

13.1 Open system Hamiltonian

The game that we must now play is to start with a state which is a superposition of the Hamiltonian
eigenstates and let it evolve in time. There are a lot of subtleties when doing this in quantum field
theory which are well-described in the literature. Following Einstein’s famous adage that physics
should be as simple as possible—but no simpler—we’ll sidestep many of the subtleties and present
the most straightforward treatment which accurately represents the physics.

It is convenient to distinguish between states which are asymptotic and those which are res-
onances. In QFT we usually work with asymptotic states, which to zeroth order in perturbative
interactions have don’t decay and go off to infinity. All decays of these asymptotic states come
from interactions which we treat in perturbation theory (it is crucial that the relevant physics is
perturbative). Alternately, we can describe the same physics with states which have finite lifetime
even at zeroth order in perturbation theory. In other words, we include some of the interactions
into our definition of the field. A very rough analogy is the difference between the Schrödinger,
Heisenberg, and interaction picture in quantum mechanics, where different amounts of time evo-
lution are packaged in the definition of an operator. As we shall see, for meson oscillations it is
much easier to work with resonances rather than asymptotic states.
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In regular quantum field theory the Hamiltonian is basically the mass of the particle, H = M .
For a resonance, the Hamiltonian is

H = M − iΓ

2
. (13.1)

This is not Hermitian! Are you worried? We never worked with non-Hermitian matrices in quan-
tum mechanics because probabilities are conserved, everything we measure is real, and Hermitian
matrices have real eigenvalues. Of course (13.1) is perfectly fine. If a particle can decay then we
shouldn’t expect probability to be conserved. For example in addition to all of the diagrams that
contribute to an S matrix element for given incoming and outgoing states, we must also include
the processes where those specified incoming and outgoing states decay during their free evolution.
In other words, we are working with an open system in which the ‘interaction’ with the system
allows the particle to decay. We have taken all of the decay processes out of the system so that
the ‘effective’ system that we are work with is no longer Hermitian.

Problem 13.1. Deriving the effective kaon Hamiltonian. In the limit where the weak
interactions are turned off, the effective kaon Hamiltonian is diagonal with respect to the K
and K̄ states. By treating the weak Hamiltonian HW as a perturbation, show that the effective
Hamiltonian picks takes the form in (13.1). Hint: Start by writing out the S-matrix as S =
T exp

[
−i
∫
dtHW (t)

]
, where HW (t) = eiHTHW e

−iHt is the interaction picture weak Hamiltonian.

When we have a system with more than one eigenstate then the Hamiltonian is a matrix. Let
us thus consider the two state KK̄ system where the Hamiltonian is a 2× 2 matrix; in the flavor
basis it takes the form

H ∼
(
mK hFCNC

h′FCNC mK

)
. (13.2)

In the limit where CP is conserved, h′FCNC = hFCNC (see below). Of course, in the limit where
the weak interactions are turned off, hFCNC → 0. We can diagonalize this matrix to obtain the
masses and the mass eigenstates, which we call the KL (‘K-long’) and KS (‘K-short’). The names
describe the different lifetimes, so you can already guess that the two states not only have different
masses, but different widths. We could have alternately named the states based on their masses,
which is what is done for the B system: BH (‘B-heavy’) and BL (‘B-light’). Interestingly, for
the B meson the relevant sign in the mass splitting has not been measured. Reminder: Yuval
should update this paragraph, how do they measure ∆m×∆Γ in the K?

Long and short or heavy and light? Note that there are two mass eigenstates which we
may label according to their lifetime or their mass. Typically the mass is the natural choice,
though for the kaon system it turns out that the lifetimes are very different. As we’ll see
below, the KS is mostly CP even and wants to decay to the CP even state ππ, whereas the
KL is mostly CP odd and wants to decay to the CP odd state πππ. However, the masses of
the kaons an pions are such that KL → 3π is severely phase space suppressed and so KL has
a much longer lifetime.
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Problem 13.2. CPT and the diagonal entries of M and Γ. Prove that CPT invariance
implies that M11 = M22 ≡ mK and Γ11 = Γ22 ≡ γ.

We’ve seen that weak interactions generate a mass term between the K and K̄. CPT tells us
that the flavor-conserving Hamiltonian must be the same: H11 = H22. Further, Hermiticity tells
us that

M12 = M∗
21 (13.3)

Γ12 = Γ∗21. (13.4)

Diagonalizing H gives the two mass eigenvalues and the two widths. Before doing any work, lets
estimate the important quantities, ∆m and ∆Γ. One should be able too look at the matrix and
very intuitively identify

∆M ∼ 2hFCNC. (13.5)

Further, you should see right away that the mixing is 45◦.

Example 13.1. Diagonalizing 2× 2 matrices. Given a symmetric 2× 2 matrix,

(
a b
b c

)
(13.6)

one should remember that the mixing angle θ is given by

tan θ =
2b

a− c−
√

(a− c)2 + 4b2

b�a,c−→ b

a− c (13.7)

Note that we get a 45◦ mixing even when the mFCNC is very small. Doing a full calculation
gives, e.g. for the B system,

|BL,H〉 = p|B0〉 ± q|B̄0〉 (13.8)

subject to the constraint |p|2 + |q|2 = 1. One can check that that p ∝ hFCNC and q ∝ h′FCNC in
(13.2). Note that Look very carefully at (13.8). Usually in a rotation between states one has

|A1〉 = cos θ|B1〉+ sin θ|B2〉 (13.9)

|A2〉 = − sin θ|B1〉+ cos θ|B2〉. (13.10)

Our expression for |BL,H〉 is very different! Usually a rotation from one basis to another preserves
the vector length. This is no longer true here since the Hamiltonian is not Hermitian. Another
consequence of working in an open system is that the overlap of the two eigenstates is no longer
zero, but

〈BL|BH〉 = |p|2 − |q|2. (13.11)

The two eigenstates are not really orthogonal! Remembering linear algebra from kindergarden,
we know that we only need independent vectors to span a space, not necessarily orthogonal. This
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non-orthogonality is called vacuum regeneration, a mass eigenstate can propagate for a while
and then turn into another mass eigenstate! This is different from oscillation, where you start
with something that is not a mass eigenstate.

Let us now consider the case where CP is conserved. CP exchanges K0 ↔ K̄0 and so guarantees
that |p| = |q|, though this condition can hold even when CP is violated. [Check: why?] In this
case 〈BL|BH〉 = 0. The Hamiltonian is still not Hermitian. The eigenvalues are

µα = Mα +
i

2
Γα (13.12)

where α = 1, 2. Note that we must diagonalize the entire Hamiltonian; this is not generally
the same as separately diagonalizing M and Γ. (The diagonalizations are equivalent only in the
CP-conserving limit.)

Problem 13.3. Diagonalizing the kaon Hamiltonian. It’s a useful exercise to actually diago-
nalize the open system Hamiltonian (13.1), that way you’ll believe the following results. Determine
the eigenvalues µα and eigenvectors (KL and KS) of the kaon Hamiltonian. In particular, show
that the eigenvalues are given by

µL,S = M11 −
i

2
Γ11 ±

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
(13.13)

and that eigenvectors are given by

KL,S ∼ |K0〉 ±
√
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

|K̄0〉. (13.14)

Note especially that

p

q
=

√
M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12

. (13.15)

The difference in the eigenvectors is

µL − µS = 2

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
CP
= 2Re M12 − iRe Γ12, (13.16)

where in the last part we have assumed CP conservation, which is valid so long as CP violation
is small, e.g. 1 � Im M12/Re M12. We can thus identify the differences in masses and widths
between the long and short states:

∆m
CP
= 2|M12| (13.17)

∆Γ
CP
= 2|Γ12|. (13.18)

Defining 2Γ = Γ1 + Γ2, We can define three physical parameters:

x =
∆m

Γ
, y =

∆Γ

2Γ
, φ = arg (Γ∗12M12) . (13.19)
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Why are these particular ratios of importance? We’ll see below that x tells us about how many
oscillations the meson undergoes before decaying, y measures the relevance of the decay width
differences between the flavor eigenstates, and φ will tell us about CP violation. Note the range
of values for the x and y parameters: x ∈ [0,∞), y ∈ [−1, 1]. In the CP-conserving limit, M and
Γ are relatively real so that φ = 0.

13.2 CP versus short and long

In the limit where CP is conserved, p = q and the KS is a CP even state while the KL is a CP
odd state. The KS can decay to the CP even final state ππ whereas the KL must decay into πππ.
Because the kaons are so light, the phase space for the latter decay is rather small and the KS

has a much shorter lifetime.
Because CP is not conserved, the KS and KL are not CP eigenstates. Define the CP even and

odd neutral kaon states by KE ∼ |K0〉+ |K̄0〉 and KO ∼ |K0〉− |K̄0〉. The difference between the
open system Hamiltonian eigenstates and the CP eigenstates is parameterized by ε,

|KS,L〉 =
1√

1 + ε2
(|KE,O〉+ ε|KO,E〉) . (13.20)

Recalling that KS,L ∼ p|K0〉 ∓ q|K̄0〉, we have

p

q
=

1 + ε

1− ε. ⇒ ε =
p− q
p+ q

≈ i

2

Im M12 − iIm Γ12

Re M12 − iRe Γ12

. (13.21)

While this accounts for part of the reason why KL has been observed to decay into two pions,
we will see below that there is another source for this effect: the CP violating decay of the KO

state into two pions. This will be parameterized by a number which is called ε′. Contrast this
to the effect described above. The ε effect comes from the KL having some admixture of the KE

state which may decay into two pions, whereas the ε′ effect comes from the KO undergoing the
CP-violating decay into two pions and would occur even in the limit where the KL is a pure KO

state. εK and ε′K , as they are often written, provide strong bounds on new physics contributing
to the flavor sector. We will explore this further in these notes.

13.3 Time evolution

Now that we know that K and K̄ can mix, e.g. from K0 ↔ ππ ↔ K̄, we would like to understand
their oscillation. And since kaons are the usual example in old textbooks, we will choose to be
fancy and modern by instead using the completely analogous B system. The time evolution of
the neutral B meson is given by

|B0(t)〉 = a(t)|B〉+ b(t)|B̄〉, (13.22)

subject to the Schrodinger equation with the open system Hamiltonian. At time t = 0, the
wavefunction is some linear combination of flavor states B and B̄. To evolve this in time we write
B and B̄ in terms of energy eigenstates BH and BL and independently evolve each. We can then
project back into the B and B̄ basis at any later time.
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Let us take b(0) = 0 to so that B0(t) a state which is a pure B at t = 0. At t 6= 0 it is a
mixture of B and B̄. Assuming CP for simplicity, we obtain

B0(t) = cos

(
∆E t

2

)
|B〉+ i sin

(
∆E t

2

)
|B̄〉. (13.23)

We’ll generalize this to the CP violating case later in this course. ∆E is complex when we have
an open system, but let us further assume that Γ = 0 so that we really do have oscillation with
no decay. The probability of B0(t) to remain a B at time t is

P
[
B0(t) = B

]
= |〈B0(t)|B0〉|2 (13.24)

=
1 + cos(∆E t)

2
e−Γt, (13.25)

where we’ve ‘poetically’ tacked on the decay rate post-facto. You’ll derive the general formula in
Problem 13.4. Similarly, P [B0(t) = B̄] is the same with +→ − before the cosine. We see that the
B system is indeed oscillating—there’s the cosine! The frequency is ∆E, as advertised, so that a
measurement of this oscillation frequency tells us ∆m. The experiment that we want to do is to
produce a B (flavor state) at t = 0 and then measure its flavor at some later time.

In the meson rest frame, ∆E = ∆m and t = τ , the proper time. Thus the flavor oscil-
lations are controlled by the mass splittings of the physical states. Further, by measuring the
oscillation frequency we’re learning something about the mass splitting. In order to make such a
measurement one would have to determine the meson flavor at both production and decay, which
is experimentally tricky.

Now we need to point out that we have a cosine and a decaying exponential; both of these have
dimensionless arguments that are proportional to time t. However, they have different coefficients
which set two different time scales. The frequency of the oscillation depends on the mass splitting
∆m and sets a time scale 1/∆m. For neutrinos you could study this oscillation frequency by just
changing the distance from the source to the detector; this is because neutrinos are so long lived.
For relatively short-lived mesons, on the other hand, the e−Γt factor gives us another time scale,
1/Γ. The width of the meson tells us roughly when the meson decays. Because this decay occurs
via a particular flavor state, the decay products essentially performs the experiment of observing
whether the B0(t) is a B or B̄ at t ≈ 1/Γ. We can thus only study ∆m when it is roughly in the
same ballpark as Γ. In order to be able to study the oscillations, we want x = ∆m/Γ ≈ 1.

Let us emphasize that ∆m and Γ come from different physics. The width of the particle Γ has
to do with the three-body decay of the B meson with some CKM matrix elements. The lifetime
∆m has to do with some box diagram with some completely different structure. For B mesons,
we’re very lucky the lifetime is of the same order as the width so that x ≈ 0.7. This is completely
luck and this is one reason why B mesons are so interesting to study experimentally.

Example 13.2. If, for example, the B mass were doubled, then its lifetime would decrease by 25

(recall that Γ ∼ m5) and x� 1.

If t is something we can control experimentally, then we can probe the width. But for the
decays of mesons, t is something which is given to us by nature. This is why the B system is so
ideal for nature: it has just the right lifetime so that we can probe the width. Fig. 1 is a nice
illustration of this is borrowed from David Kirky via Pat Burchat42.

42http://www.stanford.edu/dept/physics/people/faculty/docs/burchatCaltech2003.pdf
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CP violation in decays of B mesons is expected to exhibit itself
as oscillations in the decay rate.
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Graphics provided by David Kirkby (UCI)

Figure 1: Illustration of how the ratio x = ∆m/Γ allows us to probe the mass splittings between
the CP eigenstates.

13.4 Flavor tagging

So we want to measure ∆m. We have to produce an initial state which we know is a B at t = 0
and then determine the flavor of that state at some later detection time t. In other words, we
need to flavor tag at both the production and decay times.

Nomenclature. The phrase ‘b-tagging’ is used differently in different collider communities.
At the LHC this refers to whether or not a jet contains a b quark, while in flavor physics this
refers to distinguishing between B and B̄ mesons.

How do we perform these tags? Let’s discuss the easier tag: once we have some unknown state
propagating, how can we determine what it is at time t, when it decays? The easiest way to tag
a b quark decay is through the semileptonic decays,

b→ cµ−ν̄ (13.26)

b̄→ c̄µ+ν. (13.27)

By the way, the B meson nomenclature is very silly: a B meson contains an anti -b quark. Some-
times a B will decay into final states that are also accessible to the B̄, making it useless for tagging
whether it contained a b or b̄, for example B → π+π−. In this case the decaying object is really a
superposition of both B and B̄, something we’ll get into when looking at CP violation.

Example 13.3. Can you use B → D+π− for b tagging? Näıvely, it’s easy to draw a the diagram
showing that this final state tages a B̄.
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W−

d

d

u

d

Can we now conclude that the parent of the D+π− state was a B̄ meson? No. We could also draw
a diagram with an initial B meson,

u

b

W+

d

d

d

c

Note the arrows, this second diagram mediates B̄ → D+π−. The two diagrams differ in how much
CKM suppression each receives, but the point is that the D+π− final state doesn’t come from a
pure B̄. Because of the CKM suppression, it’s an almost-pure B̄ since the interference is only at
the percent level. We will remark that there is a second way to tag this process; the D can be
‘kaon’ tagged; at the inclusive level the charge of the kaon determines the flavor of the B.

Sticking to the semileptonic decays where the relatively easy-to-measure muon versus anti-
muon b tags the final state, we must now find a clever way to b tag the initial state. The trick is
to use EPR quantum entanglement. At the B-factories an electron-positron collider is operated
at the Υ(4S) resonance. These mesons have just the right rest energy to decay into a BB̄ pair
nearly at rest. Since these particles are entangled upon production, we may use the decay of one
of them as an initial-state b tag for the other.

Example 13.4. Without looking at the PDG, what is the spin of the Υ(4S)? It has to be a
spin-1 (vector) meson since it is produced through e+e− → γ → Υ(4S).

As soon as one B decays semileptonically, then at that instant we know precisely the b content
of its sibling. That is the moment which we have been calling t = 0 when we know the exact
flavor content of the propagating state. From that moment on the remaining state oscillates and
then identifying its decay allows us to probe the oscillation. If, for example, we tag a state that is
initially a B and we subsequently measure a semileptonic decay that could only have come from
a B̄, then we know that the system oscillated.

BaBar and Belle are asymmetric B factories. This means that the center of mass frame is
boosted relative to the lab frame so that the BB̄ pair is not produced at rest. Suppose that at
some time t = 0 one meson decays into a µ+, telling us that it was a B meson. Thus at t = 0 we
know that the other meson is a B̄. Then we can look at the decay to flavor tag the final state and
then use the the decay position (through vertex detectors) as a measurement of the decay time.
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Note that the boosted system is important for being able to determine the decay time since it
allows experimentalists to measure the physical distance between the vertices. The smoking gun
signal for oscillations are same-sign leptons.

The last decade was fantastic for B physics, since in addition to the B factories, the Tevatron
also made contributions to B physics. Flavor tagging at high energies is a different story since the
BB̄ pairs are uncorrelated. At the B factories, it was crucial that we knew the angular momentum
of the state; the fact that the Υ(4S) has L = 1 gave us the correlation. At high energies we can
have many different angular momenta which mix and causes decoherence. Thus in order to tag
the B meson (as opposed to other hadronic junk) one has to fully reconstruct the invariant mass
of the hadronic shower to identify the B mass. To further tag the b versus b̄ quark, one must
look at events where the entangled b quark hadronizes into a charged B meson since we know
that U(1)EM prevents these guys from oscillating. This plays the role of our initial-state flavor tag
since the flavor indicated by the B± decay must match the flavor of the B± at its production. The
decay of the oscillating B can then be subsequently tagged by looking at our favorite semileptonic
decays. While this process may sound like a small portion of the total number of events, hadron
machines produce so many bs that we can afford to be very picky about using only nice events.

13.5 Time scales

All of physics is based on the fact that there are different scales. In this case, it is important to
ask about the relevant time scales for oscillations. Rewriting (13.25) in terms of x ≡ ∆m/Γ

P [B0(t) = B] =
1

2
(1 + cos ∆mt) =

1

2
(1 + cos xΓt) . (13.28)

What is t? In neutrino or atomic experiments, you can change the propagation time t by placing
the detector somewhere. In mesons, on the other hand, t is given to you by nature: it’s particle’s
decay time, 〈t〉 ∼ 1/Γ. This is, of course, a statement about the average t; each individual
meson decays probabilistically. We see, however, that the dimensionless parameter controlling the
oscillation time scale is x. As always, we can learn about the system by considering asymptotic
states.

First consider x � 1. In this case there are effectively no oscillations. Once the state is
produced it simply doesn’t have enough time to oscillate. It is produced as a flavor state and—for
its short lifetime—it remains a flavor state. An example of this kind of state is the D meson.

Now consider the opposite extreme, x � 1. In this case the oscillations are washed out since
the cosine averages out to zero. What is happening physically? Any measurement of the meson
system is done over a small characteristic time scale. In the limit x � 1, the meson is able to
oscillate many times over this measurement period so that the effect of the oscillation is washed
out to zero. The natural objects to discuss in this scenario are thus mass eigenstates. This is the
case when we produce kaons; we say that the kaon we produce is 50% KL and 50% KS.

We are used to x � 1. This scenario is what we are most familiar with since its often an
implicit assumption. In supersymmetry we can produce a bino and say that it is really some
combination of χ1,...,4 mass eigenstates. This statement already contains the assumption that

117



x � 1 so that we integrate over the quick oscillation time. Even in the Standard Model, we
can discuss W → cs versus W → cd decays. The probability of one decay versus another is
the square of the relative CKM matrix element, but this is also an assumption about the the
oscillation frequency. [Check: I don’t understand this, what is the W oscillating into?]

Finally, consider the case x ∼ 1; this is the most interesting case since oscillations actually
observable. The state is neither a flavor nor a mass eigenstate, but we really a state which evolves
with time. We can go and measure the oscillation of B and K mesons experimentally and find
that

xB ∼ xK ∼ 1. (13.29)

In fact, xB ≈ .73 and xK ≈ .94. As we mentioned before, this is complete luck since x depends
on the CKM and the masses in some non-trivial way. Other similar mesons are not so fortunate.
For example,

xs ∼ 25 (13.30)

xD ∼ 10−2, (13.31)

where xs is standard notation for xBs . For these guys the width of the meson’s weak decay is
much smaller than its mass,

Γ ∼ G2
Fm

5 ∼ 10−14m. (13.32)

Again, the ‘practical’ use of these oscillations is to make precise measurements of ∆m using
quantum mechanics, similar to the Mössbauer effect.

Problem 13.4. General meson oscillation formula. In (13.25) we derived the probability for
a B flavor state to remain a B after time t in the limit of CP conservation. Derive the following
general expressions:

|K0(t)〉 = g+(t)|K0〉+
q

p
g−(t)|K̄0〉 (13.33)

|K̄0(t)〉 =
p

q
g−(t)|K0〉+ g+(t)|K̄0〉 (13.34)

g±(t) =
1

2

(
eimLte−

1
2

ΓLt ± eimSte− 1
2

ΓSt
)
. (13.35)

Did you do the previous problem? Good. We now want to take into account the other
dimensionless oscillation parameter, y = ∆Γ/2Γ ∈ [−1, 1]. The generalization of (13.25) is
P [B0(t) = B] = |g+(t)|2. With a a few lines of algebra it is easy to show that

P
(
B0(t) = B

)
=
e−Γt

2
[cosh(yΓt) + cos(xΓt)] . (13.36)

Let us consider the some limits with respect to x and y.
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• |y| � 1 and y � x. In this the effects of y are irrelevant. This is the case in the B system.

• y ∼ x. Both x and y are important. For the kaon system x, y ∼ 1 so that we can probe this
scale experimentally. The D system is in the regime where x, y � 1, while the K system is
in the regime x, y ∼ 1.

• y ∼ 1 and y � x. Here there are two mass eigenstates with different decay rates (lifetimes)
and we can forget about oscillations. We expect this to be the case for the Bs system.

Other limits, like y � x, are not realized in the four meson systems.
The following table shows the order of magnitude for the x and y values of some our favorite

mesons,

x y
K 1 1
B 1 10−2 (*)
Bs 10 10−1 (*)
D 10−2 10−2

The stars indicate when a quantity is not well measured.
We explained above that the trick at B factories is to flavor tag the initial and final states.

Because the collision rest frame is boosted relative to the lab frame, one can use the displaced
vertices to determine the decay time. One can then fit with respect to the decay time to learn
about x. What if you didn’t have such an asymmetric B factory? That is, suppose you have an
experiment—like CLEO—where you can’t measure the decay time and all you can do is flavor tag
for particle production. Effectively such an experiment is integrating over time. For simplicity,
let’s set y = 0 and integrate from t = 0 to t =∞. In this limit we can easily perform the integral
over the oscillation probability—by ‘easily’ we mean it is easy to plug into Mathematica—to obtain

∫ ∞

0

P (B → B) =
1

2

2 + x2

1 + x2
. (13.37)

This gives us a function that we may invert to determine x. As good theorists, we should check
that this expression makes sense by looking at limiting cases. Indeed, our above discussion we
know that in the limit x→∞ we expect

∫
P = 1/2 while in the limit x→ 0 we expect

∫
P = 1.

13.6 Calculating ∆m and ∆Γ

Now we should describe how to actually calculate ∆m and ∆Γ. This really boils down to de-
termining M12 and Γ12. M11 and Γ11 are directly measured numbers that we don’t actually care
about since they don’t contribute to the mass or width difference.

We know that M12 is related to some (V − A) weak current operator O ∼ (bd̄)(bd̄),

M12 =
1

2mB

〈B|O|B̄〉, (13.38)

where we’ve normalized appropriately. [Check: what fixes the normalization?] Check that
equation one more time! But what a moment—does O ∼ (bd̄)(bd̄) look strange to you? Indeed,
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one might have wanted to write down (bd̄)(b̄d) since, after all, we’re used to mass operators formed
out of a field and its conjugate. Clearly, (bd̄)(bd̄) is not an ordinary mass term. It represents a
flavor-changing coupling between the B and B̄, while operator that we might have wanted to
write down, (bd̄)(b̄d), is manifestly flavor conserving. The ‘weird’ operator, on the other hand,
is flavor-violating: ∆B = 2 and ∆D = 2. This is because the mass term connects a particle
and an anti-particle, but now because we’re mixing B and B̄s, the ‘particle’ is the B and the
‘anti-particle’ is an anti-B̄, i.e. also a B.

Example 13.5. A toy example. Before going to the Standard Model, let’s work with a simpler
model with vector-like quarks that induce tree-level FCNC through a Z boson. Call this coupling
κ. The diagram for M12 is just the usual s-channel tree diagram and goes like κ2

m2
Z

. Stop and

check this again: should we have written κ†κ instead of κ2? No! Check the diagram to make sure
that both vertices are given by the same term in the Lagrangian, not the term and its Hermitian
conjugate.

In the Standard Model, the BB̄ mixing diagram occurs at one-loop level as a box diagram. At
two-loop order one may also have ‘twin-penguin’ diagrams which are subdominant (though this
is somewhat subtle). The two box diagrams are:

The calculation for each diagram is identical in the limit where all internal particles are heavy.
They’re independent diagrams, but practically we can just calculate one of them and multiply by
two. These diagrams are manifestly finite by power counting. We can parameterize the amplitude
straightforwardly just by using power-counting and the GIM mechanism,

M∼ g4

m2
W

〈B|Ov−A|B〉
∑

VidV
∗
ibVjdV

∗
jb F (x1, xj) (13.39)

where

xi =

(
mu

mW

)2

. (13.40)

For the B meson calculation the dominant contribution comes from an internal top quark.
For the kaons there’s a competition between the CKM matrix elements and the mass insertions
required by chirality and the GIM mechanism. It turns out that for the real part of the amplitude
the internal charm is the winner, though the imaginary part is dominated by the top. Recall that
the optical theorem tells us that the imaginary part of the amplitude is related to the decay rate.

Now all we need is the hadronic matrix element, our old friend. We are faced with what seems
like a rather intractable hadronic object, 〈B|(bd̄)(bd̄)|B〉. We have a trick up our sleeve—but like
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all tricks up someone sleeve, it’s somewhat shady. We start by inserting a sum over a complete
set of states,

〈B|(bd̄)(bd̄)|B〉 =
∑

n

〈Bbd̄|n〉〈n|(bd̄)|B̄〉. (13.41)

The trick is to assume that the vacuum is the most important contribution in the sum and hence
approximate the sum with only the vacuum state, ∼ |n〉〈n| ≈ |0〉〈0. Thus in the so-called vacuum
insertion approximation (VIA) we have

〈B|(bd̄)(bd̄)|B〉 ≈ 〈B|(bd̄)|0〉〈0|(bd̄)|B̄〉. (13.42)

The great thing about this approximation is that we already know what 〈0|(bd̄)|B̄ is: it is just
the B decay constant,

〈B|(bd̄)(bd̄)|B〉 ≈ f 2
B. (13.43)

We’ve been characteristically hand-wavy since we neglected the Dirac structure of the operator.
To do this properly one should invoke Fierz identities which give us some additional factors,

〈B|(bd̄)(bd̄)|B〉 =
8

3
f 2
BBB. (13.44)

The prefactor includes a factor of two from the sum over the two box diagrams and an additional
1 + 1

3
color factor. We’ve included a parameterization of the correction to the vacuum insertion

approximation, BB. It turns out, however, that for the B meson this correction is only on the
order of a few percent. To be clear, there is no a priori reason for this approximation to work very
well and the agreement is rather surprising. Now that we are armed with this, we can proceed to
cross-check the CKM matrix.

The unbelievably heavy top quark. Wagner once wrote a paper in the 80s that assumed
the top mass to be around 50 GeV, for which it was promptly rejected by the editor as being
unreasonable. When you put the 50 GeV top into the above calculation you predict that B
mixing is very small. In the early 80s flavor physics found that B mixing is, in fact, order one.
The natural explanation was that the top was heavy, and indeed, flavor measurements in 1981
suggested mt ∼ 150 GeV. People didn’t believe this because it was so ridiculously large. It
wasn’t until much later that electroweak precision tests predicted the same value. Historically
people often say that electroweak precision experiments predicted a heavy top, but it was in
fact BB̄ mixing that was the first avatar of a heavy top—people just weren’t ready to believe
it!

The next object to calculate is Γ12. The off-diagonal mass M12 came from 〈B|O|B̄〉. In
particular, it came from the off shell contribution. When this matrix element goes on shell it
gives a contribution to the width. This is because the real part of the two point function tells
us about the particle’s mass while the imaginary part tells us about its decay. Intuitively, the
Hermitian part of the Hamiltonian is off shell while the anti-Hermitian part is on shell. For
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example, K → ππ → K̄ contributes to the width while K → B → K with an off-shell B
contributes to the mass. The intuition here is basically the optical theorem; if you go on-shell
then you are really decaying and coming back, whereas if you stay off-shell then you’re undergoing
a two-point contact interaction.

Can we trust such a calculation? There’s something fishy. We essentially perform a quark-level
calculation. In the calculation of M12 we tacked on hadronic effects in fB. We were off-shell with
large q2 so that our interactions are local and we could use effective operators. In the case of the
decay width the hadronic final states make a difference: the actual processes we care about are
K → hadrons and K̄ → hadrons. These things occur on shell, the quarks really hadronize and
we have to take this into account in our kinematics. By doing the quark level calculation, we are
implicitly invoking quark-hadron duality. However, the condition for quark-hadron duality is that
we can average over a large q2, i.e. we can smear over resonances. Here we have q2 → 0; we only
have one kinematic point—the mass of the decaying particle. Unlike deep inelastic scattering,
there is no smearing. A priori it is hard to predict the validity of our calculation given these
conditions. We can hope that it might still be applicable to the B, but we already know that it
is not so good for the kaons.

A lesson: flavor physics is imprecise. This summer there was a lot of excitement about
a large ∆Γ observation from D0 that seemed to suggest new sources of CP violation. One key
lesson in this section on loop processes is that one has to be very careful about the theory
assumptions going into the Standard Model calculation for such claims. As we shall see for
the kaons, it is entirely possible to inadvertently carry an innocent assumption well beyond its
region of validity.

Consider the kaon box diagram where only the u can go on-shell. Phase space tells us that we
can only really produce no more than three pions. It’s now trivial to see that quark-hadron duality
doesn’t work since a phase space which permits ‘up to three pions’ is clearly not and inclusive
decay. In fact, the KS mass eigenstate can go only to two pions, while the KL can go to three. So
y is basically one from phase space. ∆Γ is basically the difference between these rates. The kaon
calculation is off by a large factor. In the B case it is probably correct within factor of 2.

In the D box diagram, which internal quark dominates? A quick back-of-the-envelope calcula-
tion invoking the ratios of quark masses and CKM elements in the Wolfenstein parameterization
should convince you that it is the strange quark. Näıvely we could proceed to calculate this dia-
gram just as we did for the B and K, but it turns out that this would indeed be too näıve [85]. In
the B box we had a heavy t quark running in the loop. Now for the D box we have an s quark in
the loop, which is not heavy and so it is really not okay to integrate it out into a local operator.
If one does this calculation as if the s were much heavier than the W , then one obtains a result
which is four orders of magnitude too small. It is completely wrong to make it a local operator;
you can never integrate out an s when you’re talking about c decay.

The correct thing to calculate is a diagram where only the W s are integrated out, giving the
so-called fish diagram (because doing anything else would be ‘fishy’),
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From this one obtains x ∼ 10−2. The lesson here is that phase space is not part of the operator
product expansion and can hence lead to a violation of quark-hadron duality.

14 CP violation

A priori, CP violation seems to have nothing to do with flavor physics. CP is a discrete subgroup
of Lorentz group while flavor has to do with internal symmetries. However, it turns out that in
nature all CP violating observables happen to come along with flavor violation. In fact, we already
know from these lectures that the only source of known CP violation is the phase of the CKM
matrix.

14.1 General aspects of CPV

When we look for CP violation (CPV or ��CP), we search for reactions where probability for one
process is different from the probability of its CP conjugate process,

P (A→ B) 6= P (Ā→ B̄). (14.1)

You should distinguish this from T and CPT violation,

��T : P (A→ B) 6= P (B → A) (14.2)

���CPT : P (A→ B) 6= P (B̄ → Ā). (14.3)

However, since we believe CPT is a good symmetry of nature, ��T and ��CP are effectively equivalent.

Problem 14.1. Unitarity and CPT. This problem is slightly more formal but is a good exercise
in quantum field theory.

1. Show that in a time-reversal symmetric theory of scalar particles Afi = Aif . Does this imply
that the cross section for A+B → C +D equals that of C +D → A+B?

2. Show that CPT implies Afi = Aīf̄ where UCPT|i〉 = |̄i〉 and UCPT|f〉 = |f̄〉.

3. Show that unitarity and CPT imply Γ(i → all) = Γ(̄i → all). Does this imply Γ(i → j) =
Γ(̄i→ j̄)?

4. Argue that unitarity and CPT implies that Γ(i→ j) = Γ(̄i→ j̄) at lowest order in pertur-
bation theory. Further, argue that any CP violation in rates must come from loop effects.
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If CP were violated at tree level, then it should have shown up all over the place. However, CP
was only first observed experimentally in 1964 and 1967 in the kaon system, and not until 2000 in
the B system. To date, we only have a handful of experimental examples that demonstrate CP
violation. One should compare this to parity violation which does show up at tree level and can
indeed be seen all over the place.

Open question (a free project to anyone who wants to do it): what is the CP violation in
the Hydrogen atom? Given a hydrogen and an anti-hydrogen, what is the width of the 21 cm?
Suspect it is something like 10−100. The interesting question is where the CP violation enters.

CP violation ultimately appears as the result of interference between two diagrams with a
difference in the strong and weak phases. The reason why CP effects are hard to see is that
usually for a given process there is only a single leading diagram and the higher-loop corrections
are extremely small.

• The weak phase is a CP-odd phase; it changes sign for a CP conjugate process. This phase
shows up in the Lagrangian. Given a coupling VubW

+ūb, then the Hermitian conjugate
coupling is V ∗ubW

−b̄u.

• The strong phase, on the other hand, is a CP-even phase; it does not change sign between
a process and its CP conjugate. Since all the phases in the Lagrangian are CP odd, this
phase cannot directly come from coupling constants. In fact, strong phases come from time
evolution. (The ‘strong’ refers to a strong coupling, which is required to see this effect since
it often involves interference with loop diagrams.)

For example, a free particle has a trivial time evolution, exp(iEt), independent of whether it is
a particle or anti-particle. A more complicated strongly-interacting system has much less trivial
time evolution that yield a strong phase from complicated non-perturbative dynamics.One way
this effect is manifested is when one goes near a resonance; for example, two pion scattering near
the ρ resonance. There’s a phase across in the Breit-Wigner resonance in classical scattering,
exactly the same phenomena as a forced oscillation with friction.

In mesons there are two processes of primary interest in flavor physics: decays and oscillations.
Suppose there are two diagrams leading to the decay of a meson B into a final state f . We may
write the amplitudes for B → f and its CP conjugate as

Af = A(B → f) = a1e
i(δ1+φ1) + a2e

i(δ2+φ2) (14.4)

Āf = A(B̄ → f̄) = a1e
i(δ1−φ1) + a2e

i(δ2−φ2), (14.5)

where we write δ as the strong phase and φ as the weak phase. Admittedly this is very bad notation
because the δ in our CKM parameterization is the weak phase. These terms, for example, typically
correspond to a tree-level diagram and a penguin. It is trivial generalize this to the case where
there are multiple diagrams with different phases. The partitioning (14.4–14.5) into two terms
is required by enforcing that the terms have the same coefficients and that the amplitude and
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CP-conjugate amplitude are related by simply flipping the sign of the weak phase. Similarly, let
us write,

M12 = |M12|eiφM (14.6)

Γ12 = |Γ12|eiφΓ . (14.7)

It should be trivial that if a2 = 0 or δ1 = 0, then Af = Āf . Thus the conditions to see CP violation
are that you have two terms such that there are different weak phase and strong phase.

Our goal experimentally is to find processes where a1 ≈ a2 and there are different δ and φ.
Note that as and δs are related to the strong interaction, only φ is related to the weak interaction.
We return to the usual story: we have to deal with hadronic matrix elements. Here there are two
good cases: either the hadronic matrix elements cancel or they can be directly measured. This
was not the case for CP-conserving processes.

Example 14.1. We know that we demonstrate CP violation if Af 6= Āf . Is the converse true?
Can we show that there is CP violation without actually directly measuring it? The analog is
measuring the angles of a triangle without ever measuring any particular angle. In principle one
can measure CP violation just by measuring the lengths of the sides of the unitarity triangle. By
measuring a few decay rates and a few complex conjugate decay rates—such that they are all the
same—and we can still demonstrate that there is a phase in the Lagrangian.

We’ve talked very generally about CP violation in mesons. Let us briefly mention two other
measurements of CP violation outside of flavor physics. The first is the triple product, where
in some decay one takes three vectors (e.g. p1, p2, and spin in a three-body decay) and generate
some kind of triple product (pa × p2) · s. These types of quantities turn out to be CP odd and
sensitive to the sum of the strong and weak phase. At the LHC one can study CP violation
with these sorts of triple products. The other possible measurement for CP violation are electric
dipole moments (EDM). These are CP violating for elementary particles. When you take the
dipole moment of such a particle then the CP conjugate of such a state must change since angular
momentum doesn’t conserve CP. Note that the magnetic moment is CP-even. The argument
only holds for elementary particles. When you have molecules you can have an EDM and move
to different states. Measurement of the EDM for the electron is a measurement of ��CP. What
about the neutron? People say that the neutron EDM is the best bound on SUSY CP violation.
Certainly the neutron is not elementary, but there is no excited neutron state. Thus the full
statement is that the EDM of any particle that doesn’t have an excited state is a signal of ��CP.
(Actually, this boils down to having a degenerate ground state.)

So far CPV has only been unambiguously observed in KL, B0, and B±.

Problem 14.2. We often discuss the strong CP phase in QCD ΘQCD. Why is there no analogous
phase for the weak force?

CP violation is typically measured through asymmetries. These are ratios of branching ratios
of the form

ACP ≡
Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
. (14.8)

125



There are basically two processes which are sensitive to CP: decay and oscillation. To really be
sensitive to the CP phases the CP phases we need two amplitudes to interfere, either two decays,
two mixings, or between a decay and a mixing. Thus there are three options:

1. CPV in decay. This is also known as direct CP violation. This is an interference
between decay amplitudes. For example the B± doesn’t oscillate, so CPV in this system
comes its decay. This type of CPV is characterized by |Ā/A| 6= 1 where A (Ā) is the
amplitude for a decay (CP conjugate decay).

2. CPV in mixing. This is also called indirect CP violation. This is an interference
between M12 and Γ12, the two ways to mix form B into a B̄. This is the type of CP
violation seen in charged-current semileptonic neutral meson decays. This type of CPV is
defined by |q/p| 6= 1 where q and p are the mixing coefficients between the mass and flavor
eigenstaets in (13.8).

3. CPV in interference between decays with and without mixing. This is CP violation
coming from the interference between a decay B → f and a decay B → B̄ → f . This is
defined by Imλf 6= 0, where

λf ≡
q

p

Āf
Af

. (14.9)

14.2 CP Violation in decay (direct CP violation)

Let’s start with CPV in decay, or direct CP violation. The observable that we will define is

aCP[f ] ≡ Γ(B̄ → f̄)− Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
(14.10)

=

∣∣Ā/A
∣∣2 − 1

∣∣Ā/A
∣∣2 + 1

. (14.11)

We have used

A ≡ A(B → f) (14.12)

Ā ≡ A(B̄ → f̄). (14.13)

We assume that these diagrams get contributions from at least two diagrams with a weak and
strong phase, (14.4–14.5). We can then parameterize the amplitude with respect to the relative
phases ∆φ and ∆δ as

A(B → f) = a1e
i(δ1+φ1)

(
1 + rei(∆φ+∆δ)

)
(14.14)

A(B̄ → f̄) = a1e
i(δ1+φ1)

(
1 + rei(−∆φ+∆δ)

)
. (14.15)

Plugging this in we get the expression

aCP = r sin ∆φ sin ∆δ, (14.16)
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where r = a2/a1. Note that this indeed only depends on the physical difference in the phases, ∆φ
and ∆δ, not the unphysical value of the phases themselves. Up to now we haven’t explained how
these values are related to our fundamental parameters. The weak phases φ will be related to
the CKM matrix elements. We can use symmetries to get information about the hadronic matrix
element which show up in r. For the strong CP phase, δ, however, the whole effect has to do with
symmetry breaking so the leading effect is zero. This is why CPV is hard to measure. Practically,
we’ll want to find ways to measure CP asymmetries ACP where the δ dependence is replaced by
other measurements.

Now some examples.

14.2.1 B → ππ

As mentioned above, this is best seen in the CP asymmetries of the charged meson decays. The
name of the game will be the interference between tree-level decays and penguin-mediated decays
(‘penguin pollution’). For example, consider B+ → π0π+. The two diagrams are:

u

b

W

u

u

d

u
B+

π0

π+

d

b

u

u

u

u

B+

π+

π0

Note that we consider the gluonic penguin since this doesn’t cost us much in terms of small
coupling constants. Both diagrams are O(GF ) up to loop factors which can be partially made up
for by the chirality enhancement from an internal top quark. Further, note that the two processes
have different weak phases. These weak phases come from the CKM matrix elements. While
the tree-level diagram goes like V ∗ubVud, the penguin goes like V ∗tbVtd. Further, observe that the
penguins have a different Lorentz structure and hence different hadronic matrix elements. This
makes it hard to calculate the ratio r.

14.2.2 B → Kπ

Let us consider is direct CPV in B → Kπ. Diagrams are the same as those above but with
different labels. We can easily estimate the size of each of these amplitudes

Mpenguin ∼ αwαs
λ2

16π2
(14.17)

Mtree ∼ αwλ
4. (14.18)

The tree is larger by a factor of five by our näıve analysis, however experimentally it turns out to
be the other way around: the penguin is larger by an O(1) factor. It is very important that these
turn out to be roughly the same size. Observe that the isospin structure is different: the tree level
process is a combination of isospin 0 and isospin 1, while the penguin is isospin zero.
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Now that we have the two amplitudes, we must identify the phases. We assume that the
b → s penguin is dominated by the internal top, though the charm also contributes. What’s
the weak phase of this transition? None! You could have seen this—the from our Wolfenstein
parameterization, the only phase shows up in the elements linking the first and third generations.
What about the tree diagram? Looking back at our unitarity triangle, The bū vertex comes with
the γ angle. Finally, we note that we cannot say anything about the strong phase—we just don’t
know.

There are four different B → Kπ decays. We can use isospin and SU(3) to relate these. The
B+ was the first system where we saw CPV without flavor mixing.

14.2.3 B → DK

Now let’s do the ‘best case of all,’ B → DK decay. (See, DK sounds like ‘decay.’) This is by far
the cleanest measurement that we can do for any flavor parameter. It’s more precise at the theory
level than any measurement we’ve presented so far. This should be exciting if you’re a theorist or
an experimentalist. If you’re a theorist you say ‘wow.’ If you’re an experimentalist you say ‘wow,
I want to measure that.’

It’s not so much how to see the CP violation, but we want to measure the angle γ of the
unitarity triangle. (α is pure mixing, β is pure mixing and CP violation.) Let us define the CP
asymmetry

aCP(B+ → DCPK
+) (14.19)

where DCP is a state that decays into a CP eigenstate. You see a D meson which is a superposition
of a D and a D̄, all you know is whether it decays in a way that is CP conserving or not, i.e.
whether the final state is a CP eigenstate. Note, to good approximation we can neglect DD̄
oscillation. When we produce a D it stays a D and then we can measure it as a CP eigenstate.
The crucial thing is that you don’t know what you produce, not a D or D̄ or a DCP. All you know
is that it’s a D and not a kaon.

There are two amplitudes to give this final state. Usually there’s a tree and a loop, but in this
case it’s a tree and a tree. (Doubly rare: if not tree and loop, usually it’s loop and loop!) In terms
of mesons the two amplitudes are

B+ → DK+ (14.20)

B+ → D̄K+. (14.21)

Note that DCP is a 45◦ rotation compared to the D and D̄,

DCP =
D ± D̄√

2
. (14.22)

At quark level, the decays are

c

b
u

s

u

uB+

D̄

K+

u

b
c

s

u

uB+

D

K+
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These appear to have different final states, but we only look at decays where the D or D̄ go into
the state K+K− so that the actual experimentally measured final state is K+(K+K−)D for both
decays. Thus there really is interference. By the way, we assume that there is no CP violation in
the D decay.

When you see two diagrams, what do you do? Some people want to calculate. We will estimate.
In terms of the Wolfenstein expansion parameter, the ratio of these diagrams is unity. We thus
expect these two diagrams to be of the same order. However, once you look into the details,
the ratio is actually more like 7. Part of this difference comes from the not-small Wolfenstein
parameters. More importantly, there is a color suppression. The ūs in the first diagram can
switch. In particular, the color-suppressed diagram doesn’t have a factor of three coming from
the sum over colors that appears in the color-allowed diagram.

So we have the first condition for CP violation. We’re happy that they’re roughly the same
order. What about the weak phase? In the Wolfenstein parameterization the weak phase is γ in
the second diagram coming from Vub (the only elements of the CKM matrix with weak phases are
the 1–3 elements).

Now the third ingredient: what is the strong phase? Do we expect a strong phase? If there’s no
reason for there not to be a strong phase then there should be. (Though there are some arguments
that it shouldn’t be allowed.) The point is that in this case we do not need a strong phase to
measure γ! Let’s see how this is done.

Let us define the amplitude and CP amplitudes

A+
1 ≡ A(B+ → DK+) (14.23)

A−1 ≡ A(B− → DK−) (14.24)

A+
2 ≡ A(B+ → D̄K+) (14.25)

A−2 ≡ A(B− → D̄K−) (14.26)

A+
CP ≡ A(B+ → D̄CPK

+) (14.27)

A−CP ≡ A(B− → D̄CPK
−). (14.28)

Given the definition of DCP in terms of the D and D̄ states, it is clear that

A±CP =
A±1 + A±2√

2
. (14.29)

Note that the sum of three complex numbers is zero then it’s a triangle. The sum of the A+ and
A− amplitudes are thus two independent triangles in the complex plan.

Write the amplitude of the color-allowed diagram as A+
1 = A. The amplitude which is color

suppressed can be parameterized as

A+
2 = Arei(γ+δ). (14.30)

Thus the way that we parameterized the amplitude tells us that

A−1 = A, (14.31)

since this is just the CP conjugate of an amplitude that we defined to be real. Similarly,

A−2 = Arei(δ−γ). (14.32)
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Finally, we can write the width

Γ(B+ → DCPK
+) = (A+

CP)2 =
A2

2

(
1 + r2 + 2r cos(γ + δ)

)
. (14.33)

Do you see why this is so nice? The sensitivity to the phase shows up right where we expect, in
the interference term and proportional to the ratio of the amplitudes. Th expression for the B−

decay is the same thing with a relative sign in the argument of the cosine,

Γ(B± → DCPK
±) = (A+

CP)2 =
A2

2

(
1 + r2 + 2r cos(γ ± δ)

)
. (14.34)

When we take the difference the non-cosine terms cancel. We end up with ∼ r sin(γ − δ). Direct
CP violation! The situation becomes more interesting because we can actually measure A and r
and extract δ.

If we have a decay that measures the flavor, i.e. that tags the D flavor—for example our favorite
semileptonic decay, then we know the magnitude of A and r. Then we can get δ and γ up to a
discrete ambiguity.

What is the difference between this and the Kπ term? In that case we didn’t know the strong
phase or r. For B → DK we can measure r and we don’t need the strong phase. We can
actually measure the magnitude of the things which are interfering, this is what makes this decay
unique—there are no theoretical uncertainties.

If δ = 0, then both the B+ and B− have the same expression. However, since we know r we
can still measure cos γ! We can present this in terms of triangles.

DCP DCP

r

r

(γ + δ)

(γ − δ)

You measure six rates, from which you make two triangles. You can get the two angles.
This works for any state which can come from a D and D̄, you just introduce a new parameter.

For example, B → DK and B → D̄K where D → f or D → f̄ . If f is not a CP eigenstate,
then you don’t need to have the DCP to be a 50–50 composition of D and D̄ (it wouldn’t be a
CP eigenstate anymore). Even when you do this you don’t need to put any theory into the game,
you still have all the information to measure everything.

We could also look at B → D∗K with D∗ → Dπ → fπ. This turns out to be experimentally
better. The method that works best (see Yuval’s ‘best paper’) is that you can do the same thing
with three body decay. Experimentally this turns out to be much easier than two-body decay.

14.3 CP violation from mixing

Historically, all the CP violation we observed until B → Kπ was in the kaon system. In B → Kπ
the CP violation generally manifests itself from mixing.
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Now we want to develop the formalism of oscillation when the decay does not go into a flavor
state. The situation is much more complicated than the ‘nice’ oscillations we first met. When the
final state is not a B or B̄ oscillation we consider some decay B → f . We consider

Af ≡ A(B → f) (14.35)

Āf ≡ A(B̄ → f), (14.36)

where in general f needn’t be a CP eigenstate. For example, for semileptonic decay Ā = 0. We
define a parameter

λf =
q

p

Āf
Af

, (14.37)

where BL,H = p|B〉 ± q|B̄〉. We will state without proof that λf is a physical combination. The
first fraction has to do with mixing while the second fraction has to do with decay. This is a
natural basis-independent thing to write that depends on the mixing and the decay. What is the
most general evolution of a B—without assuming CP? Given a state that started as a |B〉 at t = 0,
the time evolution looks lke

B(t) = g+(t)|B〉 − q

p
g−(t)|B̄〉 (14.38)

B̄(t) = g+(t)|B〉 − p

q
g−(t)|B̄〉 (14.39)

where

g±(t) =
1

2

(
eimH t−

1
2

ΓH t±same withL
)
. (14.40)

This is just the Schrödinger time evolution. What is the probability for this to decay to some final
state f? Writing ‘dimensionless’ time τ = Γt, we end up with

Γ(B → f)[t] =|Af |2e−τ [cosh(yτ) + cos(xτ)]

+ |λf |2 [cosh(yτ) + cos(xτ)]

− 2Re [λf (sinh(yτ)− i sin(xτ))] (14.41)

Recall that x ∼ ∆m and y ∼ ∆Γ. The first term is the decay coming without oscillation. The
second term has to do with the decay after an oscillation. The third term is interference. This
interference is proportional to λf , which is what we’re after. We will see soon what λf has to do
with the CKM. There is a similar expression for B̄, and we can define the CP asymmetry,

Af (t) ≡
Γ[B̄(t)→ f̄ ]− Γ[B(t)→ f)]

Γ[B̄(t)→ f̄ ] + Γ[B(t)→ f)]
. (14.42)

This is the oscillatory time-dependent version of aCP. In principle you just plug in the time-
dependent decay rates listed above. We don’t go through the long and messy general expression.
Instead, we’ll consider specific final states that simplify everything.
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We’ll start by assuming that ∆Γ = 0 (y = 0) since this sets all the coshes to one. What’s a
good choice for this? The B. The other approximation that we’ll make for now is that |q/p| = 1.
Do not be confused—we said that CP violation implies this, but we can also have |q/p| = 1 even
when there is CP violation in the theory. The last thing to assume is that |Af | = |Āf |. (Note that
this is different from Āf̄ , which is what CP implies.) States that obey this are CP eigenstates. So
basically our conditions are

1. ∆Γ = 0

2. No CP violation in the decay

3. No CP violation in the mixing

4. The final state f is a CP eigenstate.

Where is the CP violation? We want to find CP violating in the interference. Under these
assumptions, |λf | = 1 and

Af (t) = Im(λf ) sin(∆mt). (14.43)

Note that λf is thus a pure phase and Im(Λf ) is picking out information about this phase. ∆m
is a parameter we measure, and the decay itself gives us the time t. All we have to do is plot the
amplitude with respect to the range of ts that we get experimentally. There was a twenty year
difference between the measurement of ∆m and the measurement of Im(λf ); during this time we
got a very good measurement of ∆m so that all we had to think about was measuring Im(λf ).

This measurement gives us the phase of λf . Now we want to connect it to a calculation of λf .
Consider the ‘golden mode’ B → ΨKS.

λf = e−iφB
Ā

A
. (14.44)

No matter what decay we have, q/p is the same. In the standard parameterization of the CKM,

e−iφB =
V ∗tbVtd
VtbV ∗td

. (14.45)

You can see this just by looking at the box diagram phase. What would differ if we look at Bs?
We just replace d by s to good approximation.

Now consider Ā/A. What is the diagram?

c

b
c

s

d

dB
Ψ

KS
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The ratio goes like

VcbV
∗
cs

V ∗cbVcs
. (14.46)

It’s crucial, by the way that the hadronic part vanishes.

λψKS ≡
V ∗tbVtdVcbV

∗
cs

VtbV ∗tdV
∗
cbVcs

= 2β. (14.47)

We can see this from looking at the unitarity triangle,

(0, 0) (1, 0)

(ρ, η)

γ
β

α

λu = VudV
∗
ub

λt = VtdV
∗
tb

λc = VcdV
∗
cb

What we find is

Im(λ) = sin 2β. (14.48)

What about the loop diagrams? (Just B → Kπ and just change labels.) In fact, you can just
connect the cc̄ and emit a gluon. This also works when the c is replaced by a t. This diagram
has... less than 1% error? (Yuval: please fill out this paragraph, I missed it.)

What is the asymmetry in ΨKL? You look for 3π versus 2π. A plus changes to a minus. The
question is do you get an even or an odd number of minus signs? Without doing any calculation
you should be able to know. One is CP even while the other is CP odd. There are some observables
where the number of signs are even. For example the branching ratio: B → ΨKS versus B → ΨKL

must have plus sign. This thing picks up a sign. Why? (I didn’t understand)
What about B → D+D−? Again we can look primarily at the tree diagram.

c

b

d

d

d

c

B

D−

D+

What angle do you get? Just plot the diagram and see what appears in the expression for λ. The
only difference is s→ d. Thus the phase is still β.

Last one. B → π+π−. You get α. The decay is proportional to the u side of the triangle, while
the mixing is proportional to the t side, so you pick up the angle α.

133



Acknowledgements

Y.G. would like to thank the students of Cornell University’s Physics 7661 course for their ques-
tions which reflected their enthusiasm for the subject. P.T. would also like to thank them for their
questions which gave him enough time for him to TEX these notes in real-time during the lectures.
P.T. would additionally like to thank all who read these lectures and offered corrections and sug-
gestions, including Panagiotis Athanasopoulos, Hardik Panjwani, Yuhsin Tsai, and Yariv Yanay.
Special thanks are in order for Andreas Kronfeld for very helpful explanations about lattice QCD.
This work is supported in part by the NSF grant number PHY-0355005. P.T. was additionally
supported by a National Science Foundation graduate research fellowship and a Paul & Daisy
Soros Fellowship For New Americans and is now supported by a UCI Chancellor’s postdoctoral
fellowship. The contents of this article do not necessarily represent the views of these institutions.

A Notation and Conventions

4D Minkowski indices are written with lower-case Greek letters from the middle of the alpha-
bet, µ, ν, · · · . 5D indices are written in capital Roman letters from the middle of the alphabet,
M,N, · · · . Tangent space indices are written in lower-case Roman letters from the beginning of
the alphabet, a, b, · · · . Flavor indices are written in lower-case Roman letters near the beginning
of the alphabet, i, j, · · · . We will use the notation that a matrix with a hat, e.g. m̂, is diagonal.

We use the particle physics (‘West Coast,’ mostly-minus) metric for Minkowski space, (+,−,−,−).
Dirac spinors Ψ are related to left- and right-chiral Weyl spinors (χ, ψ̄ respectively) via

Ψ =

(
χ
ψ̄

)
. (A.1)

Our convention for σ0 and the three Pauli matrices ~σ is

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(A.2)

with the flat-space γ matrices given by

γµ =

(
0 σµ

σ̄µ 0

)
, (A.3)

where σ̄µ = (σ0,−~σ). We normalize γ5 so that the left-chiral projection operator is PL = 1
2
(1−γ5),

i.e. (γ5)
2

= 1 rather than the normalization that satisfies the 5D Clifford algebra.
We will write the CKM matrix as V and the Jarlskog invariant as J .

B Facts that you should know

During the course there were a few facts and formulae that were deemed useful enough to commit
to memory.
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B.1 Facts

• The Fermi constant in terms of the SU(2)L coupling,

GF√
2

=
g2

8M2
W .

(B.1)

The
√

2 in the denominator on the left-hand side is usually absorbed by fπ to become Fπ.
The factor of 8 on the right-hand side comes from the W coupling constant being g/

√
2 and

the factors of 1/2 that come from, for example, only picking up the axial part of a chiral
interaction (e.g. only the second term of 1

2
γµ(1− γ5)).

• The mass of the B meson is 5280 MeV, which is precisely the number of feet in a mile. See
also the Spiked Math comic [17].

• 1 GeV = 1.5× 1024 sec−1

• 1 GeV = 5× 1013 cm−1

• The Wolfenstein parameterization of the CKM matrix...

V =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (B.2)

where one should note that λ ≈ 0.2 is a good expansion parameter and all other parameters
are O(1). Note that the top-left 2× 2 has the structure of the Cabbibo mixing matrix and
that CP violation only appears with a λ3 in the 3-1 mixing terms.

• The unitarity triangle:

(0, 0) (1, 0)

(ρ, η)

γ
β

α∣∣∣∣
VudV

∗
ub

VcdV ∗
cb

∣∣∣∣

∣∣∣∣
VtdV

∗
tb

VcdV ∗
cb

∣∣∣∣

• The pion decay constant is fπ ∼ 131 MeV.

• The τ mass is 1777 MeV. According to Yuval, “this is just one, and then 777, like the
casino.”
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B.2 Meson Mixing and CP formulae

The meson open system Hamiltonian is given by H = M− i
2
Γ. The eigenstates of this Hamiltonian

are

|BL,H〉 = p|B0〉 ± q|B̄0〉. (B.3)

With proper normalization |p|2 + |q|2 = 1 satisfying

q

p
=

√
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

. (B.4)

A few parameters of particular significance are

x =
∆m

Γ
y =

∆Γ

2Γ
φ = arg(Γ∗12M12) λf =

q

p

Āf
Af

. (B.5)

Here λf is a CP violation parameter associated with a particular decay B → f . The amplitude
for this process is Af and the amplitude for B̄ → f is Āf .

B.3 Derivation of mixing and CP formulae

In order to make our conventions clear we include a full derivation of some important formulae.
The open system Hamiltonian describing the oscillation between flavor eigenstate mesons is

H =

(
H11 H12

H21 H11

)
=

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12 M11 − i

2
Γ11

)
. (B.6)

For simplicity, in what follows we will write H11 = H. Note that H21 6= H∗12. The eigenvalue
equation is (H − λ)2 −H12H21 = 0 and can be solved trivially by inspection,

λL,H = H ±
√
H12H21. (B.7)

This also gives a useful expression of the diagonal element of the open system Hamiltonian in
terms of its eigenvalues,

H = H11 =
1

2
(µL + µH) ≡M − i

2
Γ. (B.8)

Here we have written M = (MH + ML)/2 and Γ = (ΓH − ΓL)/2. We also have the differences in
the masses and widths,

∆M = MH −ML ≡ xΓ ∆Γ = ΓH − ΓL ≡ 2yΓ. (B.9)

Note that the factor of 2 in ∆Γ = 2yΓ is a convention for simplifying expressions later on. We
can further use the eigenvalue equation to obtain useful relations between ∆M and ∆Γ in terms
of the off-diagonal open Hamiltonian elements. This is useful since these are the elements that
can be obtained by calculating box diagrams.

(H − µL,H)2 = H12H21. (B.10)
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Writing out the left-hand side of (B.10) we have

(H − µL,H)2 =

[
1

2
(µL − µL,H) +

1

2
(µH − µL,H)

]2

(B.11)

=
1

4
(∆µ)2 (B.12)

=
1

4

[
(∆M)2 − 1

4
(∆Γ)2 − i∆M∆Γ

]
. (B.13)

Similarly, the left-hand side of (B.10) gives

H12H21 = |M12|2 −
i

2
Γ∗12M12 −

i

2
M∗

12Γ12 −
1

4
|Γ12|2 (B.14)

=

(
|M12|2 −

1

4
|Γ12|2

)
− iRe(M∗

12Γ12). (B.15)

Now comparing the real and imaginary parts of (B.13) and (B.15) we have the relations

(∆M)2 − 1

4
(∆Γ)2 = 4|M12|2 − |Γ12|2 (B.16)

∆M∆Γ = 4Re(M∗
12Γ12). (B.17)

Moving on to the eigenvectors, we write |BL,H〉 = p|B〉± q|B̄〉 so that we can represent a mass
eigenstate in the flavor basis as a column vector (p, q)T . Solving for the eignevectors of the open
system Hamiltonian gives

q = ±
√
H21

H12

p, (B.18)

where the top sign corresponds to the L state and the bottom sign corresponds to the H state43.
Now consider a mass state |B(t)〉. By this we mean a state that at t = 0 was produced as a flavor
eigenstate |B(0)〉 = |B〉 but then oscillates as a mass eigenstate. We can determine the flavor
admixture at time t by writing |B(0)〉 in terms of mass eigenstates and then time evolving those:

|B(t)〉 =
1

2p
e−iµLt|BL〉+

1

2p
e−iµH t|BH〉. (B.19)

Then converting these back into flavor states,

|B(t)〉 =
1

2p
e−iµLt

(
p|B〉+ q|B̄〉

)
+

1

2p
e−iµH t

(
p|B〉 − q|B̄〉

)
(B.20)

=
1

2

(
e−iµLt + e−iµH t

)
|B〉+

1

2

(
e−iµLt − e−iµH t

) q
p
|B̄〉. (B.21)

43Note that an opposite convention is used in CP Violation by Branco, Lavoura, and Silva. This leads to different
expressions for the following formulae.
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For future simplicity, we define the functions

g±(t) =
1

2

(
e−iµLt ± e−iµH t

)
. (B.22)

Now let us consider the decay B(t) → f . The object which appears in our CP asymmetries
is Γ(B(t) → f), where Γ ∼ |A|2, where we’ve written A as the amplitude for the process. Let’s
calculate this quantity (the other factors cancel in the expression for the asymmetry).

A = 〈f |g+(t)|B〉+
q

p
〈f |g−(t)|B̄〉 (B.23)

≡ g+(t)Af +
q

p
g−(t)Āf . (B.24)

The squared amplitude is

|A|2 = |g+(t)|2|Af |2 +

∣∣∣∣
q

p
g−(t)

∣∣∣∣
2

|Āf |2 + g+(t)Af

(
q

p
g−(t)Āf

)∗
+ (g+(t)Af )

∗ q

p
g−(t)Āf . (B.25)

It’s very useful to write out the relevant products of g±(t) before going further. Again, note
that some sources (e.g. Branco, Lavoura, and Silva) use different conventions so that their g±(t)
expressions are different.

|g±(t)|2 =
1

4

∣∣e−iµLt ± e−iµH t
∣∣2 (B.26)

=
1

4

∣∣∣e−iMLte−
1
2

ΓLt ± e−iMH te−
1
2

ΓH t
∣∣∣
2

(B.27)

=
e−Γt

4

∣∣e−iMLte∆Γt/4 ± e−iMH te−∆Γt/4
∣∣2 (B.28)

=
e−Γt

4

(
e−iMLte∆Γt/4 ± e−iMH te−∆Γt/4

) (
eiMLte∆Γt/4 ± eiMH te−∆Γt/4

)
(B.29)

=
e−Γt

4

(
e∆Γt/2 ± ei(MH−ML)t ± ei(MH−ML)t + e−∆Γt/2

)
(B.30)

=
e−Γt

2

(
cosh

∆Γt

2
± cos(∆Mt)

)
. (B.31)

Similarly,

g±(t)∗g∓(t) =
1

4

(
e−iMLte−ΓLt/2 ± e−iMH te−ΓH t/4

)∗ (
e−iMLte−ΓLt/2 ∓ e−iMH te−ΓH t/4

)
(B.32)

=
1

4

(
eiMLte−ΓLt/2 ± eiMH te−ΓH t/4

) (
e−iMLte−ΓLt/2 ∓ e−iMH te−ΓH t/4

)
(B.33)

=
1

4

(
e−ΓLt ∓ ei(ML−MH)te−(ΓL+ΓH)t/2 ± ei(MH−ML)te−(ΓH+ΓL)t/2 − e−ΓH t

)
(B.34)

=
e−Γt

4

(
e∆Γt/2 ∓ e−i∆Mt ± ei∆Mt − e−∆Γt/2

)
. (B.35)

138



This gives (recall 2i sin θ = eiθ − e−iθ),

g+(t)∗g−(t) =
e−Γt

2

[
sinh

∆Γt

2
+ i sin(∆Mt)

]
(B.36)

g−(t)∗g+(t) =
e−Γt

2

[
sinh

∆Γt

2
− i sin(∆Mt)

]
. (B.37)

Plugging this all back into (B.25) we have

|A|2 =
e−Γt

2

(
cosh

∆Γt

2
+ cos(∆Mt)

)
|Af |2 +

e−Γt

2

(
cosh

∆Γt

2
− cos(∆Mt)

) ∣∣∣∣
q

p
Āf

∣∣∣∣
2

+
e−Γt

2

[
sinh

∆Γt

2
− i sin(∆Mt)

]
Af

(
q

p
Āf

)∗
+
e−Γt

2

[
sinh

∆Γt

2
+ i sin(∆Mt)

]
q

p
A∗f Āf .

What a mess. Let’s simplify this by grouping together according to [hyperbolic] trigonomic func-
tion and also writing ∆Γt/2 = yΓ and ∆Mt = xΓ.

2|A|2eΓt = cosh(yΓ)

(
|Af |2 +

∣∣∣∣
q

p
Āf

∣∣∣∣
2
)

+ cos(xΓ)

(
|Af |2 −

∣∣∣∣
q

p
Āf

∣∣∣∣
2
)

+ sinh(yΓ) 2 Re

[
q

p
A∗f Āf

]
− sin(yΓ) 2 Im

[
q

p
A∗f Āf

]
. (B.38)

We’ve done all of this for |B(t)〉. For the corresponding equation where you start out as a |B̄〉
at t = 0, we note that B̄ = (BL − BH)/q. You can follow through the calculation to make the
appropriate sign changes and p/q → q/p. Anyway, it is useful to rewrite |A|2 in terms of the CP
parameter λf = (q/p)(Āf/Af ),

2|A|2eΓt

|Af |2
=
(
1 + |λf |2

)
cosh(yΓ) +

(
1− |λf |2

)
cos(xΓ)

+ sinh(yΓ) 2 Reλf − sin(yΓ) 2 Imλf (B.39)

C Lie groups, Lie algebras, and representation theory

This appendix is based on notes by Y. Grossman and Y. Nir.

Symmetries play a crucial role in model building. You are already familiar with some symme-
tries and their consequences. For example, the Poincaré group implies the conservation of energy,
momentum, and angular momentum. The mathematical structures that describe symmetries are
called Lie groups. In this appendix we will briefly review how these objects allow us to relate
symmetries to physical interactions. Three particularly useful texts on this subject are

• Lie Algebras in Particle Physics, Georgi [86]

• Semi-simple Lie Algebras and their Representations, Cahn [87]

• “Group theory for unified model building”, Slansky [88]
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C.1 Groups and representations

We begin with a series of definitions.

Definition C.1. A group G is a set {xi} (finite or infinite) with a multiplication law · subject
to the following four requirements:

• Closure:

xi · xj ∈ G ∀ xi (C.1)

• Associativity:

xi · (xj · xk) = (xi · xj) · xk. (C.2)

• There exists an identity element, I (or e) such that

I · xi = xi · I = xi ∀ xi. (C.3)

• For each element xi ∈ G there exists an inverse element x−1
i such that

xi · x−1
i = x−1

i · xi = I. (C.4)

Definition C.2. A group is Abelian if all its elements commute:

xi · xj = xj · xi ∀ xi. (C.5)

A group is non-Abelian if it is... not Abelian; in other words, at least one pair of elements does
not commute.

Let us give a few examples,

• Z2, also known as parity, is a group with two elements, I and P , such that I is the identity
and P−1 = P . This completely specifies the multiplication table. This group is finite and
Abelian.

• ZN , for integer N , is a generalization of Z2. It contains N elements labeled from zero to
N − 1. The multiplication law is the same as addition modulo N : xixj = x(i+j) mod N . The
identity element is x0, and the inverse element is given by x−1

i = xN−i. This group is also
finite and Abelian.

• Positive real numbers with standard multiplication is an infinite Abelian group.

• S3, permutation group of 3 objects. It contains 6 elements and is non-Abelian. Work for
yourself the 6 elements and the multiplication table.

Definition C.3. A representation is a realization of the group multiplication law on a linear
vector space so that group elements are identified with matrices.
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Definition C.4. Two representations are equivalent if they are related by a similarity transfor-
mation.

Definition C.5. A representation is reducible if it is equivalent to a representation that is block
diagonal.

Definition C.6. An irreducible representation (‘irrep’) is a representation that is not reducible.

Definition C.7. An irrep that contains matrices of size n× n is said to be of dimension n.

Fact C.8. Any reducible representation can be written as a direct sum of irreps, e.g. D = D1 +D2.

Fact C.9. The dimension of all irreps of an Abelian group is one.

Fact C.10. Any finite group has a finite number of irreps Ri. If N is the number of elements in
the group, the irreps satisfy

∑

Ri

[dim(Ri)]
2 = N. (C.6)

Definition C.11. For any group there exist a trivial representation such that all the matrices
are just the number 1. This representation is also called the singlet representation and, as we see
later, is of particular importance for us.

Let us give some examples for the above statements.

• Z2: has a trivial irrep with I = 1, P = 1. The other irrep is I = 1, P = −1. These two
irreps clearly satisfy (C.6).

• ZN : An example of a non-trivial irrep is xk = exp(i2πk/N).

• S3: We will explore this group further in the homework.

The groups that we are particularly interested in are the transformation groups of physical
systems. Such transformations are associated with unitary operators in the Hilbert space. We
will often describe the elements of the group by the way that they transform physical states. When
we refer to representations of the group, we mean either the appropriate set of unitary operators,
or, equivalently, by the matrices that act on the states of the Hilbert space.

C.2 Lie groups

While finite groups are very important, particle physicists are particularly interested in continuous
groups which are infinite-dimensional with cardinality ℵ1. These groups are called Lie groups.

Definition C.12. A Lie group is an infinite group whose elements are labeled by a finite set
of N continuous real parameters α`, and whose multiplication law depends smoothly on the α`’s.
The number N is called the dimension of the group.

Fact C.13. An Abelian Lie group has N = 1. A non-Abelian Lie group has N > 1.
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Our first example of a Lie group is U(1). It represents addition of real numbers modulo 2π,
that is, rotation on a circle. Such a group has an infinite number of elements that are labeled
by a single continuous parameter α. We can write the group elements as M = exp(iα). We can
also represent it by M = exp(2iα) or, more generally, as M = exp(iXα) with X real. Each X
generates an irrep of the group.

We are mainly interested in compact Lie groups. We will not give a formal definition, but
we can use the U(1) example to give an intuitive explanation of compactness. A group whose
multiplication rule is modular addition is compact, while non-modular addition would be non-
compact. In the first case, if you repeat the same addition a number of times, you may return
to your starting point. In the latter this would never happen. In other words, in a compact Lie
group, the parameters have a finite range, while in a non-compact group, their range is infinite.
Do not confuse that with the number of elements, which is infinite in either case. Another familiar
example is the Lorentz group: Rotations are compact while boosts are not.

Fact C.14. The elements of any compact Lie group can be written as

Mi = exp(iα`X`) (C.7)

such that X` are Hermitian matrices that are called generators. (We use the standard summation
convention: α`X` ≡

∑
` α`X`.)

Let us perform some algebra before moving on to our next definition. Consider two elements
of a Lie group, A and B, such that A is the exponentiation of a the generator Xa (i.e. only αa 6= 0)
and is the exponentiation of a the generator Xb (i.e. only αb 6= 0). One may of course parameterize
the generators such that this is true for any A and B. Let us further set αa = αb = λ so that

A ≡ exp(iλXa), B ≡ exp(iλXb). (C.8)

Since A and B are in the group, each of them has an inverse. Thus,

C = BAB−1A−1 ≡ exp(iβcXc) (C.9)

is also in the group. Let us take λ to be a small parameter and expand around the identity.
Clearly in this limit all of the the βc are also small. Keeping the leading order terms, we get

C = exp(iβcXc) ≈ I + iβcXc, C = BAB−1A−1 ≈ I + λ2[Xa, Xb]. (C.10)

In the λ→ 0 limit, we have

[Xa, Xb] = i
βc
λ2
Xc. (C.11)

Clearly, the combinations

fabc ≡ λ−2βc (C.12)

are independent of λ. Furthermore, while λ and βc are infinitesimal, the fabc-constants do not
diverge. This brings us to a new set of definitions.
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Definition C.15. The commutation relations of the generators of a Lie group [see (C.11)]

[Xa, Xb] = ifabcXc (C.13)

are the called the Lie algebra. The constants fabc are called the structure constants of the
algebra.

Note the following points regarding the Lie Algebra:

• The algebra defines the local properties of the group but not its global properties. Usually,
this is all we care about44.

• The Lie algebra is closed under the commutation operator.

• Just like Lie groups, one can define representations of the Lie algebra, i.e. matrix represen-
tations of X`. In particular, each representation has its own dimension. (Do not confuse the
dimension of the representation with the dimension of the group!)

• The generators satisfy the Jacobi identity

[Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]] = 0. (C.14)

• For each Lie algebra there is the trivial (singlet) representation which is X` = 0 for all `.
The trivial representation of the algebra generates the trivial representation of the group.

• Since an Abelian Lie group has only one generator, its algebra is always trivial. Thus, the
algebra of U(1) is the only Abelian Lie algebra.

• Non-Abelian Lie groups have non-trivial algebras.

The example of SU(2) algebra is well-known from introductory quantum mechanics:

[Xa, Xb] = iεabcXc. (C.15)

Usually, in QM, X is called L or S or J . The SU(2) group represents non-trivial rotations in a
two-dimensional complex space. Its algebra is the same as the algebra of the SO(3) group, which
represents rotations in the three-dimensional real space.

Let us explain what we mean when we say that “the group represents rotations in a space.”
This is clear in the context of quantum mechanics. Consider a finite Hilbert space of, say, a
particle with spin S. The matrices that rotate the direction of the spin are written in terms of
exponent of the Si operators. For a spin one-half particle, the Si operators are written in terms
of the Pauli matrices. For particles with spin different from 1/2, the Si operators will be written
in terms of different matrices. We learn that the group represents rotations in some space, while
the various representations correspond to different objects that can “live” in that space.

44A notable exception in high-energy physics is the Poincaré group whose nontrivial global structure requires
that particles of a given spin should be representations of the universal cover of the Poincaré group rather than
the Poincaré group itself. See, for example, [89] for a pedagogical exposition.
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There are three important irreps that have special names. The first one is the trivial—or
singlet—-representation that we already mentioned. Its importance stems from the fact that it
corresponds to something that is invariant under rotations.

The second important irrep is the fundamental representation. This is the smallest non-trivial
irrep. For SU(2), this is the spinor representation. An important property of the fundamental
representation is that it can be used to get all other representations. We will return to this point
later. Here we just remind you that this statement is well familiar from QM. One can get spin-1
by combining two spin-1/2, and you can get spin-3/2 by combining three spin-1/2. Every Lie
group has a fundamental irrep.

The third important irrep is the adjoint representation. It is made out of the structure
constants themselves. Think of a matrix representation of the generators. Each entry, T cij is
labelled by three indices. One is the index of the generator itself c that runs from 1 to N , such
that N is the dimension of the algebra. The other two indices, i and j, are the matrix indices
that run from 1 to the dimension of the representation.

Caution. Do not become confused by the different dimensions we’ve mentioned. The di-
mension of the algebra, which is finite, is different from the dimension of the group, which is
infinite for Lie groups. These are both intrinsic properties of the group, for example SU(2) is
an infinite-dimensional group which has a three-dimensional algebra whose elements are the
Pauli matrices. This algebra has different representations, each of which has a different dimen-
sion. In particle physics we are always interested in finite-dimensional representations. The
only exception is the Poincaré group, for which we use a trick to work with finite-dimensional
representations; see [89].

One can show that each Lie group has one representation where the dimension of the rep-
resentation is the same as the dimension of the group; this is the adjoint representation. This
representation is obtained by defining

(Xc)ab ≡ −ifabc. (C.16)

In other words, the structure constants themselves satisfy the algebra of their own group. In
SU(2), the adjoint representation corresponds to spin-1. It is easy to see that the SU(2) structure
constants εijk are just the set of the three 3× 3 representations of spin-1.

C.3 More formal developments

Definition C.16. A subalgebra M is a set of generators that are closed under commutation.

Definition C.17. Consider an algebra L with a subalgebra M . M is an ideal if for any x ∈ M
and y ∈ L [x, y] ∈M . (For a subalgebra that is not ideal we still have [x, y] ∈ L.)

Definition C.18. A simple Lie algebra is an algebra without a non-trivial ideal. (Any algebra
has a trivial ideal, the algebra itself.)

Definition C.19. A semi-simple Lie algebra is an algebra without a U(1) ideal.
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Any Lie algebra can be written as a direct product of simple Lie algebras. Thus we can think
about each of the simple algebras separately. You are already familiar with this! For example,
consider the hydrogen atom. We can think about the Hilbert space as a direct product of the spin
of the electron and that of the spin of the proton.

A useful example is that of the U(2) group, which is not semi-simple:

U(2) = SU(2)× U(1). (C.17)

A U(2) transformation corresponds to a rotation in two-dimensional complex space. Think, for
example, about the rotation of a spinor. It can be separated into two: The trivial rotation is just
a U(1) transformation, that is, a phase multiplication of the spinor. The non-trivial rotation is
the SU(2) transformation, that is, an internal rotation between the two spin components.

Definition C.20. The Cartan subalgebra is the largest subset of generators whose matrix
representations can all be diagonalized at once.

Obviously, these generators all commute with each other and thus constitute a subalgebra.

Definition C.21. The number of generators in the Cartan subalgebra is called the rank of the
algebra.

Let us consider a few examples. Since the U(1) algebra only has a single generator so it has
rank one. SU(2) is also rank one. You can make one of its three generators, say Sz, diagonal,
but not two of them simultaneously. SU(3) is rank two. Much of this course will depend on the
structure of SU(3) so we will explore it in much more detail below.

Our next step is to introduce roots and weights. We do this by first presenting an example.

Example C.22. Consider the SU(2) algebra. It has three generators. We usually choose S3 to be
in the Cartan subalgebra, and we can combine the two other generators, S1 and S2, into raising and
lowering operators, S± = S1±iS2. Any representation can be defined by the eigenvalues under the
operation of the generators in the Cartan subalgebra, in this case S3. For example, for the spin-1/2
representation, the eigenvalues are −1/2 and +1/2; For the spin-1 representation, the eigenvalues
are −1, 0, and +1. Under the operation of the raising (S+) and lowering (S−) generators, we
“move” from one eigenstate of S3 to another. For example, for a spin-1 representation, we have
S+ |−1〉 ∝ |0〉.

Let us now consider a general Lie group of rank n. Any representation is characterized by the
possible eigenvalues of its eigenstates under the operation of the Cartan subalgebra: |e1, e2..., en〉.
We can assemble all the operators that are not in the Cartan subalgebra into “raising” and
“lowering” operators. That is, when they act on an eigenstate they either move it to another
eigenstate or annihilate it.

Definition C.23. The weight vectors or weights of a representation are the possible eigenvalues
of the generators in the Cartan subalgebra.

Definition C.24. The roots of the algebra are the various ways in which the generators move a
state between the possible weights.
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Fact C.25. The weights completely describe the representation.

Fact C.26. The roots completely describe the Lie algebra.

Note that both roots and weights live in an n-dimensional vector space, where n is the rank
of the group. The number of roots is the dimension of the group. The number of weights is the
dimension of the irrep.

Example C.27. Let us return to our SU(2) example. The vector space of roots and weights
is one-dimensional. The three roots are 0,±1. The trivial representation has only one weight,
zero; The fundamental has two, ±1/2; The adjoint has three, 0,±1 (the weights of the adjoint
representations are just the roots); and so on.

C.4 SU(3)

In this section we discuss the SU(3) group. It is more complicated than SU(2) but it allows us
to demonstrate a few aspects of Lie groups that cannot be demonstrated with SU(2). Of course,
it is also particularly relevant to particle physics.

SU(3) is a generalization of SU(2). It may be useful to think about it as rotations in three-
dimensional complex space. Similar to SU(2), the full symmetry of the rotations is called U(3),
and it can be written as a direct product of simple groups, U(3) = SU(3) × U(1). The SU(3)
algebra has eight generators. (There are nine independent Hermitian 3 × 3 matrices. They can
be separated to a unit matrix, which corresponds to the U(1) part, and eight traceless matrices,
which correspond to the SU(3) part.)

Similar to the use of the Pauli matrices for the fundamental representation of SU(2), the
fundamental representation of SU(3) is usually written in terms of the Gell-Mann matrices,

Xa = λa/2, (C.18)

with

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 ,

λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 1 0
1 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (C.19)

We would like to emphasize the following points:
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1. The Gell-Mann matrices are traceless, as we expect for the generators of a unitary group.
One can check that the condition of unitarity of group elements imposes tracelessness on
the elements of the algebra.

2. The Lie algebra of SU(3) contains three SU(2) subalgebras. One of them is manifest and it
is given by λ1, λ2 and λ3. Can you find the other two?

3. It is manifest that SU(3) is of rank two: λ3 and λ8 are in the Cartan subalgebra.

Having explicit expressions of fundamental representation at our disposal, we can now draw
a weight diagram—a graphical way to visualize the roots and weights of a Lie algebra. Let us
first sketch how we this works for the fundamental (spinor) representation of SU(2). We have two
basis vectors (spin-up and spin-down) and apply Sz on them and obtain the two weights, +1/2
and −1/2.

For SU(3) we follow the same steps. We take the three vectors,




1
0
0


 ,




0
1
0


 ,




0
0
1


 , (C.20)

and on each of them apply the two generators in the Cartan subalgebra, X3 and X8. We find the
three weights

(
+

1

2
,+

1

2
√

3

)
,

(
−1

2
,+

1

2
√

3

)
,

(
0,− 1√

3

)
. (C.21)

We can plot this in a weight diagram in the X3 −X8 plane. Please do it.
Once we have the weights we can obtain the roots. They are just the combination of generators

that move us between the weights. Clearly, the two roots that are in the Cartan are at the origin.
The other six are those that move us between the three weights. It is easy to find that they are

(
±1

2
,±
√

3

2

)
, (±1, 0) . (C.22)

Again, it is a good idea to plot it. This root diagram is also the weight diagram of the adjoint
representation.

D Homework solutions

1.1 According to Wikipedia, the Martian sky is pinkish-red and becomes blue around the horizon
during sunset [90]. Rayleigh scattering, which causes the blue color of the Earth sky, is a small
effect on Mars. Instead, it is believed that dust containing magnetite causes the reddish hue of
the Martian sky.

2.1 Let us review our counting for real parameters and phases. Each Yukawa matrix has N2

elements which can each be written as yij = rije
iθij . Thus each Yukawa contains N real parameters
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and N phases. We would now like to identify the number of broken generators. An element of
U(N) is an N ×N complex matrix satisfying

UU † = 1. (D.1)

This gives one equation of constraint for each complex component for a total of N2 parameters.
How many of these parameters are real? This is precisely the number of parameters of an element
of O(N), namely 1

2
N(N − 1). The remaining 1

2
N(N + 1) parameters are phases.

In the quark sector of our N generation Standard Model, we have 2N2 real parameters and
2N2 phases coming from the yu and yd matrices. How many of these are physical? We subtract
the number of broken generators. For generic Yukawa matrices with no underlying structure, the
U(N)3 flavor symmetry is broken down to U(1)B. Thus we have 3× 1

2
N(N −1) broken generators

associated with real parameters and 3× 1
2
N(N + 1)− 1 broken generators associated with phases.

This gives a total of

2N2 − 3

2
N(N − 1) =

1

2
N(N + 3) physical real parameters (D.2)

2N2 − 3

2
N(N + 1) + 1 =

1

2
(N − 2)(N − 1) physical phases. (D.3)

Of the real parameters, N of them are Dirac masses and so 1
2
N(N + 1) must be mixing angles.

Let us remark that for the full N -generation Standard Model we must also add N real parameters
for the lepton masses, the 3 real parameters for the gauge couplings, and the two real parameters
governing the Higgs sector.

2.2 The problem already defined the three main ingredients of a model. It’s up to us to now
write the most general Lagrangian and identify the number of physical parameters. We will only
consider the quark sector since all other sectors are the same as the Standard Model. There are
five matter fields in the quark sector (QL, uR, dR, sL, sR). The only difference from the Standard
Model is that the sL is an SU(2)L singlet so that it must have Y = −1/3 to obtain the correct
electric charge. The kinetic terms have a U(2)× U(1)3 symmetry where the U(2) corresponds to
mixing the dR and sR fields. Note that the sL cannot mix with these fields even though it seems
to have the same quantum numbers as the sR; the sL and sR are different Lorentz representations.
In other words, sL is a left-chiral spinor χα while sR is a right-chiral spinor ψ̄α̇. As one can see
from the indices, these transform differently under rotations. Using the counting introduced in the
previous problem for the number of real parameters and phases in unitary matrices, we see that
the kinetic terms have a symmetry group with 1 real parameter generator and 6 phase generators.

Let us now identify how many total parameters are in the Lagrangian and how many of of the
above symmetries are broken. The most general quark Yukawa sector is

LYuk.,Q = yuQ̄LφuR + ydQ̄Lφ̃dR + ysQ̄Lφ̃sR + h.c., (D.4)

where the yi are complex numbers so that we have 3 real parameters and 3 phases. In the Standard
Model the Yukawa sector was the only source of additional quark interactions. In our exotic model,
however, the fact that the sL is a singlet allows us to write additional bare mass terms,

Lmass = mss̄LsR +mds̄LdR + h.c. (D.5)
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Each ma is a complex number so that this gives 2 additional real parameters and 2 additional
phases. We now have a total of 5 real parameters and 5 phases. What symmetries are preserved
by these Lagrangian terms? We are left with an analog of U(1)B where the left-handed and
right-handed fields all transform with the same phase. This means that of the symmetries in the
kinetic sector, the one real parameter and 5 of the 6 phases are broken. The number of physical
parameters is equal to the number of total parameters minus broken generators, so this gives us
a total of four real parameters and no phases.

Does this make sense? Three real parameters are associated to the Dirac masses of the particles.
We have one left over real parameter, but we can see that when the Higgs gets its electroweak
symmetry-breaking vev there is a mass term mixing the s and d quarks so that the mass term
after EWSB looks like

L ⊃
(
d̄L s̄L

)(yd v√
2

ys
v√
2

md ms

)(
dR
sR

)
+ h.c. (D.6)

so that we can see that the left over real parameter gives the d− s mixing angle.

2.3 A careful counting by Dimopoulos and Sutter gives 110 parameters: 30 masses, 29 mixing
angles, and 41 phases [91]. You are referred to their paper for a very nice analysis. See also a nice
presentation by Haber [92] for some variants of the MSSM.

2.4 The conventional explanation for why the SU(2)L Θ angle is not physical comes from the use
of the anomalous U(1)B+L symmetry to rotate it away. (One cannot do this in QCD with U(1)A
since this would give the quark masses an imaginary component.) A cute way to check this is to
count the number of physical parameters in the SU(2)L sector at a quantum level and check that
they are all accounted for without having to introduce a ΘL term. We can cast this argument in
a different way in light of our parameter counting. We saw that the U(1)A anomaly of QCD led
to the appearance of another physical parameter at the quantum level, ΘQCD. If we look at the
SU(2)L sector of the Standard Model, we might also expect an additional parameter to appear,
Θweak, because of the U(1)B+L anomaly. However, the key point is that U(1)B+L isn’t broken
by the Yukawas, and so it was never counted as a ‘broken symmetry’ in our tree-level analysis.
Thus the U(1)B+L anomaly doesn’t lead to one less broken symmetry and so does not introduce
an additional physical parameter. In other words, ΘWeak is not physical. By the way, a useful
way to remember which global symmetries are broken anomalies is to look at the instanton that
induces the appropriate Θ term. In this case the sphaleron violates B+L while preserving B−L.

3.1 A quick-and-dirty way to get this is to use the Heisenberg relation ∆E∆t ∼ ~.

3.2 These are trivial to look up in the PDG. The paper version is slightly more satisfying to
thumb through, while the online version is kinder to the environment.

1. The easiest place to look is the Meson Summary Table. The D+ is a cd̄ bound state with
mass mD+ ≈ 1870 MeV.

2. The easiest place to look is the Baryon Summary Table. The Λ is a uds bound state with
spin 1/2.
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3. The easiest place to look is the Lepton Summary Table. (Do you see a theme?) The τ will
decay to µνν̄ 17% of the time.

4. The B+ meson has a lifetime of τB± = 1.6× 10−12 s. This translates to a width of

ΓB+ = (1.6× 10−12 s)−1 × 1 GeV

1.5× 1024 s−1
= 4.4× 10−13 GeV = 4.4× 10−4 eV. (D.7)

5. The PDG tells us that cτ = 491 µm. With a boost factor γ = 4 this gives us γcτ = 1.9 mm.

3.3 A convenient basis is
{
|uū〉, |ud̄〉, |dū〉, |dd̄〉

}
. We can convert to the isospin basis using

|0, 0〉 =
1√
2

(
|uū〉 − |dd̄〉

)
(D.8)

|1,−1〉 = |dū〉 (D.9)

|1, 0〉 =
1√
2

(
|uū〉+ |dd̄〉

)
(D.10)

|1, 1〉 = |ud̄〉 (D.11)

where we’ve written states according to |I, I3〉. Note that u and d̄ are analogous to | ↑ 〉 while ū
and d are analogous to | ↓ 〉 in the usual SU(2) spin notation. (To see why just remember that the
kinetic term must be isospin invariant and that the SU(2) metric is the antisymmetric tensor.)
Let us say that the singlet gets a mass m1 and the triplet states get mass m3. The mass matrix
thus takes the form



2m2
u + 1

2
m2

3 + 1
2
m2

1
1
2
m2

1 − 1
2
m2

3

m2
u +m2

d + 1
2
m2

3

m2
u +m2

d + 1
2
m2

3
1
2
m2

1 − 1
2
m2

3 2m2
d + 1

2
m2

3 + 1
2
m2

1


 . (D.12)

From here one can happily plug into Mathematica to solve for the exact eigenstates and eigenvalues.
As a sanity-check note that in the limit mu,d → 0 the uū and dd̄ states mix with a 45◦ angle giving
the π0 and η. The ud̄ and dū states do not mix because both bases conserve I3. Note further that
electromagnetism also preserves the I3 quantum number.

3.4 Writing the universal mass contribution as mΛ and using the quark content predicted by
SU(3), e.g. by using (3.11) and (3.12), we find

m2
π = m2

Λ + 2µmu (D.13)

m2
K = m2

Λ + µ (mu +ms) (D.14)

m2
η = m2

Λ +
2µ

3
(mu + 2ms) . (D.15)

We can ‘solve’ these equations by eliminating the unknown quantities mΛ, mu, and ms to obtain
the Gell-Mann–Okubo mass formula for pseudoscalar mesons,

4m2
K = m2

π + 3m2
η. (D.16)

Note that the meson masses in this expression are summed in quadrature. For general SU(3)
octets (vector mesons) the meson masses would be summed linearly. We will explain this subtle
difference in Section 3.8.
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3.5 This is actually a bit of a trick question because it’s hard to find the quark content from the
summary table. Textbooks list the quark content as being approximately

ω =
1√
2

(
uū+ dd̄

)
(D.17)

φ = ss̄. (D.18)

3.6 Representation theory for SU(3) tells us that the I3 = 0 octet and singlet states have the
quark content

ψ8 =
1√
6

(
uū+ dd̄− 2ss̄

)
(D.19)

ψ1 =
1√
3

(
uū+ dd̄+ ss̄

)
. (D.20)

As we mentioned before we will be working with differences of masses, so we can ignore all universal
contributions to meson masses coming from angular momentum and the QCD potential. Further,
we will assume that SU(2) isospin is a good symmetry such that md = mu. Then the mass of the
ψ8 comes from averaging over the probabilities that ψ8 will contain a given quark pair. In other
words, one should look at

〈ψ8|ψ8〉 =
1

6

(
〈uū|uū〉+ 〈dd̄|dd̄〉+ 4〈ss̄|ss̄〉

)
. (D.21)

to determine that

m8 =
1

6
(2× 2mu + 2× 4ms) =

2

3
(mu + 2ms), (D.22)

where we remember an overall factor of two because the state uū has valence quark mass contribu-
tion ∆m = 2mu. Note that we look at the square of the state |psi〉 because we want the probability
that the meson contains a given quark content; this has nothing to do with the idea that we should
be summing the masses linearly or quadratically. It is “more obvious than obvious45” that we
should sum the masses linearly. (The pseudoscalars are special because they are pseudo-Goldstone
bosons that need to be treated in chiral perturbation theory where the squared meson masses are
linear in the symmetry-breaking parameters, the quark masses.) Using the same analysis we may
write out the valence quark mass contribution for the vector kaon and ρ,

mK∗ = mu +ms (D.23)

mρ = 2mu. (D.24)

This gives us a basis to re-express quark masses in terms of the non-mixing octet meson masses.
(These mesons don’t mix because the quark masses break SU(3) → U(1)3 so that strangeness is
conserved.) Thus we readily obtain

m8 =
1

3
(4mK∗ −mρ) (D.25)

m1 =
1

3
(2mK∗ +mρ). (D.26)

45This is a delightful phrase I borrowed from Tony Zee.
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You might have worried that we do not know what the mixing term m18 = m81 should look like,
but the point is that the mixing term comes precisely from the fact that when SU(3) is broken,
〈ψ8|ψ1〉 6= 0. In particular,

〈ψ8|ψ1〉 =
1

3
√

2

(
〈uū|uū〉+ 〈dd̄|dd̄〉 − 2〈ss̄|ss̄〉

)
, (D.27)

note the minus sign! We can thus read off

m81 = m18 =
2

3
√

2
(2mu − 2ms) =

2
√

2

3
(mρ −mK∗) . (D.28)

Good. Now we know that the flavor basis matrix is made up of these elements, but upon
rotation to the mass basis the matrix is diagonalized to

R

(
m8 m81

m18 m1

)
RT =

(
mφ

mω

)
. (D.29)

We can relate the physical masses mφ,ω to the expressions above by considering invariants under
rotations, namely the trace and determinant. The trace relation is easy and gives us

mω +mφ = 2mK∗ . (D.30)

The determinant relation gives us

mωmφ =
1

9

[
(4mK∗ −mρ)(2mK∗ +mρ)− 8(mρ −mK∗)

2
]
, (D.31)

where we recognize m8 = 3(4mK∗ −mρ) in the first term on the right-hand side. We would like
to combine these equations into the Schwinger relation. This is most easily obtained by starting
with the determinant relation and, in the first term on the left-hand side, writing

(2mK∗ +mρ) = 6mK∗ +mρ − 4mK∗ = 3(mω +mφ)− 3m8. (D.32)

This leads us to

3m8 [3(mω +mφ)− 3m8]− 8(mρ −mK∗) = 9mωmφ. (D.33)

Rearranging terms and then factorizing we finally obtain

−(m8 −mω)(m8 −mφ) =
8

9
(ma −mK∗)

2. (D.34)

This is satisfied up to an error of O(160 MeV2), which is quite good considering that it is quadratic
in mass.

3.7 The rotation from the ψ8,ψ1 basis to the physical basis can be written as

RTMR =

(
mφ

mω

)
, R ≡

(
cos θ sin θ
− sin θ cos θ

)
. (D.35)
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Inverting this relation one finds

(
m8 m81

m18 m1

)
=

(
c2mφ + s2mω c s (mω −mφ)
c s (mω −mφ) s2mφ + c2mω

)
, (D.36)

where we’ve written sin θ = s and cos θ = c for short-hand. Now note the following relations:

m8 −mω = c2(mφ −mω) (D.37)

m8 −mφ = s2(mω −mφ) (D.38)

m1 −mω = s2(mφ −mω) (D.39)

m1 −mφ = c2(mω −mφ), (D.40)

where all we’ve used is cos2 θ + sin2 θ = 1. From this it is easy to take ratios and derive the
relations in (3.27). For the tan θ expressions use the observation that

m81 = c s(mω −mφ) (D.41)

and take the appropriate ratios with the sin2 θ and cos2 θ expressions above. Finally, for the double
angle formulae use

m8 −m1 = (c2 − s2)(mφ −mω) (D.42)

and

cos 2θ = cos2 θ − sin2 θ (D.43)

sin 2θ = 2 cos θ sin θ. (D.44)

3.8 Writing out only the valence quark mass contribution (and taking mu = md) we have

mK∗ = mu +ms (D.45)

mρ = 2mu. (D.46)

From this we may express the diagonal flavor-eigenstate masses

m8 =
1

3
(4mK∗ −mρ) (D.47)

m1 =
1

3
(2mK∗ +mρ). (D.48)

Taking the inner product 〈φ8|φ1〉 we may also extract the off-diagonal mass term

m81 = m18 =
2
√

2

3
(mu −ms) =

2
√

2

3
(mρ −mK∗) . (D.49)
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Armed with these it is straightforward to plug into (3.27), (3.28), and (3.29). To give a complete
list for each expression,

tan2 θ = −4mK∗ −mρ − 3mφ

4mK∗ −mρ − 3mω

(D.50)

= −2mK∗ +mρ − 3mω

2mK∗ +mρ − 3mφ

(D.51)

=
4mK∗ −mρ − 3mφ

2mK∗ +mρ − 3mφ

(D.52)

=
2mK∗ +mρ − 3mω

4mK∗ −mρ − 3mω

. (D.53)

tan θ =
−2
√

2(mρ −mK∗)

4mK∗ −mρ − 3mω

(D.54)

=
−2
√

2(mρ −mK∗)

2mK∗ +mρ − 3mφ

(D.55)

=
4mK∗ −mρ − 3mφ

2
√

2(mρ −mK∗)
(D.56)

=
2mK∗ +mρ − 3mω

−2
√

2(mρ −mK∗)
. (D.57)

cos 2θ =
2

3

mK∗−mρ
mφ −mω

(D.58)

sin 2θ =
4
√

2

3

mρ −mK∗

mω −mφ

. (D.59)

Note that the value of tan 2θ obtained from the last two equations is independent of any meson
masses. This is because (3.29) was written such that the mφ and mω dependence cancels and
we’re left with two quantities which are calculated using valence quark masses. The upshot is that
the value of θ derived this way is precisely what is predicted by ideal mixing.

3.9 When the mixing term mxy � m2
x −m2

y then φ = 0 and we have the ideal mixing condition.
On the other hand, if the splitting m2

x −m2
y � mxy then φ → 45◦. This value is an asymptotic

and so is relatively stable in this regime. For more discussion see Isgur [23].

3.10 These states do not mix because the light quark masses break SU(3) to U(1)u×U(1)d×U(1)s
such that strangeness is conserved.

3.11 See Griffiths Introduction to Elementary Particles, Chapter 5.6.2–5.6.3 (Chapter 5.10 in the
first edition).

4.1 See [36]. (Joao Silva was attending the lecture where this problem was posed and only nodded
that this is a problem in his book.)
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4.2 This is straightforward: use (area) = (base) × (height). To be somewhat pedantic, take the
following steps

1. Normalize the triangle so that one side has unit length in the real direction.

2. The height of the triangle is given by the imaginary part of one of the other (normalized)
terms in the sum.

3. Use the formula for the area of a triangle.

4. Return to the previous normalization by multiplying this area by the absolute value of the
side that we scaled and rotated, squared (because this is an area).

4.3 You are free to pick any two unitary triangles you want, but two of them are particularly
easy. Looking at the standard CKM parameterization (4.11) we see that Vud, Vus, Vcb, and Vtb are
purely real. Thus there are two triangles that have one leg parallel to the real axis:

∑

i

VidV
∗
is = 0 (D.60)

∑

i

VcjV
∗
tj = 0. (D.61)

Thus the base of the triangle (D.60) is

VudVus = c12c13s12c13, (D.62)

while the base of the triangle (D.61) is

VcbVtb = s23c13c23c13. (D.63)

Great. That’s the easy part. To calculate the height it is sufficient to take the imaginary part of
either of the remaining terms in the sum. For triangle (D.60) we’ll take VcdV

∗
cs

|Im (VcdV
∗
cs)| =

∣∣Im
(
s2

12s13c23s23e
−iδ − c2

12s13c23s23e
iδ
)∣∣ (D.64)

= sin δ s13c23s23. (D.65)

For triangle (D.60) we’ll take VcsV
∗
ts,

|Im (VcsV
∗
ts)| =

∣∣Im
(
−c12s12s13c

2
23e
−iδ + c12s12s13s

2
23e

iδ
)∣∣ (D.66)

= sin δ c12s12s13. (D.67)

Comparing the (base)×(height) of each triangle, we find that both triangles have area equal to
one half of

c12s12s13c
2
13c23s23 sin δ. (D.68)

This is indeed our definition of the Jarlskog, (4.21).
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5.1 Look up references on ‘atomic parity violation.’ See, for example, [93, 94] for reviews. The
main point is that part of the Z coupling is pseudovector-like which means its coupling is pro-
portional to a fermion’s helicity. This is parity-odd unlike the electric force. The goal this, is to
devise experiments that are sensitive to this left-right asymmetry. This is rather non-trivial, and
a näıve estimate of the size of such an asymmetry is [93]

ALR =
PL − PR
PL + PR

(D.69)

where PL,R = |AEM ± Aodd
W |2. The weak amplitude AW ∼ g2/(q2 + M2

Z) where the characteristic
momentum scale is given by the Bohr radius,

q ∼ 1

αme

. (D.70)

This gives us

ALR ≈ α2 m
2
e

M2
Z

≈ 10−15, (D.71)

which is hopelessly small. Fortunately, there are various enhancement mechanisms which make
the measurement of this quantity experimentally tractable. See Section 2.4 of [93] for an excellent
discussion.

6.1 In terms of Weyl spinors, (6.5) reads

LZ =
g

cos θW

[
χ̄iuσ̄µ

(
1

2
− 2

3
sin2 θW

)
χiu + ψjuσµ

(
−2

3
sin2 θW

)
ψ̄ju + h.c.

]
Zµ. (D.72)

6.2 Refer to the solution to Problem (2.2) for background.

• In the interaction basis the couplings to the Z are given by the usual formula

gz = g cos θW T 3 − g′ sin θW Y. (D.73)

From the particle content we see that the singlets dR and sL have the same T 3 and Y quan-
tum numbers. The other particles all have different quantum numbers and hence different
couplings to the Z. From (D.6) we see that the bare mass terms cause the mass matrix for
the d and s quarks to be different from the Yukawa basis. Let us say that this mass matrix
M is diagonalized by M̂ = WLMW †

R. Then the rotations

(
d′L,R
s′L,R

)
= WL,R

(
dL,R
sL,R

)
(D.74)

shift the interaction basis fields (d, s) to the mass basis fields d′, s′. In terms of these fields,
the coupling to the Z in the kinetic term is written as

(
d̄′L,R s̄′L,R

)
W †
L

(
g
dL,R
Z

g
sL,R
Z

)
WRiγ

µZµ

(
d′L,R
s′L,R

)
. (D.75)
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The key point is that while gdRZ = gsRZ , i.e. the right-chiral coupling matrix is diagonal,
gdLZ 6= gsLZ so that the left-chiral couplings become non-diagonal after the bi-unitary rotation
by WL and WR. Thus there are FCNCs in the Z coupling to the left-chiral down quark
sector.

• There are no photon or gluon FCNCs. The photon and gluon couplings are all universal
with respect to particles within a given flavor representation.

• Because the Yukawa couplings and the mass matrix (D.6) are not proportional to one another
(i.e. not aligned) there are FCNCs from the Higgs. Note that these can be easy to ‘hide’
since the Higgs couplings to the light quarks is small.

• We now know that this model has tree-level FCNCs. As a quick and dirty approximation we
can expect that the magnitude of the flavor-changing neutral currents and charged currents
should be of the same order of magnitude. However, looking at the PDG, we can consider
characteristic kaon decays (kaons because the new flavor structure is only in the s-d sector),

Br(K+ → µ+νµ) = 64% (D.76)

Br(K0
L → µ+µ−) = 7× 10−9. (D.77)

We know that the leptons only couple to the bosons through the SU(2)L gauge bosons, so
first decay is through the charged current while the second is through the neutral current.It
would be very difficult to explain this discrepancy if a model has tree-level FCNCs and hence
we expect this model to be ruled out.

6.3 The Yukawa and mass terms in the Lagrangian for this model takes the form

LYuk.+mass = yLQ̄LφsR + yRQ̄RφsL +mQQ̄LQR +mss̄LsR + h.c. (D.78)

These terms break U(1)4 flavor symmetry in the kinetic terms to a U(1) overall phase rotation on
each field. We thus expect a total of 4 − 0 = 4 physical real parameters and 4 − 3 = 1 phases.
The Dirac mass matrix takes the form

(
mQ yL

v√
2

yR
v√
2

ms

)
, (D.79)

while the up-quarks have a single mass term mQūL + ūR + h.c.. We may choose the real physical
parameters to be the Dirac masses for each generation and the d-s mixing angle and the physical
phase to be that of the up quark mass term. The coupling to the Z boson in the interaction and
mass bases follow as it did in the previous problem. In particular, in the mass basis one must
perform a rotation (D.74) so that the Z couplings take the form (D.75). Now both the left- and
right-handed d and s quarks have different SU(2)L × U(1)Y quantum numbers so that gdZ 6= gsZ
and so the rotation introduces FCNCs through the Z for both chiralities.

As before the photon and gluon still do not mediate FCNCs because their couplings are all
universal with respect to particles within a given flavor representation. The Higgs again induces
FCNCs because the bare mass terms prevent the mass matrix and Yukawa matrix from being
proportional to one another. The appearance of FCNCs in the Z and Higgs sectors lead us to
expect this model to be ruled out experimentally.
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6.4 For a nice history and collection of references about the 2HDM, see [92].

• The most general Yukawa potential takes the form

LYuk. = (y1u
ij φ1 + y2u

ij φ̃2)Q̄iuj + (y1d
ij φ̃1 + y2d

ij φ̃2)Q̄idj + h.c. (D.80)

• The diagonalization procedure proceeds as usual for the Standard Model except that the
mass matrices are now

mu
ij = y1u

ij

v1√
2

+ y2u
ij

v2√
2

md
ij = y1d

ij

v1√
2

+ y2d
ij

v2√
2
. (D.81)

These are diagonalized by some biunitary transformation. As far as the kinetic terms are
concerned, this rotation on the quark fields has the same effect as the rotation in the Standard
Model. In particular, the Z couplings are still universal and remain flavor-diagonal.

• It is straightforward to see that there are FCNCs in the Higgs sector. For example, the
neutral scalar Higgs components couple to the fermions by replacing vi/

√
2 in the mass

matrices with ha for a = 1, 2 labeling each the two Higgs doublets. It is clear that in general
the mass matrix is different from the Yukawa matrix for either Higgs since, e.g. mu

ij 6= yauij
for either a = 1, 2. There are, of course special cases; for example if these Higgses are
allowed to mix in such a way that the mass eigenstate couples to combinations of Yukawas
proportional to mu and md. We can also note that in the limits tan β ≡ v2/v1 → 0,∞ the
Yukawas align with the mass matrices because one of the vevs vanishes. It is generally true
in any multi-Higgs model that FCNCs are avoided in the Higgs sector so long as all the
fermions of a given electric charge only couple to a single Higgs.

• Higgs FCNCs are typically stronger for heavier quarks, though in this 2HDM one can arrange
for cancellations between large couplings in the Yukawas. A natural place to rule out this
type of model is in the FCNC constraints of the B mesons.

7.1 The chiral diagram takes the following form:

d

u

W

µ

ν

The key point is that the W boson only couples to left-chiral fermions in the Standard Model.
Thus in order to preserve angular momentum, there must be a Dirac mass insertion to convert
the left-chiral fermion to a right-chiral fermion.

7.2 Method 1: Dirac spinors. For this calculation one needs to write in explicit projection
operators. The amplitude takes the form

M =
g2

2
Vudv̄dγ

µPLuu
−i
M2

W

ūµγµPLvν . (D.82)
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The first spinor contraction is just 1
2
〈π+|Aµ|0〉, where Aµ is the axial current. Note the factor

of 1/2 coming from the fact that we’re only taking the axial part of the projection operator,
γµPL = 1

2
γµ(1− γ5). Plugging in the expression for the pion decay constant,

M = − g2

4M2
W

Vudfπū/pPLv (D.83)

= − g2

4M2
W

VudfπmµūPLv, (D.84)

where in the second line we used the equation of motion for the outgoing charged lepton46. The
benefit of this calculation is that one can use all of the usual Feynman rules from Peskin. However,
things become a bit more clunky with factors of γ5. These can become distracting for more
complicated problems.

Method 2: Weyl spinors. We don’t have to worry about projection operators anymore
since the external states are chiral. The amplitude is

M =
g2

2
χ̄dσ̄

µχd
−i
M2

W

χ̄µσ̄µχν (D.85)

= − g2

4M2
W

Vudfπχ̄/̄pχ (D.86)

= − g2

4M2
W

Vudfπmµψχ, (D.87)

where in the second line we have remembered to insert a factor of 1/2 because we’re only taking
the axial part. The benefit of this calculation is that one doesn’t have to deal with γ5. On the
other hand, this also means that those factors are not there to remind you which piece is the axial
part. In Weyl notation γ5 simply shows up as a relative sign between different chiralities, which
is somewhat subtle. Remark: Weyl spinors can really go a long way to simplify amplitudes with
some chiral protection; for example µ→ eγ in an extra dimension [33].

Finally, the significance of the mass insertion should be clear from Problem 7.1: it signifies
the chirality flip in this decay. The pion is spin zero and the W mediating the decay only couples
to left-handed particles. In order to preserve angular momentum, one requires an explicit mass
insertion on the final state fermions. Note that the use of the equation of motion is equivalent to
a mass insertion on an external leg when using massless chiral fermions.

7.3 The formula for the decay rate is

dΓ =
1

32π2
|M|2 |p`|

m2
π

dΩ, (D.88)

where we’ve written the muon subscript as ` to avoid confusion with Lorentz indices. In case you
didn’t feel inclined to re-derive this formula and your favorite quantum field theory textbook isn’t

46We’ve been a little sloppy here, but there is some elegance to being able to do a sloppy-but-accurate calculation.
The pion momentum p should really be written in terms of p = pµ + pν and for each term the equation of motion
for the appropriate lepton should be used. We already know, however, that /pνvν = 0 since the neutrino is massless
in the Standard Model.
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nearby, then you can always look this up in the kinematics review of the pocket PDG—which
should always be nearby.

The first step is to square the matrix element and sum over spins. This matrix element should
be particularly simple because we only have one spinor bilinear. This is worked out in most QFT
textbooks so we won’t belabor the four lines of work required to extract the relevant expression.
Writing p` for the lepton four-vector and pn for the neutrino four-vector (to avoid confusion with
Lorentz indices) we obtain from (7.19),

∑

s

|M|2 =

(
g2

4M2
W

)2

f 2
π |Vud|2m2

` 2p` · pn. (D.89)

The factor of 2p` ·pn is simply the result of summing over the spins of the spinor structure |µ̄RνL|2.
Note that this is trivial and just comes from the completeness relations of the plane wave spinors.

Some strategy. It is important to get the right answer, but it is also important to do so in
a way that doesn’t make your life difficult. This toy calculation is an important example. We
have made use of the fact that we are only looking at the axial current so that our amplitude
takes the form

M∝ fπ(p` + pn)αµ̄Lγ
ανL. (D.90)

One could have näıvely taken the square of the spinorial part as written. If one were to work
with Dirac spinors, this would be a terrible mess,

ū(p`)γ
α1

2
(1− γ5)v(pn). (D.91)

Squaring and summing over spins requires taking a trace over four γ matrices times (1− γ5)
and one obtains a funny relation in terms of two-index bilinears in p` and pn including an ugly
term with an εαβµν . See, e.g. equation (5.19) in Peskin and Schroeder [95]. One will eventually
find that the ε term cancels because it is contracted with (p` + pn)µ(p` + pn)ν . This is a lot of
work!

We can do a little better by using Weyl spinors. Nima Arkani-Hamed was once quited
as saying that he used to think that fermions were very difficult to work with because of all
of the γ matrix manipulations required; but then he discovered Weyl spinors and everything
was easy because the only structure comes from the 2 × 2 Pauli matrices. In this case the
simplification is obvious: the ε term drops out from the very beginning because we never
have to deal with the annoying γ5 matrix. The relevant relations to perform the analogous
calculation in Weyl space can be found in [9]; or in a pinch you can extract them from the
Dirac spinor relations. This is indeed a meaningful simplification and justifies the use of Weyl
spinors in ‘actual calculations’ (rather than just abstractly to refer to chiral fields); however,
we can do better!

What we did above in (D.89) was to go a step further and get rid of the Dirac/Pauli
matrix structure altogether. This was easy: we just used the fact that the γµ (alternately σ̄µ)
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contracted a (p` + pn)µ. This means we can use the equation of motion to explicitly pull out
the mass factor m`, where have used mn = 0. Now we get an expression of the form ū(p`)v(pn)
in Dirac notation, or in Weyl notation ψ(p`)χ(pn). Squaring and summing over spins is trivial
for these since it is just the completeness relation for the plane wave spinors.

It is trivial to determine the contraction 2p` · pn since this is constrained by the kinematics,

m2
π = (p` + pn)2 = m2

` + 2p` · pn. (D.92)

Thus we are led to (we drop the
∑

s symbol)

|M|2 =

(
2√
2
GF

)2

f 2
π |Vud|2m2

` m
2
π

(
1− m2

`

m2
π

)
, (D.93)

where we’ve also replaced the g2/8M2
W with GF/

√
2 according to the definition of the Fermi

constant (B.1). Let’s simplify the other factors in (D.88). The magnitude of the muon three-
momentum can be derived trivially from kinematics; conservation of four-momentum gives us

|pn| = |p`| (D.94)

m2
π = |pn|+

√
|p`|2 +m2

` . (D.95)

From this we obtain

|p`| =
mπ

2

(
1− m2

`

m2
π

)
. (D.96)

The angular integral is trivial

dΩ = d(cos θ)dφ = 4π, (D.97)

and we can now plug in all of these factors to obtain the result we wanted

Γ =
1

8π
G2
Ff

2
π |Vud|2m2

`mπ

(
1− m2

`

m2
π

)2

. (D.98)

7.4 This problem is an excellent example of a form factor multiplying a non-trivial combination
of dynamical variables.

1. The key difference between theD andD∗ is that the latter has a polarization vector. Without
this the parameterization of the matrix element reduces to (7.35).

2. The dynamical variables available to us are theD∗ polarization ε and the two meson momenta
pB and pD. Eventually we will repackage the momenta into (pB + pD) and q ≡ (pB −
pD). Now we would like to use spacetime symmetries to determine the structure of the
parameterization. The V µ operator contains a Lorentz index, so we know the right-hand
side must be a vector or axial vector. The matrix element on the left-hand side is necessarily

161



parity-even since QCD respects P , so the right-hand side must be vectorial. In the next part
we will use T to determine that g(q2) is real, but note that we never need to consider C
since QCD also respects charge conjugation and the right-hand side is composed of dynamical
variables which are all trivially even under C. Thus all we have to worry about is constructing
a Lorentz vector out of ε, PB, and pD.

There is a subtlety in the parity of vectorial objects. The parity of a pure vector V µ can
be written as P [V µ] = (−)µ, by which we mean the parity is even (+) for µ = 0 and odd
(−) for µ = 1, 2, 3. Note that the µ on (−)µ isn’t a Lorentz index, it’s just there to tell us
whether (−) = + or −. Thus a JP = 1− meson has parity −(−)µ. We see that the parity
of the terms in the matrix element are

P [V µ] = (−)µ P [D∗] = − P [B] = −. (D.99)

We confirm that the matrix element is P -even with respect to ‘overall parities’ − and has
the correct left-over ‘vector parity’ (−)µ that is required for a single-index object. The
dynamical objects that we have, however, do not seem to have the correct parities:

P [εµ] = −(−)µ P [pB,D] = (−)µ. (D.100)

In fact, we can see that the only non-zero vector bilinear εµp
µ
B also does not have the

correct parity. One might be led to believe that this matrix element must vanish. However,
we have one more trick up our sleeves. In d-dimensional space we have a d-index totally
antisymmetric εµ1···µd tensor with which we can construct Lorentz contractions. In more
formal language, we have the additional operation of taking a Hodge dual to convert p-
forms into (d− p) forms. Our our present case this enables us to consider triple products of
ε, pD, and pB to construct a Lorentz vector. The natural object to write down is

εµναβε∗νpDαpBβ. (D.101)

The key thing to recall is that ε has parity

P [εµναβ] = −(−)µ(−)ν(−)α(−)β, (D.102)

where we’ve written out the usual ‘vector parity’ for a four-tensor-like object. Because of
the additional overall minus sign, we see that ε is a pseudotensor. One should already be
familiar with this in the coordinate definition of the volume form in which the ε tensor carries
information about orientation. Armed with this we now see that the (εε∗pDpB)µ contraction
is indeed a parity-even vector to which the hadronic matrix element 〈D∗+(pD, ε)|V µ|B̄(pB)〉
may be proportional. To complete the analysis, we remark that we are free to change
momentum variables to (pD + pB) and q ≡ (pD − pB). It is clear that we are free to make
the replacement

pDαpBβ −→ (pD + pB)αqβ (D.103)

since these are contracted with the ε antisymmetric tensor so that only the pDαpBβ−pDβpBα
term is picked out. Finally, the overall coefficient g(q2) can only be a function of q2 since
this is the only dynamical Lorentz scalar quantity.
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3. The matrix element transforms as a complex conjugate under time reversal. The only
complex element from our dynamical variables on the right-hand side is ε∗, which contains
an imaginary element. The sign of this element represents the transverse polarization of the
D∗ and we expect it to flip under complex conjugation. Otherwise, the rest of the element
is real and so g(q2) must also be real.

4. The axial current is not pure QCD and comes from the chiral nature of the weak interactions
and hence we are allowed to have 〈D∗+(pD, ε)|Aµ|B̄(pB)〉 which is ‘overall parity’ odd (i.e.
P = −(−)µ). One immediate choice is a term proportional to ε∗µ since this has precisely the
correct parity and Lorentz structure. In addition to this, we can also form objects out of the
three dynamical variables since ε∗(pD + pB)q also has the same correct parity and Lorenz
structure; we just have to insert the Lorentz index at each place. The ε∗µ(pD + pB) · q term
is the same as the ε∗µ since (pD + pB · q) is not dynamical (it’s a sum of masses). We are left
with terms of the form

〈D∗+(pD, ε)|Aµ|B̄(pB)〉 = gA1(q2)ε∗µ + gA2ε
∗ · (pD + pB)qµ + gA3(ε∗ · q)(pD + pB)µ.

(D.104)

7.5 Let us write the hadronic matrix element for neutron β decay n→ p through the axial current,

〈p(kp)|Aµ|n(kn)〉 = ūp(kp)
[
gA(q2)γµγ5 + qµhA(q2)γ5

]
un(kn). (D.105)

Here gA and hA are functions which depend on the momentum transfer q ≡ kn − kp. Note that
we are not ‘parameterizing our ignorance’ about QCD (we still have cumbersome spinor structure
on the right-hand side); instead, we are saying that the neutron decays into the proton literally
through the tree-level coupling to the axial current. If you want to be precise about isospin indices,
one ought to write Aµ → A+

µ = A1
µ+ iA2

µ, but we’ll try to keep the equations as simple as possible.
We can now take the divergence of this equation to obtain

〈p(kp)|∂µAµ|n(kn)〉 = i
[
gA(q2)m2

N + q2hA(q2)
]
ūp(kp)γ5un(kn), (D.106)

where mN is the nucleon mass. The eft-hand side of this equation, however, is simply what we
called the pion field in (7.48), up to overall factors:

〈p(kp)|∂µAµ|n(kn)〉 = fπm
2
π〈p(kp)|φπ|n(kn)〉 (D.107)

=
2fπm

2
π

q2 −m2
π

gπNN(q2)iūp(kp)γ5un(kn), (D.108)

where in the second line we have defined the pion-nucleon vertex function gπNN(q2) and pulled
out the pion pole. This gives the πNN coupling for q2 = m2

π. Comparing (D.106) and (D.106)
we obtain,

fπgπNN(0) = mNgA(0). (D.109)

This is nearly the Goldberger-Treiman relation, except that the pion-nucleon vertex function is
off-mass shell. We must make the assumption that gπNN(q2) is slowly varying such that gπNN(0) ≈
gπNN(m2

π). This gives us a relation which holds within 10%. Note that this relation is actually
rather trivial from the point of view of chiral perturbation theory, see e.g. Donoghue Section 12.3
[29].
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13.1 This question and solutions come from G. Ridolfi’s CP notes. Labeling the kaon states with
lowercase Greek indices, we have

Sβα =S
(0)
βα + S

(1)
βα + S

(2)
βα (D.110)

S
(0)
βα =〈β|α〉 (D.111)

S
(1)
βα =− i〈β|

∫
dt eiHtHW e

−iHt|α〉 (D.112)

S
(2)
βα =− 1

2
〈β|
∫
dt eiHtHW e

−iHt
∫
dt′ eiHt

′
HW e

−iHt′Θ(t− t′)|α〉+ (t′ ↔ t). (D.113)

The first two terms are simple:

S
(0)
βα =δβα (D.114)

S
(1)
βα =− 2πiδ(Eβ − Eα)〈β|HW |α〉. (D.115)

The second-order term requires a bit more work. The two terms are identical due to (t↔ t′). By
inserting a complete set of unperturbed Hamiltonian states I =

∑
λ |λ〉〈λ| one obtains

S
(2)
βα =− 2πδ(Eβ − Eα)

∑

λ

〈β|HW |λ〉〈λ|HW |α〉
∫ ∞

0

dτ ei(Eβ−Eλ)τ . (D.116)

To evaluate the last integral, perform the infinitesimal shift (Eβ − Eλ) → (Eβ − Eλ + iε) with
ε > 0. The resulting integral is straightforward,

∫ ∞

0

dτ ei(Eβ−Eλ+iε)τ =
i

Eβ − Eλ + iε
, (D.117)

so that finally we have

S
(2)
βα =− 2πiδ(Eβ − Eα)

∑

λ

〈β|HW |λ〉〈λ|HW |α〉
Eβ − Eλ + iε

. (D.118)

Now we would like to define the effective weak Hamiltonian Heff
W so that H = mKδβα+Heff

W βα. The

point is that Heff
W should give the same contribution to the S-matrix as the perturbation analysis

above. We thus have

Heff
W βα = 〈βHW |α〉+

∑

λ

〈β|HW |λ〉〈λ|HW |α〉
Eβ − Eλ + iε

. (D.119)

This effective Hamiltonian is not Hermitian. Using the handy identity,

1

x+ iε
= P

(
1

x

)
− iπδ(x), (D.120)

where P denotes the principal value, we have H = M − i
2
Γ with

Mβα =mKδβα + 〈|HW |α〉+ P
∑

λ

〈β|HW |λ〉〈λ|HW |α〉
mK − Eλ

(D.121)

Γβα =2π
∑

λ

〈β|HW |λ〉〈〈|HW |α〉δ(mK − Eλ). (D.122)
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13.2 First recall that CP takes K ↔ K̄. This means in this basis the CP operator can be written
as a matrix

UCP =

(
0 1
1 0

)
. (D.123)

Further, time reversal acts as a complex conjugate, M →M∗ and Γ→ Γ∗. From this we conclude
that CPT acts as

M =

(
M11 M12

M∗
12 M22

)
→
(
M22 M12

M∗
12 M11

)
, (D.124)

and similarly for Γ. Thus CPT requires M11 = M22 and Γ11 = Γ22.

13.3 For simplicity, let us write

H =

(
H H12

H21 H

)
=

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12 M11 − i

2
Γ11

)
. (D.125)

The eigenvalue equation is

(H − µ)2 −H12H21 = 0⇒ µ = H ±
√
H12H21. (D.126)

The eigenvectors are also easy to find. Calling these states (p, q)T , the eigenvector equation
becomes

Hp+H12q = µp (D.127)

H12q = ±
√
H12H21p. (D.128)

We thus have eigenvectors given by q = ±
√
H21/H12p, which one can normalize appropriately.

13.4 We start with

|KL,S〉 =
1√

|p|2 + |q|2
(
p|K0〉 ± q|K̄0〉

)
, (D.129)

which we can invert simply to obtain

|K0〉 =

√
|p|2 + |q|2

2p
(|KL〉+ |KS〉) (D.130)

|K0〉 =

√
|p|2 + |q|2

2q
(|KL〉 − |KS〉). (D.131)

Now we simply time evolve the effective Hamiltonian eigenstates. Let us write HL and HS for the
long and short eigenvalues, for example HL = ML − i

2
ΓL. For |K0(t)〉 we have

|K0(t)〉 =
1

2p

[
e−iHLt(p|K0〉+ q|K̄0〉) + e−iHSt(p|K0〉 − q|K̄0〉)

]
(D.132)

=
1

2

[(
e−iHLt + e−iHSt

)
|K0(t)〉+

q

p

(
e−iHLt − e−iHSt

)
|K̄0(t)〉

]
. (D.133)

The |K̄0(t)〉 oscillation comes from making the appropriate substitutions.
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14.1 For more background, see Preskill’s lecture notes47. This problem is based on a homework
set from Csaba Csáki’s QFT course and Flip Tanedo’s solution set.

1. Suppose a theory of scalar particles is T symmetric. This means that [T,H] = 0, where H
is the full Hamiltonian including interactions. (The free Hamiltonian is T -symmetric.) The
unitary time evolution operator is transformed according to

TU(t, t0)T−1 =TeiH0(t−t0)e−iH(t−t0)T−1 (D.134)

=e−iH(t−t0)eiH(t−t0) = U(t0, t) = U(t, t0)†. (D.135)

Since S = U(∞,−∞), TST−1 = S†. We want a relation between amplitudes, but we must
be careful with matrix elements with respect to the antiunitary T operation. 〈f |Si〉 =
〈TSi|Tf〉 = 〈S†Ti|Tf〉. For scalars we have Ti = i and Tf = f since they have no spin to
go in the opposite direction. Thus we have the relation 〈f |Si〉 = 〈i|Sf〉, or Afi = Aif . Note
that this is not the same as saying σ(i → f) = σ(f → i) since the cross section has phase
space factors that are not the same even if the amplitudes are.

2. CPT gives a weaker form of the detailed balance condition. CPT |i〉 = ī〉 and CPT |f〉 = f̄〉.
Following the same steps as the previous sub-problem (because both T and CPT and anti-
unitary), we arrive at Afi = Aīf̄ .

3. Unitarity tells us that S†S = SS† = 1, or in terms of the T -matrix, T †T = TT †. (Do
not confuse this T with the time inversion operator.) This implies then that

∑
m |Aim|2 =∑

m |Ami|2. Acting on both sides with CPT gives
∑

m̄ |Am̄ī|2 =
∑

m |Amī|2 since
∑

m =
∑

m̄

when going over all states. This then implies that Γ(i → all) = Γ(̄i → all). Alternately,
one can use the optical theorem, Im Aii = Im Aī̄i, along with the equality of the phase space
factors. Note that only the inclusive rates i→ all and ī→ all match; in general i→ j and
ītoj̄ have different rates. This is a manifestation of CP violation.

4. For simplicity, we will use the T -matrix in place of the S matrix. The optical theorem tells
us that Tij − T ∗ji = i

∑
n TinT

∗
jn. This then implies that |Tij|2 = |i(∑TT †)ij + T ∗ji|2. If we

now compare Γ(i→ j) with Γ(̄i→ j̄) and not that Γ ∼ |T |2, we find that

|Tij|2 − |Tīj̄|2 =|i(
∑

TT †)ij + T ∗ji|2 − |Tji|2 −2Im (
∑

TT †)ijT
∗
ji + |(

∑
TT †)ij|2,

(D.136)

where in the first line we used CPT to subtract |Tīj̄|2 = |Tji|2 from both sides. The right-
hand side of the second line is at least O(T 3) whereas the left-hand side is O(T 2). This
means that the right-hand side is higher order in perturbation theory. For fixed external
states, higher order diagrams come from loops so that CP violation vanishes at the lowest
order of perturbation theory and can only appear in loop effects.

14.2 The CP phase for the weak force, Θweak, is unphysical. It can be rotated away by a chiral
transformation of the fermion fields. Due to the chiral anomaly, such a transformation induces a
Θ term in the Lagrangian proportional to FweakF̃weak.

47http://www.theory.caltech.edu/~preskill/notes.html, or the Sidney Coleman lecture notes upon which
these are loosely based. The latter material is neatly encapsulated in the QFT textbook by Ticciati.
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E Critical reception of these notes

Thanks for writing these notes. Keep it up—or else I’ll have to take my own notes
during lecture. P.A.

I’ve learned a lot from your flavor notes. It’s the only way I can learn flavor physics
from my adviser. Y.T.

You’re still taking classes? Aren’t you a little old for that? D.S. (comment via instant
message during lecture)

I would suggest putting more details to derive this equation. I do so little algebra in
class that I feel bad to leave the little I that do out... Y.G.

That’s too hard to remember, I prefer to just remember the number. P.A. (after Yuval
explained the Spiked Math mnemonic [17] to remember the number of feet in a mile
and, hence, the mass of the B meson in MeV)

These are important stories, not like the usual stories that I tell you. Y.G.

F Famous Yuval Quotes

There’s one thing you can do, it’s called a charge thing. It has something to do with
charge. [29 Oct 2010, after being asked how to do a certain measurement.]

You’ve never seen penguins that are twins? [2 Nov 2010, describing the penguin-
mediated DD̄ diagram.]

Calculation is not for us—only approximation. [2 Nov 2010]

Unlike everybody else, for us, one plus one isn’t one. For us one plus one is more like
four. [2 Dec 2011, at the Fundamental Physics at the Intensity Frontier workshop]

Charged lepton processes are like your children: they look the same, you love them
all, but each is very different, and together it is much more fun. [2 Dec 2011]
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