Collider Physics

in The LHC Era And Beyond

Tao Han
PITT PACC, University of Pittsburgh Pre-SUSY Symposium, UC-Davis

Aug. 18-22, 2015.

Contents:

Lecture I:
Basics of Collider physics
Physics at an $e^{+} e^{-}$Collider
Lecture II:
Physics at Hadron Colliders
Perspectives Beyond the LHC

II-A. Perturbative QCD at a Glance

(A). Running of the strong coupling:

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(Q_{0}^{2}\right)}{1+\frac{\left(33-2 n_{f}\right) \alpha_{s}\left(Q_{0}^{2}\right)}{12 \pi} \ln \frac{Q^{2}}{Q_{0}^{2}}} \quad\left(33-2 n_{f}>0\right), \quad\left\{\alpha_{e m}\left(Q^{2}\right)=\frac{\alpha_{e m}\left(Q_{0}^{2}\right)}{1-\frac{\alpha_{e m}\left(Q_{0}^{2}\right)}{3 \pi} \ln \frac{Q^{2}}{Q_{0}^{2}}}\right\}
$$

Significant implications (D. Gross, D. Politzer, F. Wilczek, Nobel Prize 2004):
\dagger Confinement at low energies (hadrons: the observable world);
\dagger Asymptotic freedom at high energies (quarks, gluons and perturbation techniques);
\dagger Possibility of Grand Unification; Description of the early universe.

(B). Parton Distribution Functions (PDF)

- Factorization theorem: (Collins, Soper, Sterman, 1985)

In high energy collisions involving a hadron, the total cross sections can be factorized into two factors:
(1). hard subprocess of parton scattering with a large scale $\mu^{2} \gg \Lambda_{Q C D}^{2}$;
(2). "parton distribution functions" (hadronic structure with $Q^{2}<\mu^{2}$.)

Observable cross sections at hadron level:

$$
\sigma_{p p}(S)=\int d x_{1} d x_{2} P_{1}\left(x_{1}, Q^{2}\right) P_{2}\left(x_{2}, Q^{2}\right) \widehat{\sigma}_{\text {parton }}(s) .
$$

$\dagger \widehat{\sigma}_{\text {parton }}(s)$ is theoretically calculated by perturbation theory (in the SM or models beyond the SM).

Ultra violet (UV) divergence (beyond leading order) is renormalized; Infra-red (IR) divergence is cancelled by soft gluon emissions; Co-linear divergence (massless) is factorized into PDF - The essence of "factorization theorem".
$\dagger P\left(x, Q^{2}\right)$ is the "Parton Distribution Functions" (PDF): The probability of finding a parton P with a momentum fraction x inside a proton.
$P\left(x, Q^{2}\right)$ cannot be calculated from first principles, only extracted by fitting data, assuming a boundary condition at $Q_{0}^{2} \sim(2 \mathrm{GeV})^{2}$.

The PDF's should match the parton-level cross section $\widehat{\sigma}_{\text {parton }}(s)$ at a given order in α_{s}.
$\dagger Q^{2}$ is the "factorization scale", below which it is collinear physics. It is NOT uniquely determined, leading to intrinsic uncertainty in QCD perturbation predictions. But its uncertainty is reduced with higher order calculations.

Several dedicated groups are developing PDF's: CTEQ (Michigan State U.); MRSxxx (Durham U.)

Typical quark/gluon parton distribution functions:

Better understanding of the SM cross section, in particular in QCD are crucial for observing new physics as deviations from the SM.

> (C). Jets and fragmentation functions Upon production of a colored parton (quark/gluon):
\dagger At the scale $\wedge_{Q C D} \sim 10^{-24} \mathrm{~s}$ or 1 fm , the parton "hadronizes (fragments)" into massive, color-neutral, hadrons π, $n, p, K \ldots$

The "fragmentation function" is like the reverse of the PDF:

$$
\frac{d \sigma(p p \rightarrow h X)}{d E_{h}}=\sum_{q} \int \frac{d \sigma(p p \rightarrow q X)}{d E_{q}} \frac{d E_{q}}{E_{q}} f_{q}^{h}\left(z, Q^{2}\right)
$$

where $z=E_{h} / E_{q}$.
Non-perturbative and cann't be calculated from first principles.
\dagger For most of the purposes in high energy collisions, we do not need to keep track of the individual hadrons, and thus the "inclusive processes".

Jets

When $E_{q} \gg m_{q}$, then $\delta \approx \frac{2}{\gamma}=\frac{2 m_{q}}{E_{q}}$. It becomes a "jet", kinematically:

Need realistic algorithms to define the observable jets.

II-B. Hadron Collider Physics

LHC Event rates for various SM processes:

$$
10^{34} / \mathrm{cm}^{2} / \mathrm{s} \Rightarrow 100 \mathrm{fb}^{-1} / \mathrm{yr}
$$

Annual yield \# of events $=\sigma \times L_{\text {int }}$:
10B $W^{ \pm} ; 100 \mathrm{M} t \bar{t} ; 10 \mathrm{M} W^{+} W^{-} ; 1 \mathrm{M} H^{0} \ldots$
Discovery of the Higgs boson opened a new chapter of HEP!

Theoretical challenges:

Unprecedented energy frontier

(a) Total hadronic cross section: Non-perturbative. The order of magnitude estimate:

$$
\sigma_{p p}=\pi r_{e f f}^{2} \approx \pi / m_{\pi}^{2} \sim 120 \mathrm{mb}
$$

Energy-dependence?

$$
\begin{aligned}
& \sigma(p p) \begin{cases}\approx 21.7\left(\frac{s}{\mathrm{GeV}^{2}}\right)^{0.0808} \mathrm{mb}, & \text { Empirical relation } \\
<\frac{\pi}{m_{\pi}^{2}} \ln ^{2} \frac{s}{s_{0}}, & \text { Froissart bound. } \\
\text { (b) Perturbative hadronic cross section: } \\
\sigma_{p p}(S)=\int d x_{1} d x_{2} P_{1}\left(x_{1}, Q^{2}\right) P_{2}\left(x_{2}, Q^{2}\right) \hat{\sigma}_{\text {parton }}(s) .\end{cases}
\end{aligned}
$$

- Accurate (higher orders) partonic cross sections $\widehat{\sigma}_{\text {parton }}(s)$.
- Parton distribution functions to the extreme (density):

$$
Q^{2} \sim(a \text { few } T e V)^{2}, \quad x \sim 10^{-3}-10^{-6}
$$

Experimental challenges:

- The large rate turns to a hostile environment:
≈ 1 billion event/sec: impossible read-off !
≈ 1 interesting event per $1,000,000$: selection (triggering).
≈ 25 overlapping events/bunch crossing:

Colliding beam

\Rightarrow Severe backgrounds!

Triggering thresholds (hardware/software):

	ATLAS	
Objects	η	$p_{T}(\mathrm{GeV})$
μ inclusive	2.4	$6(20)$
$e /$ photon inclusive	2.5	$17(26)$
Two e's or two photons	2.5	$12(15)$
1 -jet inclusive	3.2	$180(290)$
3 jets	3.2	$75(130)$
4 jets	3.2	$55(90)$
$\tau /$ hadrons	2.5	$43(65)$
\mathbb{L}_{T}	4.9	100
Jets \mathbb{E}_{T}	$3.2,4.9$	$50,50(100,100)$

$$
\left(\eta=2.5 \Rightarrow 10^{\circ} ; \quad \eta=5 \Rightarrow 0.8^{\circ} .\right)
$$

With optimal triggering and kinematical selections:

$$
p_{T} \geq 30-100 \mathrm{GeV}, \quad|\eta| \leq 3-5 ; \quad \not \mathbb{Z}_{\mathrm{T}} \geq 100 \mathrm{GeV} .
$$

(B). Special kinematics for hadron colliders

Hadron momenta: $P_{A}=\left(E_{A}, 0,0, p_{A}\right), \quad P_{B}=\left(E_{A}, 0,0,-p_{A}\right)$,
The parton momenta: $p_{1}=x_{1} P_{A}, \quad p_{2}=x_{2} P_{B}$.
Then the parton c.m. frame moves randomly, even by event:

$$
\begin{aligned}
\beta_{c m} & =\frac{x_{1}-x_{2}}{x_{1}+x_{2}}, \quad \text { or }: \\
y_{c m} & =\frac{1}{2} \ln \frac{1+\beta_{c m}}{1-\beta_{c m}}=\frac{1}{2} \ln \frac{x_{1}}{x_{2}}, \quad\left(-\infty<y_{c m}<\infty\right) .
\end{aligned}
$$

The four-momentum vector transforms as

$$
\begin{aligned}
\binom{E^{\prime}}{p_{z}^{\prime}} & =\left(\begin{array}{lll}
\gamma & -\gamma & \beta_{c m} \\
-\gamma \beta_{c m} & \gamma &
\end{array}\right)\binom{E}{p_{z}} \\
& =\left(\begin{array}{ll}
\cosh y_{c m} & -\sinh y_{c m} \\
-\sinh y_{c m} & \cosh y_{c m}
\end{array}\right)\binom{E}{p_{z}}
\end{aligned}
$$

This is often called the "boost".

One wishes to design final-state kinematics invariant under the boost: For a four-momentum $p \equiv p^{\mu}=(E, \vec{p})$,

$$
\begin{aligned}
E_{T} & =\sqrt{p_{T}^{2}+m^{2}}, \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \\
p^{\mu} & =\left(E_{T} \cosh y, p_{T} \sin \phi, p_{T} \cos \phi, E_{T} \sinh y\right) \\
\frac{d^{3} \vec{p}}{E} & =p_{T} d p_{T} d \phi d y=E_{T} d E_{T} d \phi d y .
\end{aligned}
$$

Due to random boost between Lab-frame/c.m. frame event-by-event,

$$
y^{\prime}=\frac{1}{2} \ln \frac{E^{\prime}+p_{z}^{\prime}}{E^{\prime}-p_{z}^{\prime}}=\frac{1}{2} \ln \frac{\left(1-\beta_{c m}\right)\left(E+p_{z}\right)}{\left(1+\beta_{c m}\right)\left(E-p_{z}\right)}=y-y_{c m} .
$$

In the massless limit, rapidity \rightarrow pseudo-rapidity:

$$
y \rightarrow \eta=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=\ln \cot \frac{\theta}{2}
$$

Exercise 4.1: Verify all the above equations.

The "Lego" plot:

A CDF di-jet event on a lego plot in the $\eta-\phi$ plane.
$\phi, \Delta y=y_{2}-y_{1}$ is boost-invariant.
Thus the "separation" between two particles in an event $\Delta R=\sqrt{\Delta \phi^{2}+\Delta y^{2}}$ is boost-invariant, and lead to the "cone definition" of a jet.

The Jets! Alternative algorithms: Successive combination

- Given a cluster of proto-jets, $i=1,2, \ldots, n$, pick an initial pair i, j.
- Calculate their "beam distance" $d_{i}=$ and angular separation $\Delta R^{2}=\Delta \phi^{2}+$.
- With respect to an angular resolutior define a "pair distance"

$$
d_{i j}=\min \left(d_{i}, d\right.
$$

- If $d_{i j}<d_{i}, d_{j}$, then combine $p_{i}+p_{j}$ in

- If $d_{i}\left(d_{j}\right)<d_{i j}$, then leave the proto-jet $i(j)$ alone as a "finished jet". Repeat this procedure until every proto-jet becomes a finished jet.
\dagger Cambridge-Aachen algorithm: $d_{i}=1$. (the cone algorithm)
$\dagger k_{T}$-algorithm: $d_{i}=p_{T i}^{2} .\left(d_{i j}\right.$ is the relative p_{T}^{2} between i and $\left.j\right)$
\dagger Anti- k_{T}-algorithm: $d_{i}=p_{T i}^{-2}$. (higher $\mathrm{p} \top$ proto-jet serves as the seed)

(C). Kinematical features:

(a). s-channel singularity: bump search we do best.

- invariant mass of two-body $R \rightarrow a b: m_{a b}^{2}=\left(p_{a}+p_{b}\right)^{2}=M_{R}^{2}$. combined with the two-body Jacobian peak in transverse momentum:

$$
\frac{d \hat{\sigma}}{d m_{e e}^{2} d p_{e T}^{2}} \propto \frac{\Gamma_{Z} M_{Z}}{\left(m_{e e}^{2}-M_{Z}^{2}\right)^{2}+\Gamma_{Z}^{2} M_{Z}^{2}} \frac{1}{m_{e e}^{2} \sqrt{1-4 p_{e T}^{2} / m_{e e}^{2}}}
$$

$$
Z \rightarrow e^{+} e^{-}
$$

Electron E_{T} - W Candidate

$W \rightarrow e \nu$

- "transverse" mass of two-body $W^{-} \rightarrow e^{-} \bar{\nu}_{e}$:

$$
\begin{aligned}
m_{e \nu T}^{2} & =\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \\
& =2 E_{e T} E_{T}^{m i s s}(1-\cos \phi) \leq m_{e \nu}^{2}
\end{aligned}
$$

If $p_{T}(W)=0$, then $m_{e \nu T}=2 E_{e T}=2 E_{T}^{m i s s}$.

Exercise 5.1: For a two-body final state kinematics, show that

$$
\frac{d \hat{\sigma}}{d p_{e T}}=\frac{4 p_{e T}}{s \sqrt{1-4 p_{e T}^{2} / s}} \frac{d \hat{\sigma}}{d \cos \theta^{*}}
$$

where $p_{e T}=p_{e} \sin \theta^{*}$ is the transverse momentum and θ^{*} is the polar angle in the c.m. frame. Comment on the apparent singularity at $p_{e T}^{2}=s / 4$.

Exercise 5.2: Show that for an on-shell decay $W^{-} \rightarrow e^{-} \bar{\nu}_{e}$:

$$
m_{e \nu T}^{2} \equiv\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \leq m_{e \nu}^{2}
$$

Exercise 5.3: Show that if W / Z has some transverse motion, δP_{V}, then:

$$
\begin{aligned}
& p_{e T}^{\prime} \sim p_{e T}\left[1+\delta P_{V} / M_{V}\right] \\
& m_{e \nu}^{\prime 2} T \sim m_{e \nu}^{2} T\left[1-\left(\delta P_{V} / M_{V}\right)^{2}\right] \\
& m_{e e}^{\prime 2}=m_{e e}^{2}
\end{aligned}
$$

- $H^{0} \rightarrow W^{+} W^{-} \rightarrow j_{1} j_{2} e^{-} \bar{\nu}_{e}:$
cluster transverse mass (I):

$$
\begin{aligned}
& m_{W W T}^{2}=\left(E_{W_{1} T}+E_{W_{2} T}\right)^{2}-\left(\vec{p}_{j j T}+\vec{p}_{e T}+\vec{p}_{T}^{m i s s}\right)^{2} \\
& =\left(\sqrt{p_{j j T}^{2}+M_{W}^{2}}+\sqrt{p_{e \nu T}^{2}+M_{W}^{2}}\right)^{2}-\left(\vec{p}_{j j T}+\vec{p}_{e T}+\vec{p}_{T}^{m i s s}\right)^{2} \leq M_{H}^{2} . \\
& \text { where } \vec{p}_{T}{ }^{\text {miss }} \equiv \overrightarrow{p_{T}}=-\sum_{o b s} \vec{p}_{T}^{\text {obs }} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } H^{0} \rightarrow W^{+} W^{-} \rightarrow e^{+} \nu_{e} e^{-} \bar{\nu}_{e}: \\
& \text { "effecive" transverse mass: } \\
& m_{e f f T}^{2}=\left(E_{e 1 T}+E_{e 2 T}+E_{T}^{m i s s}\right)^{2}-\left(\vec{p}_{e 1 T}+\vec{p}_{e 2 T}+\vec{p}_{T}^{m i s s}\right)^{2} \\
& m_{e f f} T \approx E_{e 1 T}+E_{e 2 T}+E_{T}^{\text {miss }}
\end{aligned}
$$

cluster transverse mass (II):

$$
\begin{aligned}
m_{W W C}^{2} & =\left(\sqrt{p_{T, \ell \ell}^{2}+M_{\ell \ell}^{2}}+p_{T}\right)^{2}-\left(\vec{p}_{T, \ell \ell}+\overrightarrow{p_{T}}\right)^{2} \\
m_{W W} C & \approx \sqrt{p_{T, \ell \ell}^{2}+M_{\ell \ell}^{2}}+\not p_{T}
\end{aligned}
$$

$M_{W W}$ invariant mass ($W W$ fully reconstructable): $M_{W W, T}$ transverse mass (one missing particle ν): $M_{e f f, T}$ effetive trans. mass (two missing particles): $M_{W W, C}$ cluster trans. mass (two missing particles):

YOU design an optimal variable/observable for the search.

- cluster transverse mass (III):

$$
H^{0} \rightarrow \tau^{+} \tau^{-} \rightarrow \mu^{+} \bar{\nu}_{\tau} \nu_{\mu}, \quad \rho^{-} \nu_{\tau}
$$

A lot more complicated with (many) more $\nu^{\prime} s$?

Not really!

$\tau^{+} \tau^{-}$ultra-relativistic, the final states from a τ decay highly collimated:

$$
\theta \approx \gamma_{\tau}^{-1}=m_{\tau} / E_{\tau}=2 m_{\tau} / m_{H} \approx 1.5^{\circ} \quad\left(m_{H}=120 \mathrm{GeV}\right)
$$

We can thus take

$$
\begin{aligned}
\vec{p}_{\tau^{+}} & =\vec{p}_{\mu^{+}}+\vec{p}_{+}^{\nu^{\prime} s}, \quad \vec{p}_{+}^{\nu^{\prime} s} \approx c_{+} \vec{p}_{\mu}+ \\
\vec{p}_{\tau^{-}} & =\vec{p}_{\rho^{-}}+\vec{p}_{-}^{\nu^{\prime} s}, \quad \vec{p}_{-}^{\nu^{\prime} s} \approx c_{-} \vec{p}_{\rho^{-}}
\end{aligned}
$$

where $c_{ \pm}$are proportionality constants, to be determined.
This is applicable to any decays of fast-moving particles, like

$$
T \rightarrow W b \rightarrow \ell \nu, b
$$

Experimental measurements: $p_{\rho^{-}}, p_{\mu^{+}}, p_{T}$:

$$
\begin{aligned}
& c_{+}\left(p_{\mu^{+}}\right)_{x}+c_{-}\left(p_{\rho^{-}}\right)_{x}=\left(p_{T}\right)_{x}, \\
& c_{+}\left(p_{\mu^{+}}\right)_{y}+c_{-}\left(p_{\rho^{-}}\right) y=\left(p_{T}\right)_{y}
\end{aligned}
$$

Unique solutions for $c_{ \pm}$exist if

$$
\left(p_{\mu^{+}}\right)_{x} /\left(p_{\mu^{+}}\right)_{y} \neq\left(p_{\rho^{-}}\right)_{x} /\left(p_{\rho^{-}}\right)_{y}
$$

Physically, the τ^{+}and τ^{-}should form a finite angle, or the Higgs should have a non-zero transverse momentum.

(b). Two-body versus three-body kinematics

- Energy end-point and mass edges: utilizing the "two-body kinematics"
Consider a simple case:

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \tilde{\mu}_{R}^{+} \tilde{\mu}_{R}^{-} \\
& \text {with two }- \text { body decays : } \tilde{\mu}_{R}^{+} \rightarrow \mu^{+} \tilde{\chi}_{0}, \quad \tilde{\mu}_{R}^{-} \rightarrow \mu^{-} \tilde{\chi}_{0} .
\end{aligned}
$$

In the $\tilde{\mu}_{R}^{+}$-rest frame: $E_{\mu}^{0}=\frac{M_{\tilde{\mu}_{R}}^{2}-m_{\chi}^{2}}{2 M_{\tilde{\mu}_{R}}}$.
In the Lab-frame:

$$
\begin{aligned}
& (1-\beta) \gamma E_{\mu}^{0} \leq E_{\mu}^{l a b} \leq(1+\beta) \gamma E_{\mu}^{0} \\
& \text { with } \beta=\left(1-4 M_{\tilde{\mu}_{R}}^{2} / s\right)^{1 / 2}, \quad \gamma=(1-\beta)^{-1 / 2} .
\end{aligned}
$$

Energy end-point: $E_{\mu}^{l a b} \Rightarrow M_{\mu_{R}}^{2}-m_{\chi}^{2}$. Mass edge: $m_{\mu^{+} \mu^{-}}^{\max }=\sqrt{s}-2 m_{\chi}$.
Same idea can be applied to hadron colliders ...

Consider a squark cascade decay:

$$
\begin{aligned}
& 1^{\text {st }} \text { edge }: \quad M^{\max }(\ell \ell)=M_{\chi_{2}^{0}}-M_{\chi_{1}^{0}} ; \\
& 2^{\text {nd }} \text { edge }: \quad M^{\max }(\ell \ell j)=M_{\tilde{q}}-M_{\chi_{1}^{0}} .
\end{aligned}
$$

Exercise 5.4: Verify these relations.

(c). t-channel singularity: splitting.

- Gauge boson radiation off a fermion:

The familiar Weizsäcker-Williams approximation

$$
\begin{aligned}
\sigma\left(f a \rightarrow f^{\prime} X\right) & \approx \int d x d p_{T}^{2} P_{\gamma / f}\left(x, p_{T}^{2}\right) \sigma(\gamma a \rightarrow X), \\
P_{\gamma / e}\left(x, p_{T}^{2}\right) & =\left.\frac{\alpha}{2 \pi} \frac{1+(1-x)^{2}}{x}\left(\frac{1}{p_{T}^{2}}\right)\right|_{m_{e}} ^{E} .
\end{aligned}
$$

\dagger The kernel is the same as $q \rightarrow q g^{*} \quad \Rightarrow$ generic for parton splitting;
\dagger The form $d p_{T}^{2} / p_{T}^{2} \rightarrow \ln \left(E^{2} / m_{e}^{2}\right)$ reflects the collinear behavior.

- Generalize to massive gauge bosons:

$$
\begin{aligned}
P_{V / f}^{T}\left(x, p_{T}^{2}\right) & =\frac{g_{V}^{2}+g_{A}^{2}}{8 \pi^{2}} \frac{1+(1-x)^{2}}{x} \frac{p_{T}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}} \\
P_{V / f}^{L}\left(x, p_{T}^{2}\right) & =\frac{g_{V}^{2}+g_{A}^{2}}{4 \pi^{2}} \frac{1-x}{x} \frac{(1-x) M_{V}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}}
\end{aligned}
$$

Special kinematics for massive gauge boson fusion processes: For the accompanying jets,
At low- $p_{j T}$,

$$
\left.\begin{array}{l}
p_{j T}^{2} \approx(1-x) M_{V}^{2} \\
E_{j} \sim(1-x) E_{q}
\end{array}\right\} \text { forward jet tagging }
$$

At high- $p_{j T}$,

$$
\left.\begin{array}{rl}
\frac{d \sigma\left(V_{T}\right)}{d p_{p}^{2}} & \propto 1 / p_{j T}^{2} \\
\frac{d \sigma\left(V_{L}\right)}{d p_{j T}^{2}} & \propto 1 / p_{j T}^{4}
\end{array}\right\} \text { central jet vetoing }
$$

has become important tools for Higgs searches, single-top signal etc.

(D). Charge forward-backward asymmetry $A_{F B}$:

The coupling vertex of a vector boson V_{μ} to an arbitrary fermion pair f

$$
i \sum_{\tau}^{L, R} g_{\tau}^{f} \gamma^{\mu} P_{\tau} \quad \rightarrow \quad \text { crucial to probe chiral structures. }
$$

The parton-level forward-backward asymmetry is defined as

$$
\begin{aligned}
A_{F B}^{i, f} & \equiv \frac{N_{F}-N_{B}}{N_{F}+N_{B}}=\frac{3}{4} \mathcal{A}_{i} \mathcal{A}_{f}, \\
\mathcal{A}_{f} & =\frac{\left(g_{L}^{f}\right)^{2}-\left(g_{R}^{f}\right)^{2}}{\left(g_{L}^{f}\right)^{2}+\left(g_{R}^{f}\right)^{2}} .
\end{aligned}
$$

where $N_{F}\left(N_{B}\right)$ is the number of events in the forward (backward) direction defined in the parton c.m. frame relative to the initial-state fermion \vec{p}_{i}.

At hadronic level:

$$
A_{F B}^{\mathrm{LHC}}=\frac{\int d x_{1} \sum_{q} A_{F B}^{q, f}\left(P_{q}\left(x_{1}\right) P_{\bar{q}}\left(x_{2}\right)-P_{\bar{q}}\left(x_{1}\right) P_{q}\left(x_{2}\right)\right) \operatorname{sign}\left(x_{1}-x_{2}\right)}{\int d x_{1} \sum_{q}\left(P_{q}\left(x_{1}\right) P_{\bar{q}}\left(x_{2}\right)+P_{\bar{q}}\left(x_{1}\right) P_{q}\left(x_{2}\right)\right)} .
$$

In $p \bar{p}$ collisions, $\vec{p}_{\text {proton }}$ is the direction of $\vec{p}_{\text {quark }}$.

In $p p$ collisions, however, what is the direction of $\vec{p}_{\text {quark }}$? It is the boost-direction of $\ell^{+} \ell^{-}$.

How about $W^{ \pm} / W^{\prime \pm}\left(\ell^{ \pm} \nu\right)$-type?

In $p \bar{p}$ collisions, $\vec{p}_{\text {proton }}$ is the direction of $\vec{p}_{\text {quark }}$, AND $\ell^{+}\left(\ell^{-}\right)$along the direction with $\bar{q}(q) \Rightarrow$ OK at the Tevatron,

But: (1). cann't get the boost-direction of $\ell^{ \pm} \nu$ system;
(2). Looking at $\ell^{ \pm}$alone, no insight for W_{L} or W_{R} !

In $p \bar{p}$ collisions: (1). a reconstructable system
(2). with spin correlation \rightarrow only tops $W^{\prime} \rightarrow t \bar{b} \rightarrow \ell^{ \pm} \nu \bar{b}$:

(E). CP asymmetries $A_{C P}$:

To non-ambiguously identify $C P$-violation effects, one must rely on CP-odd variables.

Definition: $A_{C P}$ vanishes if CP-violation interactions do not exist (for the relevant particles involved).

This is meant to be in contrast to an observable: that'd be modified by the presence of CP-violation, but is not zero when CP-violation is absent.

$$
\text { e.g. } M_{\left(\chi^{ \pm} \chi^{0}\right)}, \quad \sigma\left(H^{0}, A^{0}\right), \ldots
$$

Two ways:
a). Compare the rates between a process and its CP-conjugate process:

$$
\frac{R(i \rightarrow f)-R(\bar{i} \rightarrow \bar{f})}{R(i \rightarrow f)+R(\bar{i} \rightarrow \bar{f})}, \quad \text { e.g. } \quad \frac{\Gamma\left(t \rightarrow W^{+} q\right)-\Gamma\left(\bar{t} \rightarrow W^{-} \bar{q}\right)}{\Gamma\left(t \rightarrow W^{+} q\right)+\Gamma\left(\bar{t} \rightarrow W^{-} \bar{q}\right)}
$$

b). Construct a CP-odd kinematical variable for an initially CP-eigenstate:

$$
\begin{aligned}
& \mathcal{M} \sim M_{1}+M_{2} \sin \theta \\
& A_{C P}=\sigma^{F}-\sigma^{B}=\int_{0}^{1} \frac{d \sigma}{d \cos \theta} d \cos \theta-\int_{-1}^{0} \frac{d \sigma}{d \cos \theta} d \cos \theta
\end{aligned}
$$

E.g. 1: $H \rightarrow Z\left(p_{1}\right) Z^{*}\left(p_{2}\right) \rightarrow e^{+}\left(q_{1}\right) e^{-}\left(q_{2}\right), \mu^{+} \mu^{-}$

$$
\Gamma^{\mu \nu}\left(p_{1}, p_{2}\right)=i \frac{2}{v} h\left[a M_{Z}^{2} g^{\mu \nu}+b\left(p_{1}^{\mu} p_{2}^{\nu}-p_{1} \cdot p_{2} g^{\mu \nu}\right)+\widetilde{b} \epsilon^{\mu \nu \rho \sigma} p_{1 \rho} p_{2 \sigma}\right]
$$

$a=1, b=\tilde{b}=0$ for SM.
In general, a, b, \tilde{b} complex form factors, describing new physics at a higher scale.

For $H \rightarrow Z\left(p_{1}\right) Z^{*}\left(p_{2}\right) \rightarrow e^{+}\left(q_{1}\right) e^{-}\left(q_{2}\right), \mu^{+} \mu^{-}$, define:

$$
\begin{aligned}
& O_{C P} \sim\left(\vec{p}_{1}-\vec{p}_{2}\right) \cdot\left(\vec{q}_{1} \times \vec{q}_{2}\right), \\
& \text { or } \cos \theta=\frac{\left(\vec{p}_{1}-\vec{p}_{2}\right) \cdot\left(\vec{q}_{1} \times \vec{q}_{2}\right)}{\left.\left|\vec{p}_{1}-\vec{p}_{2}\right| \mid \vec{q}_{1} \times \vec{q}_{2}\right) \mid} .
\end{aligned}
$$

E.g. 2: $H \rightarrow t\left(p_{t}\right) \bar{t}\left(p_{\bar{t}}\right) \rightarrow e^{+}\left(q_{1}\right) \nu_{1} b_{1}, e^{-}\left(q_{2}\right) \nu_{2} b_{2}$.

$$
\begin{aligned}
& -\frac{m_{t}}{v} \bar{t}\left(a+b \gamma^{5}\right) t H \\
& O_{C P} \sim\left(\overrightarrow{p_{t}}-\overrightarrow{p_{\bar{t}}}\right) \cdot\left(\vec{p}_{e^{+}} \times \vec{p}_{e^{-}}\right) .
\end{aligned}
$$

thus define an asymmetry angle.

II-C. Physics Perspectives
 at a 100-TeV Hadron Collider (3-30 ab^{-1})

Current LHC Searches:

ATLAS Exotics Searches* - 95\% CL Exclusion
Status: July 2015

[^0]

No Sign for New Physics (yet)!

LHC searches will continue, its legacy will be carried on...

(A). SM Bread and Butter at 100 TeV :

 Partonic luminosities substantially increased: *

*(Arkani-Hamed, T.Han, M.Mangano, L.-T.Wang, to appear.)

SM Rates Enhanced Big: 10 - 50

SM precision and New Physics far-reaching ($\times 5$):

mass reach of new physics

(B). Heavy Colored Resonances:

Colored resonance production largest rate, simplest topology: Mass reach extended to 20-50 TeV!

(C). W^{\prime}, Z^{\prime} :

Lepton pair signal the best:
Mass reach increased by 5, to $\sim 30 \mathrm{TeV}$!

(D). Heavy Higgses:

(E). S-particle Factory:

QCD production: $q \bar{q}, g q, g g \rightarrow \tilde{q} \overline{\widetilde{q}}, \tilde{q} \tilde{g}, \tilde{g} \tilde{g}$.
E.W. production: $q \bar{q} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \quad \tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{0}, \quad \tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0}$.

Mass reach easily extended by 5-8:

$$
\mathrm{CL}_{\mathrm{s}} \text { Exclusion }
$$

(F). New Heavy Fermions
 Vector like quarks and leptons:

(G). Dark Matter Connection:

Substantial coverage in DM searches: Another factor of 5 in mass reach!

Concluding Remarks:

- LHC is real life: Will dominate for the next 10-15 years; and deliver rich physics!
- An $e^{+} e^{-}$Higgs factory is a MUST! (ILC/FCC ${ }_{e e} /$ CEPC...)
- The $\mathrm{FCC}_{h h} / \mathrm{SPPC} / \mathrm{VLHC}$ is the future of HEP.

We are a lucky generation to witness the discovery!
Please join the excitement and contribute!

[^0]: "Only a selection of the available mass limits on new states or phenomena is shown.

