Conventions for spinor helicity formalism

Elvang pre-SUSY summer school lectures August 2015

The conventions of these notes follow those in Srednicki's QFT book.

1 Metric and γ-matrix conventions

We use a "mostly-plus" metric, $\eta_{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$ and define

$$
\begin{equation*}
\left(\sigma^{\mu}\right)_{a \dot{b}}=\left(1, \sigma^{i}\right)_{a \dot{b}}, \quad\left(\bar{\sigma}^{\mu}\right)^{\dot{a} b}=\left(1,-\sigma^{i}\right)^{\dot{a} b} \tag{1.1}
\end{equation*}
$$

with Pauli matrices

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \tag{1.2}\\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Two-index spinor indices are raised/lowered using

$$
\varepsilon^{a b}=\varepsilon^{\dot{a} \dot{b}}=\left(\begin{array}{cc}
0 & 1 \tag{1.3}\\
-1 & 0
\end{array}\right)=-\varepsilon_{a b}=-\varepsilon_{\dot{a} \dot{b}}
$$

which obey $\varepsilon_{a b} \varepsilon^{b c}=\delta_{a}{ }^{c}$.
We list the following properties

$$
\begin{align*}
\left(\bar{\sigma}^{\mu}\right)^{\dot{a} a} & =\varepsilon^{a b} \varepsilon^{\dot{a} \dot{b}}\left(\sigma^{\mu}\right)_{a \dot{b}}, \tag{1.4}\\
\left(\sigma^{\mu}\right)_{a \dot{a}}\left(\sigma_{\mu}\right)_{b \dot{b}} & =-2 \varepsilon_{a b} \varepsilon_{\dot{a} \dot{b}}, \tag{1.5}\\
\left(\sigma^{\mu} \bar{\sigma}^{\nu}+\sigma^{\nu} \bar{\sigma}^{\mu}\right)_{a}^{c} & =-2 \eta^{\mu \nu} \delta_{a}{ }^{b}, \tag{1.6}\\
\operatorname{Tr}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right) & =\operatorname{Tr}\left(\bar{\sigma}^{\mu} \sigma^{\nu}\right)=-2 \eta^{\mu \nu} . \tag{1.7}
\end{align*}
$$

Define γ-matrices:

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \left(\sigma^{\mu}\right)_{a \dot{b}} \tag{1.8}\\
\left(\bar{\sigma}^{\mu}\right)^{\dot{a} b} & 0
\end{array}\right), \quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 \eta^{\mu \nu}
$$

and

$$
\gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
-1 & 0 \tag{1.9}\\
0 & 1
\end{array}\right), \quad L=\frac{1}{2}\left(1-\gamma_{5}\right), \quad R=\frac{1}{2}\left(1+\gamma_{5}\right)
$$

For a momentum 4 -vector $p^{\mu}=\left(p^{0}, p^{i}\right)=\left(E, p^{i}\right)$ with $p^{\mu} p_{\mu}=-m^{2}$, we define momentum bi-spinors

$$
\begin{equation*}
p_{a \dot{b}} \equiv p_{\mu}\left(\sigma^{\mu}\right)_{a \dot{b}}, \quad p^{\dot{a} b} \equiv p_{\mu}\left(\bar{\sigma}^{\mu}\right)^{\dot{a} b} \tag{1.10}
\end{equation*}
$$

For example,

$$
p_{a \dot{b}}=\left(\begin{array}{cc}
-p^{0}+p^{3} & p^{1}-i p^{2} \tag{1.11}\\
p^{1}+i p^{2} & -p^{0}-p^{3}
\end{array}\right)
$$

Taking the determinant of this 2×2 matrices gives

$$
\begin{equation*}
\operatorname{det} p=-p^{\mu} p_{\mu}=m^{2} \tag{1.12}
\end{equation*}
$$

2 Selected Feynman rules

Here we list a few Feynman rules that will be used in the first lecture:

- External scalar: 1.
- External outgoing fermion: $\bar{u}_{s}(p)$.
- External outgoing anti-fermion: $v_{s}(p)$.
- Gluon propagator (Feynman or Gervais-Neveu gauge): $\frac{\delta^{a b} \eta_{\mu \nu}}{P^{2}}$.
- gluon-quark-antiquark vertex: $\bar{q} \not D q \longrightarrow \frac{i g}{\sqrt{2}} \gamma^{\mu} T_{i j}^{a}$.
- gluon-squark-antisquark vertex: $|D \tilde{q}|^{2} \supset \frac{i g}{\sqrt{2}}\left(p_{j}-p_{i}\right)^{\mu} T_{i j}^{a}$.

Here the $1 / \sqrt{2}$ is included to compensate for our choice of normalization of the gauge group generators, which is $\operatorname{Tr}\left(T^{a} T^{b}\right)=\delta^{a b}$.

3 Massless particles

3.1 Spin-1/2: Angle and square spinors

In momentum space, the Dirac equation for a massless 4 -component spinor is

$$
\begin{equation*}
\not p v_{ \pm}(p)=0, \quad \bar{u}_{ \pm}(p) \not p=0 . \tag{3.1}
\end{equation*}
$$

The Feynman rules for a massless external outgoing fermion is $\bar{u}_{ \pm}$(and antifermions $v_{ \pm}$). The subscript \pm indicates the helicity $h= \pm 1 / 2$. Crossing gives $u_{ \pm}=v_{\mp}$ and $\bar{v}_{ \pm}=\bar{u}_{\mp}$.

We write the two independent solutions to the Dirac equation (3.1) as

$$
\begin{equation*}
v_{+}(p)=\binom{\mid p]_{a}}{0}, \quad v_{-}(p)=\binom{0}{|p\rangle^{\dot{a}}}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{u}_{-}(p)=\left(0,\left\langle\left. p\right|_{\dot{a}}\right), \quad \bar{u}_{+}(p)=\left(\left[\left.p\right|^{a}, 0\right)\right.\right. \tag{3.3}
\end{equation*}
$$

The angle- and square spinors are 2-component commuting spinors (think 2-component vectors) which satisfy the massless Weyl equation,

$$
\begin{equation*}
\left.p^{\dot{a} b} \mid p\right]_{b}=0, \quad p_{a \dot{b}}|p\rangle^{\dot{b}}=0, \quad\left[\left.p\right|^{b} p_{b \dot{a}}=0, \quad\left\langle\left. p\right|_{\dot{b}} p^{\dot{b} a}=0 .\right.\right. \tag{3.4}
\end{equation*}
$$

Raising and lowering their indices is business as usually:

$$
\begin{equation*}
\left[\left.p\right|^{a}=\epsilon^{a b} \mid p\right]_{b} \quad|p\rangle^{\dot{a}}=\epsilon^{\dot{a} \dot{b}}\left\langle\left. p\right|_{\dot{b}} .\right. \tag{3.5}
\end{equation*}
$$

For complex-valued momenta p^{μ}, we regard the angle and square spinor solutions to be independent. However, for real momenta, the solutions are related via the Dirac conjugate $\bar{\psi}$, defined as:

$$
\begin{equation*}
\bar{\psi} \equiv \psi^{\dagger} \gamma^{0} . \tag{3.6}
\end{equation*}
$$

For real momenta this gives

$$
\begin{equation*}
\left[\left.p\right|^{a}=\left(|p\rangle^{\dot{a}}\right)^{*} \quad \text { and } \quad\left\langle\left. p\right|_{\dot{a}}=(\mid p]_{a}\right)^{*}\right. \tag{3.7}
\end{equation*}
$$

Note that $u_{s}(p)$ are eigenstates of the L - and R-projections:

$$
\begin{equation*}
L u_{-}(p)=u_{-}(p), \quad R u_{-}(p)=0, \quad R u_{+}(p)=u_{+}(p), \quad L u_{+}(p)=0 \tag{3.8}
\end{equation*}
$$

The spin sum completeness relation with $m=0$ reads $u_{-} \bar{u}_{-}+u_{+} \bar{u}_{+}=-\not p$. In spinor helicity notation this is

$$
\begin{equation*}
-\not p=|p\rangle[p|+| p]\langle p| \tag{3.9}
\end{equation*}
$$

One can read off from this relation that

$$
\begin{equation*}
\left.p_{a \dot{b}}=-\mid p\right]_{a}\left\langle\left. p\right|_{\dot{b}}, \quad p^{\dot{a} b}=-\mid p\right\rangle^{\dot{a}}\left[\left.p\right|^{b}\right. \tag{3.10}
\end{equation*}
$$

This should not shock you. After all, you learned in your algebra class that if a 2×2 matrix has vanishing determinant, it can be written as a product of two 2 -component vectors: $p_{a \dot{b}}=-\lambda_{a} \tilde{\lambda}_{\dot{b}}$. In fact, this is often the starting point of introductions to the spinor helicity formalism.

3.2 Spinor brackets

For two light-like vectors p^{μ} and q^{μ}, we define spinor brackets

$$
\begin{equation*}
\langle p q\rangle=\left\langle\left. p\right|_{\dot{a}} \mid q\right\rangle^{\dot{a}}, \quad[p q]=\left[\left.p\right|^{a} \mid q\right]_{a} \tag{3.11}
\end{equation*}
$$

Since indices are raised/lowered with the anti-symmetric Levi-Civitas (1.3), cf. (3.5), these products are antisymmetric:

$$
\begin{equation*}
\langle p q\rangle=-\langle q p\rangle, \quad[p q]=-[q p] \tag{3.12}
\end{equation*}
$$

All other "inner products" vanish, e.g. $\langle p| q]=0$.
For real momenta, the spinor products satisfy $[p q]^{*}=\langle q p\rangle$.
Using (1.7) one finds

$$
\begin{equation*}
\langle p q\rangle[p q]=2 p \cdot q=(p+q)^{2}=-s_{p q} \tag{3.13}
\end{equation*}
$$

In the last equality, we defined the Mandelstam variable $s_{p q}$.
It is also useful to note the following properties:

$$
\begin{align*}
{\left[q\left|\gamma^{\mu}\right| p\right\rangle } & \left.=\langle p| \gamma^{\mu} \mid q\right] \tag{3.14}\\
{\left[q\left|\gamma^{\mu}\right| p\right\rangle^{*} } & =\left[p\left|\gamma^{\mu}\right| q\right\rangle \quad \text { (for real momenta) } \tag{3.15}\\
\left.\left.\left\langle p_{1}\right| \gamma^{\mu} \mid p_{2}\right]\left\langle p_{3}\right| \gamma_{\mu} \mid p_{4}\right] & =2\left\langle p_{1} p_{3}\right\rangle\left[p_{2} p_{4}\right] \tag{3.16}
\end{align*}
$$

We often use $\left.\langle p| P \mid q] \equiv P_{\mu}\langle p| \gamma^{\mu} \mid q\right]$ and obvious generalizations thereof. Note that for $P^{2} \neq 0$ we may write $\langle q| P \mid q]=2 P \cdot q$.

In amplitude calculations, momentum conservation is imposed on n-particles as $\sum_{i=1}^{n} p_{i}^{\mu}=$ 0 (consider all particles outgoing). This is encoded in the spinor helicity formalism as

$$
\begin{equation*}
\sum_{i=1}^{n}|i\rangle\left[i \mid=0 \quad \text { or } \quad \sum_{i=1}^{n}\langle q i\rangle[i k]=0\right. \tag{3.17}
\end{equation*}
$$

for any light-like vectors q and k. For example, you can (and should) show that for $n=4$ momentum conservation implies $\langle 12\rangle[23]=-\langle 14\rangle[43]$ and $\langle 12\rangle[12]=\langle 34\rangle[34]$.

The Schouten identity is a fancy name for a rather trivial fact: three vectors in a plane cannot be linearly independent. So if we have three 2-component vectors $|i\rangle,|j\rangle$, and $|k\rangle$, you can write one of them as a linear combination of the two others:

$$
\begin{equation*}
|k\rangle=a|i\rangle+b|j\rangle \quad \text { for some } a \text { and } b . \tag{3.18}
\end{equation*}
$$

Dot in spinors $\langle\cdot|$ and form antisymmetric angle brackets to solve for the coefficients a and b. Show that (3.18) can then be cast in the form

$$
\begin{equation*}
|i\rangle\langle j k\rangle+|j\rangle\langle k i\rangle+|k\rangle\langle i j\rangle=0 \tag{3.19}
\end{equation*}
$$

This is the Schouten identity. It is often written with a fourth spinor $\langle q|$ "dotted-in":

$$
\begin{equation*}
\langle q i\rangle\langle j k\rangle+\langle q j\rangle\langle k i\rangle+\langle q k\rangle\langle i j\rangle=0 . \tag{3.20}
\end{equation*}
$$

A similar Schouten identity holds for the square spinors.

3.3 Spin-1: Polarizations

In the spinor helicity formalism we write polarization vectors as

$$
\begin{equation*}
\epsilon_{-}^{\mu}(p ; q)=-\frac{\left.\langle p| \gamma^{\mu} \mid q\right]}{\sqrt{2}[p q]}, \quad \epsilon_{+}^{\mu}(p ; q)=-\frac{\left.\langle q| \gamma^{\mu} \mid p\right]}{\sqrt{2}\langle p q\rangle} \tag{3.21}
\end{equation*}
$$

where $q \neq p$ denotes an arbitrary reference spinors.
The choice of q simply encodes the gauge freedom of shifting the polarization vector by any number times the momentum of the particle:

$$
\begin{equation*}
\epsilon^{\mu}(p)=\tilde{\epsilon}^{\mu}(p)+C p^{\mu} \tag{3.22}
\end{equation*}
$$

Now we have the basic spinor helicity tools needed to calculated scattering amplitudes of massless particles in 4 d .

