125 GeV Higgs Bosons in Two-Higgs Doublet Models after Moriond 2013

Yun Jiang

2013 LHC-TI Fellow Univ. of California, Davis

1st IAS-CERN Workshop on Particle Physics and Cosmology, Singapore 03/27/2013

A compact version was delivered in the YSF session at the Moriond 2013 EW. • A. Drozd, B. Grzadkowski, J. F. Gunion and YJ, arXiv:1211.3580 [hep-ph]

The Higgs Hunter's Guide

- Republished in 2000
- A little bit out of date
- Still a bible on Higgs boson physics

< □ > (< @ > (< E >) E

July 4th, 2012-A HISTORIC moment in science.

It is a privilege to witness the Higgs discovery.

Yun Jiang (U.C. Davis)

ATLAS updated the local p-values at the Moriond 2013.

CMS and ATLAS provide an essentially 7σ and 10σ signal, respectively, for a Higgs-like resonance with mass of order 123–128 GeV.

With the new data, "Seeing is believing" !

Yun Jiang (U.C. Davis)

æ

・ロト ・回ト ・ヨト

125 GeV Higgs-like signal at the Moriond 2013 QCD

Tevatron: the evidence for the Higgs boson is based principally on the W + H with $H \rightarrow b\overline{b}$ decay mode, the observed enhancements relative to the SM rate by a factor of $1.56^{+0.72}_{-0.73}$.

3

イロト イヨト イヨト

Whether or not it is the SM Higgs?

Instead of being the end of story, the recent discovery of the 125 GeV Higgs-like signal has brought particle physics research into the start of a new era. We are in the midst of an exciting debate on the nature of the 125 GeV state.

Yun Jiang (U.C. Davis)

In the simplest non-trivial extension on the Higgs sector beyond the SM.

- Duplicate a complex $SU(2)_L$ Higgs doublet with the same hypercharge Y = +1.
- More physical Higgs states.
- O Type II realized in the MSSM.

▲□▶,▲□▶,▲国▶, 目 ,つへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left[\lambda_6 \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_7 \left(\Phi_2^{\dagger} \Phi_2 \right) \right] \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right\} \end{split}$$

▲□▶,▲□▶,▲≧▶, 差 ,のへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left[\lambda_6 \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_7 \left(\Phi_2^{\dagger} \Phi_2 \right) \right] \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **2** NO spontaneous CP breaking: take $\xi = 0$.

▲□▶.▲□▶.▲目▶. 目 . つへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left[\lambda_6 \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_7 \left(\Phi_2^{\dagger} \Phi_2 \right) \right] \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- $\textbf{9 "soft" } Z_2 \text{ symmetry } (\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2) \text{ breaking: } m_{12}^2 \neq 0; \lambda_6 = \lambda_7 = 0.$

▲□▶,▲□▶,▲国▶, 目 ,のへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **2** NO spontaneous CP breaking: take $\xi = 0$.
- $\textbf{9 "soft" } Z_2 \text{ symmetry } (\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2) \text{ breaking: } m_{12}^2 \neq 0; \ \lambda_6 = \lambda_7 = 0.$

▲□▶,▲□▶,▲国▶, 目 ,のへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- $\textbf{9 "soft" } Z_2 \text{ symmetry } (\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2) \text{ breaking: } m_{12}^2 \neq 0; \ \lambda_6 = \lambda_7 = 0.$

free parameters: $\tan \beta$, m_{12}^2 , λ_1 , λ_2 , λ_3 , λ_4 , λ_5

▲□▶,▲□▶,▲国▶, 目 ,つへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- "soft" Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ breaking: $m_{12}^2 \neq 0$; $\lambda_6 = \lambda_7 = 0$.

free parameters: $\tan \beta$, m_{12}^2 , λ_1 , λ_2 , λ_3 , λ_4 , λ_5

Electroweak symmetry breaking

$$\Phi_{\mathbf{1}} = \begin{pmatrix} \phi_{\mathbf{1}}^{\dagger} \\ (v\cos\beta + \rho_{\mathbf{1}} + i\eta_{\mathbf{1}})/\sqrt{2} \end{pmatrix}$$
$$\Phi_{\mathbf{2}} = \begin{pmatrix} \phi_{\mathbf{2}}^{\dagger} \\ (e^{i\xi}v\sin\beta + \rho_{\mathbf{2}} + i\eta_{\mathbf{2}})/\sqrt{2} \end{pmatrix}$$

2 CP-even neutral scalars: $h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha$ $H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$

1 CP-odd neutral pseudoscalar: $A = -\eta_1 \sin \beta + \eta_2 \cos \beta$

2 charged scalars:
$$H^\pm$$

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **2** NO spontaneous CP breaking: take $\xi = 0$.
- $\textbf{9 "soft" } Z_2 \text{ symmetry } (\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2) \text{ breaking: } m_{12}^2 \neq 0; \ \lambda_6 = \lambda_7 = 0.$

our inputs: $m_h, m_H, m_A, m_{H^+}, \tan \beta, \sin \alpha, m_{12}^2$

Electroweak symmetry breaking

$$\Phi_{\mathbf{1}} = \begin{pmatrix} \phi_{\mathbf{1}}^{\dagger} \\ (v\cos\beta + \rho_{\mathbf{1}} + i\eta_{\mathbf{1}})/\sqrt{2} \end{pmatrix}$$
$$\Phi_{\mathbf{2}} = \begin{pmatrix} \phi_{\mathbf{2}}^{\dagger} \\ (e^{i\xi}v\sin\beta + \rho_{\mathbf{2}} + i\eta_{\mathbf{2}})/\sqrt{2} \end{pmatrix}$$

2 CP-even neutral scalars: $h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha$ $H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$

1 CP-odd neutral pseudoscalar: $A = -\eta_1 \sin \beta + \eta_2 \cos \beta$

2 charged scalars:
$$H^{\pm}$$

$$\mathcal{L} = y_{ij}^1 \bar{\psi}_i \psi_j \Phi_1 + y_{ij}^2 \bar{\psi}_i \psi_j \Phi_2$$

We consider the Type I and Type II models, in which tree level FCNC are completely absent due to some symmetry. $^{\rm 1}$

Model	u_R^i	d_R^i	e_R^i	Realization
Type I	Φ2	Φ2	Φ2	$\Phi_1 ightarrow - \Phi_1$
Type II	Φ2	Φ_1	Φ_1	$\Phi_1 ightarrow -\Phi_1, d_R^i ightarrow -d_R^i$

$$\mathcal{L}_{\mathbf{Y}_{\mathbf{u}\mathbf{k}a\mathbf{w}a}}^{\mathbf{2}\mathbf{H}\mathbf{D}\mathbf{M}} = -\sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_f^h \overline{f} fh + \xi_f^H \overline{f} fH - i\xi_f^A \overline{f} \gamma_5 fA \right) \\ - \left\{ \frac{\sqrt{2}V_{ud}}{v} \overline{u} \left(m_u \xi_u^A \mathsf{P}_L + m_d \xi_d^A \mathsf{P}_R \right) dH^+ + \frac{\sqrt{2}m_\ell \xi_\ell^A}{v} \overline{\nu_L} \ell_R H^1 + \text{h.c.} \right\}$$

	ξ_{u}^{h}	ξ_d^h	ξ^h_ℓ	ξ_{μ}^{H}	ξ_d^H	ξ^{H}_{ℓ}	ξ_{u}^{A}	ξ_d^A	ξ_{ℓ}^{A}
Type I	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\cot\beta$	$-\cot\beta$	$-\cot\beta$
Type II	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\cot \beta$	aneta	aneta

Higgs-gauge boson couplings: $g_{SM} \sin(\beta - \alpha)$

¹Paschos-Glashow-Weinberg theorem: if all fermions with the same quantum numbers couple to the same Higgs multiplet, then FCNC will be absent.

Yun Jiang (U.C. Davis)

Basic Constraints

• Theoretically, (denoted jointly as SUP)

Vacuum stability

The potential must be bounded from below (positivity).

Onitarity

Requiring the largest eigenvalue for the tree-level for full multi-state scattering matrix in (h, H, A) space to be less than the upper limit 16π .

Perturbativity

All self couplings among the mass eigenstates and Yukawa coupling must be finite, $|\Lambda_i| < 4\pi.$

• Experimentally,

Precision electroweak constraints (denoted STU).

$$-0.3 < S < 0.33; -0.34 < T < 0.35; -0.25 < U < 0.41 \ (\pm 3\sigma)$$

LEP constraints on Higgs mass limits.

B-physics constraints.

• the anomalous magnetic moment of the muon $\delta a_{\mu} \equiv (g-2)_{\mu}^{\text{BSM}}$ (IGNORED).

▲□▶.▲□▶.▲目▶. 目 . つへの

Basic Constraints – LEP

LEP constraints on Higgs mass limits

Yun Jiang (U.C. Davis)

Basic Constraints – *B*-physics

B-physics constraints (BR($B_s \to X_s \gamma$), R_b , ΔM_{B_s} , ϵ_K , BR($B^+ \to \tau^+ \nu_\tau$) and BR($B^+ \to D\tau^+ \nu_\tau$)): set up lower bound on $m_{H^{\pm}}$.

Solid: R_b for $Z \to b\bar{b}$, ϵ_K and Δm_{B_s} Dash: $\bar{B} \to X_s \gamma$ in models with FCNC

<ロト <圖 > < 문 > 三 문

Single Scalar Scenarios

• h or H either lies at 125 GeV.

< □ > , < □ > , < Ξ > , < Ξ > , < □ , のへの

SUP **DECREASE** the $\gamma\gamma$ rate $R_Y^{h_i}(X) \equiv \frac{\sigma(Y \to h_i) \operatorname{BR}(h_i \to X)}{\sigma(Y \to h_{\operatorname{SM}}) \operatorname{BR}(h_{\operatorname{SM}} \to X)}, h_i = h, H, A$

Yun Jiang (U.C. Davis)

14 / 31

SUP DECREASE the $\gamma\gamma$ rate $R_Y^{h_i}(X) \equiv \frac{\sigma(Y \to h_i) \operatorname{BR}(h_i \to X)}{\sigma(Y \to h_{SM}) \operatorname{BR}(h_{SM} \to X)}, h_i = h, H, A$

Yun Jiang (U.C. Davis)

SUP DECREASE the $\gamma\gamma$ rate $R_Y^{h_i}(X) \equiv \frac{\sigma(Y \to h_i) \operatorname{BR}(h_i \to X)}{\sigma(Y \to h_{SM}) \operatorname{BR}(h_{SM} \to X)}, h_i = h, H, A$

Yun Jiang (U.C. Davis)

14 / 31

$\gamma\gamma - ZZ$ rate correlation (Type II)

15 / 31

Is it possible that the excess in the Higgs $\to \gamma\gamma$ is due to two 2HDMs degenerate states?

Yes, the signal at 125 GeV cannot be pure A since at the tree level the A does not couple to ZZ, a final state that is definitely present at 125 GeV.

< □ > , < □ > , < Ξ > , < Ξ > , < □ , のへの

Degenerate Scalar Scenarios

Choices for the degenerate pairs:

- h and A both lie at the 125 GeV mass.
- *H* and *A* both lie at the 125 GeV mass.
- h and H both lie at the 125 GeV mass.

▲□▶,▲圖▶,▲圖▶, 冨 ,の�?

$\gamma\gamma$ Enhancement achieved (Type I)

2HDM (typeI) m_b=125 GeV, m_A=125.1 GeV

2

▲□▶ ▲圖▶ ▲厘▶

$\gamma\gamma$ Enhancement achieved (Type I)

• $R_{gg}^{h+A}(\gamma\gamma)$ can be significantly enhanced.

2

・ロト ・日下・ ・ ヨト

2HDM (typeI) m_h=125 GeV, m_A=125.1 GeV

• $R_{gg}^{h+A}(\gamma\gamma)$ can be significantly enhanced.

• $R_{gg}^{A}(\gamma\gamma)$ turns out to be tiny at large tan β .

• Large $\tau\tau$ rate at small tan β because of the A contribution.

<ロ> <四> <四> <四> <四> <四> <四> <四

2HDM (typeI) m_b=125 GeV, m₄=125.1 GeV

• $R_{gg}^{h+A}(\gamma\gamma)$ can be significantly enhanced.

- $R_{gg}^{A}(\gamma\gamma)$ turns out to be tiny at large tan β .
- Large $\tau\tau$ rate at small tan β because of the A contribution.
- Only $\tan \beta = 20$, both an enhanced $\gamma \gamma$ rate and SM-like ZZ and $\tau \tau$ rates!!!

<ロ> <四> <四> <四> <四> <四> <四> <四

$\gamma\gamma$ Enhancement achieved (Type II)

- Substantial enhancement in the $R_{gg}^{h+A}(\gamma\gamma)$ can be achieved.
- Mostly associated with $R_{gg}^{h+A}(ZZ) > R_{gg}^{h+A}(\gamma\gamma).$
- The exception has large $\tau\tau$ rate.

æ

ヘロト 人間 ト 人間 ト

$\gamma\gamma$ Enhancement achieved (Type II)

- Substantial enhancement in the $R_{gg}^{h+A}(\gamma\gamma)$ can be achieved.
- Mostly associated with $R_{gg}^{h+A}(ZZ) > R_{gg}^{h+A}(\gamma\gamma).$

• The exception has large $\tau\tau$ rate.

$\gamma\gamma$ Enhancement achieved (Type II)

- Substantial enhancement in the $R_{gg}^{h+A}(\gamma\gamma)$ can be achieved.
- Mostly associated with $R_{gg}^{h+A}(ZZ) > R_{gg}^{h+A}(\gamma\gamma).$

• The exception has large $\tau\tau$ rate.

LESS ATTRACTIVE

Yun Jiang (U.C. Davis)

- It seems likely that the scalar boson responsible for EWSB has emerged. Perhaps, other scalar objects are emerging.
- In the 2HDM,
 - In both Type I and Type II models, SUP plays the key role in limiting the (possible) maximal γγ enhancement.
 - The Type I model could provide a consistent picture if the MVA analysis by CMS is confirmed to be true.
 - The Type II model is able to give a significantly enhanced or SM-like γγ signal with the ZZ at the same order and a more or less SM-like ττ rates.

<日と、<問と、<Eと、 目、のへの

- But, if $R^h_{gg}(\gamma\gamma)$ is definitively measured to have a value much above 1.4 while the ZZ and $\tau\tau$ channels show little enhancement then there is no consistent 2HDM Type I description. In addition to Type II, one could go beyond the 2HDM to include new physics such as supersymmetry.
- $\bullet\,$ Adopt χ^2 technique to globally fit LHC data is working in progress.
- 2HDM+singlets with a dark matter candidate is also an natural extension that is studying in progress.

▲□▶,▲□▶,▲国▶, 国 ,のへの

Back Up

◆□▶,◆圖▶,◆圖▶, 圖 ,つへぐ

2HDM: two complex doublets Φ_1 and Φ_2 (Y = +1)

$$\begin{split} \mathcal{V} = & m_{\mathbf{11}}^2 \Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{1}} + m_{\mathbf{22}}^2 \Phi_{\mathbf{2}}^{\dagger} \Phi_{\mathbf{2}} - \left[m_{\mathbf{12}}^2 \Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{2}} + \mathrm{h.c.} \right] \\ & + \frac{1}{2} \lambda_{\mathbf{1}} \left(\Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{1}} \right)^2 + \frac{1}{2} \lambda_{\mathbf{2}} \left(\Phi_{\mathbf{2}}^{\dagger} \Phi_{\mathbf{2}} \right)^2 + \lambda_{\mathbf{3}} \left(\Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{1}} \right) \left(\Phi_{\mathbf{2}}^{\dagger} \Phi_{\mathbf{2}} \right) + \lambda_{\mathbf{4}} \left(\Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{2}} \right) \left(\Phi_{\mathbf{2}}^{\dagger} \Phi_{\mathbf{1}} \right) \\ & + \left\{ \frac{1}{2} \lambda_{\mathbf{5}} \left(\Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{2}} \right)^2 + \left[\lambda_{\mathbf{6}} \left(\Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{1}} \right) + \lambda_{\mathbf{7}} \left(\Phi_{\mathbf{2}}^{\dagger} \Phi_{\mathbf{2}} \right) \right] \left(\Phi_{\mathbf{1}}^{\dagger} \Phi_{\mathbf{2}} \right) + \mathrm{h.c.} \right\}, \\ & \mathbf{0} \le \beta \le \pi/2, \ -\pi/2 \le \alpha \le \pi/2. \end{split}$$

Free independent parameter set

Yun Jiang (U.C. Davis)

25 / 31

< □ > , < □ > , < Ξ > , < Ξ > , のへの

We have performed five scans over the parameter space with the range of variation.

	scenario I	scenario II	scenario III	scenario IV	scenario V						
m_h [GeV]	125	$\{10, \ldots, 124.9\}$	125	125	$\{10, \ldots, 124.9\}$						
m_H [GeV]	$125 + \{0.1, \dots, 1000\}$	125	125.1	$125+\{0.1,\ldots,1000\}$	} 125						
$m_A [\text{GeV}]$	$\{10, \ldots, 1000\}$	$\{10, \ldots, 1000\}$	$\{10, \ldots, 1000\}$	125.1	125.1						
mu± [GeV]	1500 $(\tan \beta = 0.5)$; 800 $(\tan \beta = 1)$; 250,350 $(\tan \beta = 2)$; 90,150,250,350 $(\tan \beta > 2)$ for Type I										
mHT [act]	600 (tan β =0.5); 500 (tan β =1); 340 (tan β =2); 320 (tan β >2) for Type II										
$\tan \beta$	$\{0.5, \ldots, 20\}$										
$\sin \alpha$	$\{-1,, 1\}$										
$m_{12}^2 [{ m GeV}^2]$	$\{-1000^2, \dots, 1000^2\}$										

▲□▶,▲□▶,▲≧▶, 差 ,のへの

$$m_H = 125 \text{ GeV}$$

$tan \beta$	R_{i}	max	(γ)	$R_{gg}^{H}(ZZ)$	$R_{gg}^{H}(b\overline{b})$	$R_{VBF}^{H}(\gamma\gamma)$	$R_{VBF}^{H}(ZZ)$	$R_{VBF}^{H}(b\overline{b})$	m_h	m_A	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$A_{H\pm}^{H}/A$	δa_{μ}
2.0		0.90		1.00	1.02	0.89	0.99	1.00	125	400	350	50	0.9	-0.05	-2.1
3.0		0.89		0.96	0.88	0.97	1.05	0.96	125	400	350	50	0.9	-0.05	-1.8
4.0		0.89	Г	0.97	1.09	0.79	0.86	0.97	105	500	90	50	1.0	-0.03	-1.7
5.0		0.93	Т	0.98	1.06	0.86	0.90	0.98	125	500	90	50	1.0	-0.11	-1.6
7.0		0.88		0.99	1.03	0.85	0.95	0.99	65	4 00	350	19	1.0	-0.05	1.6
10.0		0.89	π	1.00	1.02	0.87	0.98	.00	45	400	350	0	1.0	-0.05	-1.6
15.0		0.90	Л	1.00	1.01	0.8	0.9	1 00	2	400	350	0	-1.0	-0.05	-1.6
20.0		0.90		1.00	1.0	0.89	0.99	1.00	25	400	350	0	-1.0	-0.05	-1.5

TABLE V: Table of maximum $R_{gg}^{H}(\gamma\gamma)$ values for the Type I 2HDM with $m_{H} = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^{H}(\gamma\gamma)$ value are also tabulated.

$ { \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
0.9 0.95 0.94 0.76 1.17 1.16 0.94 875 750 900 500 -0.8 -0.02 -2.1 1.0 0.97 1.00 1.02 0.95 0.98 1.00 875 750 850 900 -0.8 -0.02 -2.1 1.2 0.98 0.96 0.83 1.13 1.10 0.96 625 750 612 400 -0.7 -0.01 -2.0 1.4 0.99 0.99 0.96 1.02 1.03 0.99 525 750 460 200 -0.6 -0.01 -2.0 1.8 1.01 1.00 0.98 1.03 1.01 1.00 425 400 285 200 -0.6 -0.01 -2.0 2.0 0.98 0.98 1.03 1.01 1.00 425 500 350 200 -0.5 -0.01 +1.8 3.0 1.29 1.00 1.01 1.27 <t< td=""><td></td><td>$\tan\beta$</td><td>$R_{ggmax}^{h}(\gamma\gamma)$</td><td>$R^{h}_{gg}(ZZ)$</td><td>$R^{h}_{gg}(b\overline{b})$</td><td>$R_{VBF}^{h}(\gamma\gamma)$</td><td>$R_{\rm VBF}^h(ZZ)$</td><td>$R_{VBF}^{h}(b\overline{b})$</td><td>$m_H$</td><td>$m_A$</td><td>$m_{H^{\pm}}$</td><td>$m_{12}$</td><td>$\sin \alpha$</td><td>$A_{H^{\pm}}^{h}/A$</td><td>$\delta a_{\mu}$</td></t<>		$\tan\beta$	$R_{ggmax}^{h}(\gamma\gamma)$	$R^{h}_{gg}(ZZ)$	$R^{h}_{gg}(b\overline{b})$	$R_{VBF}^{h}(\gamma\gamma)$	$R_{\rm VBF}^h(ZZ)$	$R_{VBF}^{h}(b\overline{b})$	m_H	m_A	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$A_{H^{\pm}}^{h}/A$	δa_{μ}
Ind 0.97 1.00 1.02 0.95 0.98 1.00 875 750 850 500 -0.77 -0.02 -2.3 1.2 0.98 0.96 0.83 1.13 1.10 0.96 625 750 612 400 -0.7 -0.01 -2.0 1.4 0.99 0.99 0.96 1.02 1.03 0.99 525 750 410 300 -0.6 -0.01 -2.0 1.6 0.96 0.97 0.87 1.07 1.08 0.97 625 400 300 200 -0.6 -0.01 -2.0 2.0 0.98 0.98 1.03 1.01 1.00 425 400 285 200 -0.5 -0.01 -1.8 3.0 1.29 1.00 1.01 1.27 0.99 1.00 225 200 92 100 -0.5 -0.11 -1.8 3.0 1.29 1.00 1.01 1.24 <t< td=""><td></td><td>0.9</td><td>0.95</td><td>0.94</td><td>0.76</td><td>1.17</td><td>1.16</td><td>0.94</td><td>875</td><td>750</td><td>900</td><td>500</td><td>-0.8</td><td>-0.02</td><td>-2.1</td></t<>		0.9	0.95	0.94	0.76	1.17	1.16	0.94	875	750	900	500	-0.8	-0.02	-2.1
Inc 0.98 0.96 0.83 1.13 1.10 0.96 625 750 612 400 -0.7 -0.01 -2.0 1.4 0.99 0.99 0.96 1.02 1.03 0.99 525 750 612 400 -0.7 -0.01 -2.0 1.6 0.96 0.97 0.87 1.07 1.08 0.97 625 400 300 -0.6 -0.01 -2.0 1.8 1.01 1.00 0.98 1.03 1.01 1.00 425 400 285 200 -0.5 0.00 -2.0 2.0 0.98 0.92 1.04 1.04 0.98 425 500 350 200 -0.5 -0.01 -1.8 3.0 1.29 1.00 1.01 1.27 0.99 1.00 252 200 90 0.01 -1.8 3.0 1.29 1.00 1.01 1.24 0.93 0.99 225		1.0	0.97	1.00	1.02	0.95	0.98	1.00	875	750	850	500	-0.7	-0.02	-2.3
MALL 1.4 0.99 0.99 0.96 1.02 1.03 0.99 525 750 460 300 -0.6 -0.01 -2.0 1.6 0.96 0.97 0.87 1.07 1.08 0.97 625 400 300 -0.6 -0.01 -2.0 1.8 1.01 1.00 0.98 1.03 1.01 1.00 425 400 285 200 -0.6 -0.01 -2.0 2.0 0.98 0.98 1.03 1.01 1.00 425 400 285 200 -0.5 -0.01 -1.2 2.0 0.98 0.92 1.04 1.04 0.99 425 500 350 200 -0.5 -0.01 -1.8 4.0 1.33 0.99 1.07 1.24 0.93 0.99 225 200 90 0.01 -1.6 5.0 0.98 0.98 1.06 1.01 0.99 255 400		1.2	0.98	0.96	0.83	1.13	1.10	0.96	625	750	612	400	-0.7	-0.01	-2.0
I.6 0.96 0.97 0.87 1.07 1.08 0.97 625 400 360 200 -0.6 -0.02 -1.9 1.8 1.01 1.00 0.98 0.98 1.03 1.01 1.00 425 400 2.85 200 -0.6 -0.02 -1.9 2.0 0.98 0.98 0.92 1.04 1.04 0.98 425 500 355 200 -0.5 -0.01 -1.8 3.0 1.29 1.00 1.01 1.27 0.99 1.00 225 200 92 100 -0.1 -1.8 5.0 0.98 0.99 1.07 1.24 0.93 0.99 225 400 100 -0.0 0.11 -1.7 5.0 0.98 0.98 1.06 1.01 0.99 225 400 100 -0.0 0.01 -1.6 7.0 1.04 0.99 0.89 0.81 175 500 1	MALL	1.4	0.99	0.99	0.96	1.02	1.03	0.99	525	750	460	300	-0.6	-0.01	-2.0
1.8 1.01 1.00 0.98 1.03 1.01 1.00 425 400 285 200 -0.5 0.00 -2.0 2.0 0.98 0.98 0.92 1.04 1.04 0.98 425 500 350 200 -0.5 -0.01 -1.8 3.0 1.29 1.00 1.01 1.27 0.99 1.00 225 200 92 100 -0.01 -1.8 4.0 1.33 0.99 1.07 1.24 0.93 0.99 225 200 90 1.00 0.14 -1.7 5.0 0.98 0.98 1.06 0.90 0.91 0.98 225 400 1.01 0.14 -1.7 5.0 0.98 0.98 1.06 1.01 0.99 225 400 1.01 0.01 -1.6 1.00 0.99 0.89 0.81 1.75 500 150 -0.5 0.04 -1.5 1.0		1.6	0.96	0.97	0.87	1.07	1.08	0.97	625	400	360	200	-0.6	-0.02	-1.9
2.0 0.98 0.98 0.92 1.04 1.04 0.98 425 500 350 200 -0.5 -0.01 -1.8 3.0 1.29 1.00 1.01 1.27 0.99 1.00 225 200 92 100 -0.3 0.12 -1.8 4.0 1.33 0.99 1.07 1.24 0.93 0.99 225 200 90 100 -0.1 0.14 -1.7 5.0 0.98 0.98 1.06 0.90 0.91 0.98 225 400 150 100 -0.0 0.01 -1.6 7.0 1.04 0.99 0.81 1.06 1.01 0.99 135 500 90 50 -0.2 0.02 -1.6 1.00 0.90 0.81 0.01 0.99 0.81 175 500 50 -0.5 0.04 -1.5 1.00 0.46 0.59 0.66 0.41 0.53 0.59<		1.8	1.01	1.00	0.98	1.03	1.01	1.00	425	400	285	200	-0.5	0.00	-2.0
3.0 1.29 1.00 1.127 0.99 1.00 225 200 92 100 -0.3 0.12 -1.8 4.0 1.33 0.99 1.07 1.24 0.93 0.99 225 200 90 100 -0.3 0.12 -1.8 5.0 0.98 0.98 1.06 0.90 0.91 0.98 225 400 150 100 -0.0 0.01 -1.7 7.0 1.04 0.99 0.98 1.06 1.01 0.99 125 400 150 100 -0.0 0.01 -1.6 7.0 1.04 0.99 0.98 1.06 1.01 0.99 135 500 50 -0.5 0.04 -1.6 10.0 0.90 0.81 1.75 500 150 -0.6 -1.1 -1.4 20.0 1.31 1.00 1.00 1.30 0.99 1.00 225 400 35 50 -0.6 <td></td> <td>2.0</td> <td>0.98</td> <td>0.98</td> <td>0.92</td> <td>1.04</td> <td>1.04</td> <td>0.98</td> <td>425</td> <td>500</td> <td>350</td> <td>200</td> <td>-0.5</td> <td>-0.01</td> <td>-1.8</td>		2.0	0.98	0.98	0.92	1.04	1.04	0.98	425	500	350	200	-0.5	-0.01	-1.8
4.0 1.33 0.99 1.07 1.24 0.93 0.99 225 200 90 100 -0.1 0.14 -1.7 5.0 0.98 0.98 1.06 0.90 0.91 0.98 225 400 150 100 -0.1 0.14 -1.7 5.0 0.98 0.98 1.06 0.90 0.91 0.98 225 400 150 100 -0.0 0.01 -1.6 7.0 1.04 0.99 0.98 1.06 1.01 0.99 135 500 90 50 -0.2 0.02 -1.6 10.0 0.90 0.81 1.07 0.99 0.89 0.81 175 500 150 50 -0.5 0.04 -1.5 15.0 0.46 0.59 0.66 0.41 0.53 0.59 225 400 350 50 -0.6 -0.11 -1.4 20.0 1.31 1.00 1.00 1.30<		3.0	1.29	1.00	1.01	1.27	0.99	1.00	225	200	92	100	-0.3	0.12	-1.8
5.0 0.98 0.98 1.06 0.90 0.91 0.98 225 400 150 100 0.01 1.16 7.0 1.04 0.99 0.98 1.06 1.01 0.99 135 500 90 50 -0.2 0.02 -1.6 10.0 0.90 0.81 0.74 0.99 0.89 0.81 175 500 150 50 -0.2 -0.6 -1.5 15.0 0.46 0.59 0.66 0.41 0.53 0.59 225 400 35 50 0.6 -1.5 20.0 1.31 1.00 1.00 1.30 0.99 1.00 225 200 90 50 -0.0 0.13 -1.5		4.0	1.33	0.99	1.07	1.24	0.93	0.99	225	200	90	100	-0.1	0.14	-1.7
7.0 1.04 0.99 0.98 1.06 1.01 0.99 135 500 90 50 -0.2 0.02 -1.6 10.0 0.90 0.81 0.74 0.99 0.89 0.81 175 500 150 50 -0.2 0.02 -1.6 15.0 0.46 0.59 0.66 0.41 0.53 0.59 225 400 350 50 -0.6 -1.5 20.0 1.31 1.00 1.00 1.30 0.99 1.00 225 200 90 50 -0.0 0.13 -1.5	DOF	5.0	0.98	0.98	1.06	0.90	0.91	0.98	225	400	150	100	-0.0	0.01	-1.6
	RGE	7.0	1.04	0.99	0.98	1.06	1.01	0.99	135	500	90	50	-0.2	0.02	-1.6
15.0 0.46 0.59 0.66 0.41 0.53 0.59 225 400 350 50 0.6 -0.11 -1.4 20.0 1.31 1.00 1.00 1.30 0.99 1.00 225 200 90 50 -0.0 0.13 -1.5		10.0	0.90	0.81	0.74	0.99	0.89	0.81	175	500	150	50	-0.5	0.04	-1.5
20.0 1.31 1.00 1.00 1.30 0.99 1.00 225 200 90 50 -0.0 0.13 -1.5		15.0	0.46	0.59	0.66	0.41	0.53	0.59	225	400	350	50	0.6	-0.11	-1.4
		20.0	1.31	1.00	1.00	1.30	0.99	1.00	225	200	90	50	-0.0	0.13	-1.5

- 105 C-V

S

A

$\gamma\gamma - ZZ$ Correlation Analysis

$$r_{s} \equiv \frac{R_{gg}^{s}(\gamma\gamma)}{R_{gg}^{s}(ZZ)} = \frac{\Gamma(s \to \gamma\gamma)/\Gamma(h_{SM} \to \gamma\gamma)}{\Gamma(s \to ZZ)/\Gamma(h_{SM} \to ZZ)}$$

$$r_{s} \simeq \frac{(C_{WW}^{s})^{2}}{(C_{ZZ}^{s})^{2}} \left(\frac{\mathcal{A}_{W}^{SM} - \frac{C_{t\bar{t}}^{s}}{C_{WW}^{s}}\mathcal{A}_{t}^{SM} + \mathcal{A}_{H\pm} \text{term}}{\mathcal{A}_{W}^{SM} - \mathcal{A}_{t}^{SM}}\right)^{2} = \left(\frac{\mathcal{A}_{W}^{SM} - \frac{C_{t\bar{t}}^{s}}{C_{WW}^{s}}\mathcal{A}_{t}^{SM}}{\mathcal{A}_{W}^{SM} - \mathcal{A}_{t}^{SM}}\right)^{2}$$

$$\boxed{r_{s} < 1 \Longrightarrow 1 < \frac{C_{t\bar{t}}^{s}}{C_{WW}^{s}} < 2\frac{\mathcal{A}_{W}^{SM}}{\mathcal{A}_{t}^{SM}} - 1 \simeq 9}$$

When $C_{t\bar{t}}^{s}/C_{WW}^{s}$ is outside of the above interval then $r_{s} > 1$.

▲□▶,▲□▶,▲国▶, 目 ,つへの

$\gamma\gamma - ZZ$ Correlation Analysis

The white region correspond to $r_s > 10.75$.

▲□▶,▲□▶,▲国▶, 目 ,のへの

- At the tan β = 3, 4, 20, the relative charged Higgs contribution reaches nearly ~ 0.2 and is as large as the fermionic loop contribution, but of the opposite sign.
- The $\gamma\gamma$ enhancement is usually associated with large $A_{H^{\pm}}/A$.
- Moreover, although the dominant loop is the *W* loop, the *H*[±] loop may contribute as much as the dominant (top quark) fermionic loop.

・ロト ・回ト ・ヨト

Correlation on the $\gamma\gamma$ rate and charged Higgs mass

- Unexpectedly, the $\gamma\gamma$ rate does NOT ALWAYS go up when charged Higgs mass approaches to its lowest bound constrained by the B-physics data.
- There might exist multiple local peak structure ...

< ロ > < 回 > < 回 > < 三 >