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Abstract

In this letter we study oblique corrections from heavy fermions. For certain

mass ranges we find negative contributions to the S and T parameters from

Majorana particles.

Recently a number of authors [1] - [9] have focused attention on the fact that heavy

particles do not necessarily decouple [10] in theories with broken gauge symmetries.

If new heavy particles exist and couple only weakly to light fermions, then their

effect on low-energy precision electroweak measurements can only arise through

contributions to gauge boson self energies. This type of radiative correction is

termed an oblique correction [2, 11]. If the masses of the new particles are much

larger than the mass of the Z boson, MZ , then the effects of the oblique corrections

can be described by three parameters: S, T , and U [3]. These parameters are

defined in terms of the gauge boson self energies:

S = 16π
d

dq2
(Π33(q2)−Π3Q(q2))|q2=0 , (1)

αT = ∆ρ∗ =
e2

s2M2
W

(Π11(0)−Π33(0)) ,

U = 16π
d

dq2
(Π11(q2)−Π33(q2))|q2=0 ,
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where we have adopted the notation of Peskin and Takeuchi [3, 5, 11], and MW is

the mass of the W , e is the electromagnetic charge, and s2 ≡ sin2(θW ). The indices

1 and 3 refer to SU(2)L currents, while Q refers to the electromagnetic current. So,

for example, in this notation the W self energy is i(e2/s2)Π11(q2). The parameter

S is sometimes refered to as SZ , and SW is defined by SW ≡ S + U . A notation

based on chiral Lagrangian conventions uses L10 = −S/(16π) [3]. (Note that S,

T , and U do not include standard model corrections to gauge boson self energies

except for contributions from particles much heavier than the Z, eg. the top quark

or Higgs boson.) Precision electroweak measurements are beginning to constrain

these parameters. While QCD-like technicolor theories predict S and T to be of

order 1 [3], and SUSY theories predict S and T to be very small [6], recent global

fits to data [7], while not ruling out positive values, give central values of order

−1. If experiments continue to favor negative values of S and T while the errors

shrink, then it will be useful to have models that can accomodate such values.

In this letter we point out that, for this purpose, models using heavy Majorana

particles are viable, while those containing only heavy Dirac particles are not. (For

an alternative scenario for obtaining negative contributions to S see ref. [8].)

To begin we will discuss the case of heavy degenerate multiplets of Dirac

particles. Contributions to S will come from diagrams like those in Fig. 1. By

dimensional analysis, such contributions to S must be independent of the fermion

mass, since S is dimensionless and there is no other dimensionful parameter aside

from the fermion mass. (There is no cutoff dependence since S is finite, see ref. [11].)

Thus for the case of degenerate Dirac multiplets, we can discuss contributions from

all heavy fermions simultaneously. To simplify the discussion we assemble all the
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heavy fermion fields into a column vector, and make use of the charge, weak isospin,

and hypercharge operators Q, IL
3 , and Y L. These operators are diagonal matrices

with eigenvalues corresponding to the electromagnetic charge, third component of

weak isospin, and hypercharge of the left-handed fermions. To be completely general

we will consider the possibility that some of the right-handed fields may also belong

to arbitrary SU(2)L multiplets. Thus we will also make use of the operators which

give the charges of the right-handed fields: IR
3 and Y R.

Using the relation

Q = IL
3 +

Y L

2
= IR

3 +
Y R

2
, (2)

we find

Π33(q2)−Π3Q(q2) = −1
2
Π3Y (q2) , (3)

so we see that it is sufficient to calculate the (momentum dependent) W3 − B

gauge field mixing (Fig. 1) in order to determine S. Now, the graph in Fig. 1a is

proportional to Tr(IL
3 Y L), which vanishes within in each multiplet, and the graph

in Fig. 1b is proportional to Tr(IL
3 Y R). Using Eq. 2 we find

Tr(IL
3 Y R) = Tr(IL

3 (2IL
3 − 2IR

3 + Y L)) = 2Tr(IL
3 IL

3 − IL
3 IR

3 ) . (4)

If some of the right handed fields are not singlets, then there will be other contri-

butions to S like those in Fig. 1b, but with L and R interchanged. Thus the full

contribution to S from degenerate multiplets of Dirac fermions is

SDeg.Dirac =
1
3π

Tr(IL
3 IL

3 − 2IL
3 IR

3 + IR
3 IR

3 ) =
1
3π

Tr(IL
3 − IR

3 )2 , (5)

which is positive semi-definite.
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We now turn to the case of non-degenerate Dirac particles. For simplicity we

will consider the example of a generic doublet

(
U
D

)
L

with right-handed singlets

UR and DR. Evaluating the graphs in Fig. 1 we find a contribution of the form

SDirac =
1
6π

[
Y ln

(
M2

U

M2
D

)
+ 1

]
. (6)

We see that the logarithmic term, which comes from the graph in Fig. 1a, may have

either sign depending on the masses and hypercharge of the particles. However, it is

well known that (in the absence of flavor-changing neutral currents) the contribution

of Dirac particles to T (or ∆ρ∗) is positive semi-definite [12]:

TDirac =
1

16πs2M2
W

[
M2

U + M2
D −

2M2
UM2

D

M2
U −M2

D

ln

(
M2

U

M2
D

)]
. (7)

Thus, although mass splittings may give rise to negative contributions to S, they

also give positive contributions to T . Since experiment favors a negative value for

T , and the top quark is also expected to give a positive contribution to T (like that

in Eq. 7 multiplied by the number of colors), producing a negative value only for S

seems unpromising.

A way around these difficulties is suggested by the result of Bertolini and

Sirlin [9]. These authors found that Majorana fermions can give negative contribu-

tions to T . Thus we turn to the calculation of S for this case. For completeness we

will also present a somewhat simplified discussion of the calculation of T .

We consider a model containing two Majorana (self-conjugate) fields N =(
N1

N2

)
with a mass term

LM = −1
2
N

(
M1 0
0 M2

)
N . (8)
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The left-handed weak eigenstates are given by [9](
ÑL

Ñ c
R

)
=

(
icθ sθ

−isθ cθ

)
1
2
(1− γ5)N , (9)

where Ñ c
R ≡ C(ÑR)T is a left-handed charge-conjugate field, and cθ and sθ denote

cos(θ) and sin(θ), with

tan(2θ) =
2
√

M1M2

M2 −M1
, (10)

cos2(θ) =
M2

M1 + M2
,

sin2(θ) =
M1

M1 + M2
.

In terms of the Ñ fields, Eq. 8 corresponds to a Dirac mass equal to
√

M1M2 for

both left and right-handed weak eigenstates, and a Majorana mass equal to M2−M1

for the right-handed fields [9].

We are assuming that the right-handed field ÑR is an SU(2)L singlet, and

that the left-handed field is in a doublet with a negatively charged partner, E,

with mass ME , i.e.

(
Ñ
E

)
L

. Our results can be easily modified for the case

of a positively charged partner, i.e.

(
E

Ñ

)
L

. We will not consider any mixing

between the new heavy particles and the light generations. With these assumptions

(and making use of the self-conjugacy properties of the Majorana fields N), the

left-handed neutral current is

ÑLγµÑL = −c2
θ

2
N1γ

µγ5N1 −
s2
θ

2
N2γ

µγ5N2 + isθcθN2γ
µN1 . (11)

Similarly, the charged current is

ÑLγµEL + h.c. = −icθN1LγµEL + sθN2LγµEL + h.c. (12)
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We can now calculate the S, T , and U parameters for the case of heavy Majorana

fermions. The Feynman rules for Majorana particles are well known [13] and will not

be reviewed here. It is convenient to express the gauge boson self energies in terms

of vacuum polarizations of left- and right-handed currents. Using an ultra-violet

cut-off Λ we have [11]:

ΠLL(m1
2,m2

2, q2) = ΠRR(m1
2,m2

2, q2) = (13)

− 4
(4π)2

∫ 1

0
dx ln

[
Λ2

M2 − x(1− x)q2

](
x(1− x)q2 − 1

2
M2

)
,

ΠLR(m1
2,m2

2, q2) = (14)

− 4
(4π)2

∫ 1

0
dx ln

[
Λ2

M2 − x(1− x)q2

](
1
2
m1m2

)
,

where where m1 and m2 are the masses of the fermions in the loop, and M2 =

xm2
1 + (1− x)m2

2. Thus, the graphs in Fig. 1 with the appropriate combinations of

mass eigenstates going around the loops can be summarized as:

Π3Y (q2) =
c4
θ

2

[
ΠLR(M1

2,M1
2, q2)−ΠLL(M1

2,M1
2, q2)

]
(15)

+
s4
θ

2

[
ΠLR(M2

2,M2
2, q2)−ΠLL(M2

2,M2
2, q2)

]
− s2

θc
2
θ

[
ΠLR(M1

2,M2
2, q2) + ΠLL(M1

2,M2
2, q2)

]
+ ΠLR(ME

2,ME
2, q2) +

1
2
ΠLL(ME

2,ME
2, q2) .

Using Eqs. 13, 14, and 15 we find the contribution to S is given by

SM = (16)

1
6π


c2
θ ln

(
M2

1

M2
E

)
+ s2

θ ln

(
M2

2

M2
E

)
+ 3

2

− s2
θc

2
θ

[
8
3 + f1(M1,M2) + f2(M1,M2) ln

(
M2

1

M2
2

)]
 ,
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where

f1(M1,M2) =
3M1M

3
2 + 3M3

1 M2 − 4M2
1 M2

2(
M2

1 −M2
2

)2 , (17)

f2(M1,M2) =
M6

1 − 3M4
1 M2

2 + 6M3
1 M3

2 − 3M2
1 M4

2 + M6
2(

M2
1 −M2

2

)3 .

The calculation of T is summarized by

Π11(0)−Π33(0) =
c2
θ

2
ΠLL(M1

2,ME
2, 0) +

s2
θ

2
ΠLL(M2

2,ME
2, 0) (18)

+
c4
θ

4

[
ΠLR(M1

2,M1
2, 0)−ΠLL(M1

2,M1
2, 0)

]
+

s4
θ

4

[
ΠLR(M2

2,M2
2, 0)−ΠLL(M2

2,M2
2, 0)

]
− s2

θc
2
θ

2

[
ΠLR(M1

2,M2
2, 0) + ΠLL(M1

2,M2
2, 0)

]
− 1

2
ΠLL(ME

2,ME
2, 0) .

For the contribution to T we find

TM = (19)

1
16πs2M2

W



c2
θ

[
M2

1 + M2
E −

2M2
1 M2

E

M2
1 −M2

E

ln

(
M2

1

M2
E

)]

+ s2
θ

[
M2

2 + M2
E −

2M2
2 M2

E

M2
2 −M2

E

ln

(
M2

2

M2
E

)]

− s2
θc

2
θ


M2

1 + M2
2 − 4M1M2

+ 2
M3

1 M2 −M2
1 M2

2 + M1M
3
2

M2
1 −M2

2

ln

(
M2

1

M2
2

) 


.

It is not surprising that the contribution to T can be negative, since Eq. 11 contains

a mass-eigenstate-changing neutral current.

For completeness we also present the contribution to U :
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UM = (20)

1
6π



c2
θ

f3(M1,ME) ln

(
M2

1

M2
E

)
+

4M2
1 M2

E(
M2

1 −M2
E

)
2


+ s2

θ

f3(M2,ME) ln

(
M2

2

M2
E

)
+

4M2
2 M2

E(
M2

2 −M2
E

)
2

− 13
6

+ s2
θc

2
θ

8
3 + f1(M1,M2)− f2(M1,M2) ln

(
M2

1

M2
2

)


,

where

f3(M1,ME) =
M6

1 − 3M4
1 M2

E − 3M2
1 M4

E + M6
E(

M2
1 −M2

E

)3 . (21)

It can easily be checked that Eqs. 16 and 19 reduce to Eqs. 6 and 7 in the limit that

M1 →M2.

In order to simplify the discussion of our results we have plotted the curves

S = 0 and T = 0 (lines (a) and (b) respectively) in the M1, M2 − M1 plane in

Fig. 2. The region where S < 0 lies to the left of curve (a), and the region T < 0

lies to the right of and above curve (b). The region U < 0 is not shown, but it lies

entirely in the T < 0 region and does not overlap with the S < 0 region. Note that

the familiar case of Dirac fermions lies along the bottom edge of the graph where

M1 = M2. For the Dirac case we see (as expected) that S > 0 for M1/ME > e−1/2

(where e here is the base of the natural logarithm), and T ≥ 0 for all values of the

masses. (The region M2 < M1 is not shown in Fig. 2 since there is no region where

both S and T are negative.)

It can easily be seen that there exists a region of overlap in Fig. 2 where

both S and T are negative, which extends indefinitely in the vertical direction on

the graph. It should be noted that while this region of overlap is fairly small, it

does not require any unusual values for the masses, i.e. the ratios M1/ME and
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M2/ME can be of order 1. Throughout the overlap region shown in Fig. 2, S is

small (−0.05 < S < 0). Also shown in Fig. 2 are the curves αT = ∆ρ∗ = 0.01 and

−0.01 (curves (c) and (d) respectively) assuming ME = 500 GeV. The contribution

to T can be made larger by taking ME to be larger, but it does not make much sense

to consider Dirac masses (which break SU(2)L×U(1)Y ) larger than about 1 TeV. If

the Standard Model is correct, then perturbation theory will break down due to the

large Yukawa couplings associated with such large masses. If the Standard Model

is incorrect then there must be new physics near 1 TeV. This argument should also

apply to the Dirac mass of the Ñ fields, so that we should also only consider cases

where
√

M1M2 < 1 TeV.

To give a idea for the size of S, T , and U in the overlap region, we have

calculated them for some interesting vaules of the masses. For M1 = 200 GeV,

M2 = 2 TeV, and ME = 650 GeV, we find S = −1.6 × 10−2, αT = −4.4 ×

10−3, and U = 1.8 × 10−2. These masses might be considered natural [14] in so

far as
√

M1M2 ≈ ME . Since the contributions to S and T from the doublet we

have considered are typically quite small in the overlap region, it may be necessary

to entertain the idea of several doublets in order to obtain contributions of order

−1. A more intriguing possibility is that the N and E fields are coupled to some

non-Abelian gauge field (eg. technicolor), since then we could naively expect an

enhancement by a factor equal to the dimension of the representation to which the

fermions belong. The possible gauge groups would be constrained since Majorana

particles can only carry real representations. Of course if the gauge coupling is

strong (as in technicolor) then there will be non-perturbative corrections that are

beyond the scope of this letter.
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In our analysis of S and U we have assumed that MZ �M1 ≤M2 and MZ �

ME . That is, the definitions of S and U that we used have neglected momentum

dependence in the derivatives of the gauge boson self energies, i.e. (assuming M1 <

ME) we have neglected terms of order M2
Z/M2

1 . By explicitly calculating the next

term in the Taylor series for the self energies we find (taking M1 = 200 GeV) the

correction to S,

∆S = 8πM2
Z

d2

(dq2)2
(Π33(q2)−Π3Q(q2))|q2=0 , (22)

is between −9× 10−4 and −4.5× 10−4 in the overlap region shown in Fig. 2. Since

∆S is negative, the overlap region is slightly larger than shown in Fig. 2.

Given the above discussion one might wonder what the effect on S and T

would be if the usual neutrinos of the Standard Model were actually linear combina-

tions of Majorana fermions. This would necessarily introduce a new heavy particle

like N2 discussed above. Of course this scenario requires a more thorough discussion

since we could not neglect MZ compared to M1 or ME , however we can see from

Eq. 11 that the couplings of the heavy N2 field vanish like powers of M1/M2. In this

case, since M2 � M1, a significant contribution can only arise from terms which

diverge like powers of M2. This possibility only occurs in the calculation of T , thus

there should be no significant contributions to S and U . Since T depends on the

values of self energies at q2 = 0, we can simply take the limiting form from Eq. 19

above. We find:

TM =
1

16πs2M2
W

M2
E −

2M1M2M
2
E

M2
2 −M2

E

ln

(
M2

2

M2
E

)+O
(

M2
1

M2
W

)
. (23)

The terms of order M1M2/M
2
W actually cancel, so we see that in this case the N2

particle decouples in the usual fashion [10].
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In conclusion we have shown that Majorana fermions can give small negative

contributions to both S and T for a reasonable range of masses. This may suggest

new directions for model building.
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Figure Captions

Fig. 1. Contributions to S from heavy fermions. The wavy lines are SU(2)L×

U(1)Y gauge bosons, the solid lines are fermions, and the crosses indicate mass

insertions.

Fig. 2. Curves of constant S and constant T . Along curve (a) S = 0, and

along curve (b) T = 0. Assuming ME = 500 GeV, αT = 0.01 on curve (c) and

−0.01 on curve (d).
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