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Quantized Klein-Gordon Field in a Cavity of Variable Length (*). 
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PACS. 03.70. - The theory of quantized fields. 

Summary. - An effective Kamil tonian is  found for the Klein-Gordon field enclosed 
in a one-dimensional cavi ty  with a moving wall. From this t tamil tonian the number 
of particles created from the vacuum by the motion of the boundary is determined. 

The normal-mode decomposition of a quantized field inside a cavi ty with a moving 
wall provides an interesting example of an effective Kamil tonian formulation of an open 
system. The case of a massless field has received considerable at tention in recent years (1.6) 
par t ly  in connection with the problem of creation of particles by black boles (2,3) and 
par t ly  because of its potent ial  application in the laser physics (~). For a massless field 
the classical equation of motion can be solved in a number of ways including the method 
of conformal co-ordinate transformation (~) and the effective Hamil tonian approach (8). 
One of the advantages of the lat ter  is that  it can be used for massless or massive fields 
and for relativist ic as well as nonrelativistie particles. Kere we consider the effective 
gami l ton ian  formulation for a Klein-Gordon field which is confined to a one-dimensional 
cavi ty of variable length L(t), where the boundaries are perfectly reflecting. This system 
can be described by the Hamil tonian 

(i) 

L(t) 

H =  89 t) + ~f2~(x, t) 4- m2~f2(x, t )]dx,  
0 

where ~ denotes the part ial  derivat ive of ~ with respect to x. The field amplitude 

(*) S u p p o r t c 4  in  p a r t  b y  the  N a t u r a l  Sciences a n d  E n g i n e e r i n g  R e s e a r c h  Counc i l  of C a n a d a .  
(1) G. T. MOORE: J .  M a t h .  P h y s . ,  11, 2679 (1970). 
(2) ~B, S. DE WITT; P h y s .  Rep .  C, 19, 295 (1975) .  
(a) S. A. FULLING ~n(t P .  C. ~V. DAVIES: Proc.  R.  Soc. London,  Set .  A,  348,  393 (1976). 
(a) L.  H .  FORD a n d  A.  VILENKIN: P h y s .  Rev.  I) ,  25,  2569 (1982). 
(~) M. CkSTAGXI~O a n d  R .  FERRAIr A n n .  P h y s .  (N. Y.),  154,  1 (1984). 
(8) M. RAZ2kVY a n d  J .  TERMING: s u b m i t t e 4  for  p u b l i c a t i o n .  
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and its momentum density = satisfy the boundary conditions 

(2) 

(3) 

~,(x = o, t ) =  v(x  = L(t), t ) =  o ,  

=(x = o, t ) =  =(x = L(t), t ) =  o, 

and the equal-time commutat ion relations 

(4) [~(x, t), =(x', t)] = i6(x - -  x') . 

Both ~(x, t) and ~(x, t) satisfy the Klein-Gordon equation, and because of the condi- 
tions (2), (3) and (4), there is a reciprocity symmetry in this system, viz., the interchange 

--* =, = --* - -  @ leaves the equations of motion and the boundary conditions invariant .  
Let us define the effective Flamiltonian for this system with the help of the uni tar i ty  
t ime-dependent  t ransformation (7) 

(5) 

w h e r e  

(6) 

and 

(7) 

z(t) 

V(t) = log AJx  -~x' ~p(x') dx' 
0 

LCt) 

w(t) = ~ log x 7 ~ \4  ] z 
0 

and where ~ i8 the t ime-dependent scale factor 

(s) ;t(t) = ~(t)/L(o). 

By introducing the variable ~ = x/2, we can write 

(9) 

and 

(10) 

exp [iW] exp [i VJ~(x) exp [ - - iV l  exp [--iW] = Z~(~) 

i 
exp [iW] exp [iV]:r(t) exp [-- iV] exp [-- iW] = ~ ~(~) . 

I:[ence the commutat ion relation (4) remains unchanged after transformation, bu t  the 
boundary  conditions (2) and (3) in terms of ~ become simple 

(11) ~(~ = o, t ) =  ~(r = ~(o),  t ) =  o .  

(7) M. RAz~tv:z: Lett. Nuovo Cimento, 37, 449 (1983). 
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By carrying out the  t ransformat ion indicated in (5) we find H,~ to be 

(12) 
Z(O) 

0 

where %0 and z are now dependent  on ~ and t and ~ denotes dl/dt. From (12) we can 
derive the equations of motion for z($, t) and %0(~, t) and these are ident ical  in form, and 
for the  la t te r  the  equat ion of motion is 

(13) 

) D?fl 4~2 W =0" 

Thus in this  t ransformat ion the reciprocal symmetry  of the field is preserved. To wri te  
H~f~ in terms of the  creat ion and annihi la t ion operators we expand  %0(~, t) and ~(~, t) 
in terms of sin ((k~/Z(0))$), where ]~ is an integer. We can s impl i fy  the result  by  
choosing L ( 0 ) =  ~ and wri t ing 

(14) 

and 

1 
~($, t) = = ~ (a~ + ak) sin (k~) 

(15) 

where 

(16) 

~($, t ) -  (~-2)~ S~=1 e)~(t)(a~-ak) sin (k~), 

~%(t) = (k 2 + m~l~(t))~. 

By subst i tu t ing (14) and (15) in (12) and carrying out  the integrat ion over ~, we obta in  

(17) 1~ d 

"i~-k~ ~ ( ~ - ~  

The equations of motion for ak and a k can be found from (17), for example for dak/dt 
we have the following re la t ion:  

 9 dak ~%(t) 
(18) ~ -- - -  ak(t) +iRk(t) ,  dt Z(t) 
where Rk(t) is given by  

(19) ( )  )] :~(t)= E(-1) ~+~ kj ~(~j-a~)+ ~(a~+~j) 
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wi th  an equation similar  t o  (18) for (dldt)a~. The number  operator  for part icles in 
the s ta te  k is defined by  

(20) ~,~ + 

and from this definition and the equations for dak/dt and da~/dt, we obtain the  ra~e of 
change of Nk; 

(21) dNk ~ 
dt - -  ak/~1~ + Rk a~. 

Now suppose tha t  a t  t = 0, there are no part icles in the system, i.e. 

(22) akC(0)aTr = 0 

then the number  of part icles in the s ta te  k tha t  are created between t ~ 0 and t = co 
is given by  

co 

0 

An approx imate  value for (Nk} can be found by  solving (18) by  per turbat ion,  i.e. by  
assuming tha t  the  expectat ion value of r is l~rger than the expectat ion 
value of iRa(t ). In this  way w e  can relate  a(k~ zeroth-order and a(kl)(t), the first- 
order term to the in-field operators ate(0) and a~i:0i'in the following way:  

(24) 

and 

(25) 

a(2)(t ) =  exp [--iqPTc(t)]a~(O) 

t 

0 

r being replaced by  a~~ and where R(~ is Rsdt ) defined by  (19), but  wi th  a~. and aj k 

a~~ respectively,  and where J 

t 

(26) ~,dt) = f[~%(t)/~(t)] dr. 
0 

Again from t h e  differential equat ion satisfied by  a(~ ), i.e. 

(27) 

and (21) i t  follows tha t  

i d at1) ~o~(t) (1) ~ it~(o)(t) 

(28) 
co 

/ ' ~ ,  r162 ~t(~ O b d t :  
0 

co t 

= 2 , o x p  | at'. 
0 0 I 
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subst i tu t ing for/?~~ and R~(~ ') and calculat ing the  vacuum expectat ion value in (28), 
we find 

(29) 

0 0 

- ~,( ,>1 d,'  f(o~,(~>- ~ ) 1  r ~,,( ' '> - ~"(">1 
[ (o)k(t)co;(t))~ J [(cok(t')eg/t'))iJ " 

For  a given ~(t) we can determine q)~(t') ~rom (26) and by  in tegrat ing over t '  and t and 
summing over j we find {2Vk}. Now let us determine the condit ion (s) under which the 
to ta l  number  of created part icles is finite, i.e. ~ <37~} has a well-defined value. For  
this  purpose we write 

(30) 

where Kk~- is defined by  the two integrals in (29). Since ~(t) is a finite posil~ive number,  
i t  varies between ~1 and ,~, i.e. ~1~ ~(t) < ~2. Then for any integer ~ such tha t  ~ >> m2~, 
w e  h a v e  

(31) 
t 

f ) 
0 0 

This relat ion shows tha t  the  asymptot ic  form of K1;; for k 4< 22m and j >> ~2m has a 
simple form 

(32) 

w h e r e  

(33) 

co t 

~ , ~ - - - - >  J'd, ~('> r~("> cosE(, + j)(<--,)~d< 7~,~>>a,m Z(t) j z(t') 
0 0 

t r t 

~,=(d,1 and ~=(dtl 
J z(tl) J a(t~) " 
0 O 

By changing the variables t and t '  in (32) to z and z' defined by  (33), we find after some 
simplification tha t  the asymptot ic  form of KT~j is 

(34) 

where 

(35) 

co  

K~ -~fd~ cos [(k + j) $]/(~), 
0 

oo 

J z(z)z(z+ r 
0 
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From (34) if follows tha t  if ](~) and its first der ivat ive are continuous, and if 

(36)  = o ,  

then KT~ decreases at  least  as (k + j)-4 ~nd when this is the  ease, then the number  of 
created part icles is finite. I f  we subst i tu te  (35) in (36) we find tha t  the  condit ion (36) 
is equivalent  to 

(37) ~(t = 0 ) =  0 

and this together  wi th  the cont inui ty  of ~(z) are the conditions for < ~ Nk> to be finite. 

I~aving obta ined <Nk>, we can determine the  energy associated with these particles.  
The Hami l ton ian  (17) in the l imi t  t - ,  c~ reduces to 

(3s) 
c o  

k = l  

and, therefore, the  change of the  energy of the system is 

(39) 

where the  last  term,  89 is the zero point  energy of the field at  t = 0. 


