Improving event generators with effective theories

Christian Bauer, LBNL hep-ph/0604065 and hep-ph/0607296 (in collaboration with Matthew Schwartz) UC Davis, 12/08/06

Outline

The basics behind parton showers
Jet distributions from SCET
Systematically improving parton showers
Implementation
Conclusions

The basics behind parton showers

Christian Bauer

A simple example: $e^+e^- \rightarrow jets$

Christian Bauer

Three perturbative steps

1. Calculate underlying process with limited number of partons in final state

Use full QCD matrix elements including all interference 2. Add additional partons using splitting functions Splitting functions give naive probability for one particle to branch into two

3. No-branching probability gives rise to Sudakov factors Sudakov factors sum the leading logarithmic terms in perturbative expressions

What needs to work...

- Factorization of cross section in collinear limit
 - $\odot d\sigma_{n+1} = d\sigma_n d\phi ds dz P(s,z)$
- Functions P(s,z) written as sum over contributions from individual particles
 - $\odot P(s,z) = \sum_i P_i(s,z)$

Expression derived in collinear limit also reproduces soft physics

 Not trivial, since soft contribution entirely from interference

BERKELEY I

ME's vs PS's

Matrix elements	Parton Showers
Only limited number of final state partons possible	Arbitrary number of final state partons possible
Uses fixed order perturbation theory	Sudakov factors sum leading collinear logarithms
All regions of phase space are properly described	Only describes phase space with Q»pT ⁽¹⁾ »pT ⁽²⁾ »
Straightforward to include higher loops	Only tree level can be incorporated
Better for large p_T emission	Better for small p_T emission

Jet distributions from SCET

Christian Bauer

Basic idea of SCET

Tet distributions contain many scales, such as Q, E_i, p_T⁽ⁱ⁾...
SCET is effective theory describing interactions between collinear and soft particles
Collinear particles have p_T≪E~Q
Soft particles have p_T~E≪Q
SCET separates E and p_T by keeping only soft and collinear fields

 \odot SCET describes physics in the limit $p_T \ll Q$

Matching calculations allow to incorporate physics with p_T~Q into matching coefficients

Parton showers from SCET

Start with SCET at high scale, where fermions have large virtuality

- Evolve the operator to lower scales, lowering virtuality
- If additional partons can be resolved, perform threshold matching
- Keep evolving to lower scales

Obtain SCET at the high scale

Operators On and coefficients Cn chosen such that we reproduce full QCD with up to n partons

Christian Bauer

Evolve SCET to lower scales

Operators On depend on renormalization scale µ \odot Sets the scale for p_T in emission \odot Product of operator and coefficient independent of μ \oslash Allows to obtain coefficient at arbitrary scale μ $\mu \frac{d}{d\mu} \left[C_n(\mu) \langle O_n \rangle_{\mu} \right] = 0$ $\mu \frac{d}{d\mu} C_n(\mu) = C_n(\mu) \gamma_n(\mu)$ $C_n(\mu) = C_n(Q) \Pi_n(Q,\mu)$

Perform threshold matching

Operator On contributes to matrix elements with more final states by emitting particles in SCET

 \oslash Allowed p_T set by scale μ

 ${\it @}$ For $\mu {<} p_T$ particle not described by SCET any more

Need to perform threshold matching

Keep evolving to lower scales Sequence of matching and running		
Match at µ=Q	$C_2^{(2)} O_2^{(2)} + C_3^{(3)} O_3^{(3)} + \dots$	
Evolve p _T <µ <q< th=""><td>$C_2^{(2)} \prod_2 O_2^{(2)} + C_3^{(3)} \prod_3 O_3^{(3)} + \dots$</td></q<>	$C_2^{(2)} \prod_2 O_2^{(2)} + C_3^{(3)} \prod_3 O_3^{(3)} + \dots$	
Match at µ=p⊤	$C_3^{(2)} \prod_2 O_3^{(2)} + C_3^{(3)} \prod_3 O_3^{(3)} + \dots$	
Evolve µ <p⊤< th=""><td>$C_3^{(2)} \prod_2 \prod_3 O_3^{(2)} + C_3^{(3)} \prod_3 O_3^{(3)} + \dots$</td></p⊤<>	$C_3^{(2)} \prod_2 \prod_3 O_3^{(2)} + C_3^{(3)} \prod_3 O_3^{(3)} + \dots$	

SCET vs PS/ME Possible to show from first principles 1. Matrix elements in SCET satisfy Standard splitting function $\sum_{\substack{\text{spins} \\ \text{pol}}} |O_3^{(2)}|^2 = \sum_{\substack{\text{spins} \\ \text{pol}}} |O_2^{(2)}|^2 \frac{P(s,z)}{P(s,z)}$

2. Evolution kernels equivalent to Sudakov factors $\Pi_{n}(\mu_{1},\mu_{2}) = \Delta_{q}^{Nq/2}(\mu_{1},\mu_{2}) \Delta_{g}^{Ng/2}(\mu_{1},\mu_{2})$

SCET vs PS/ME SCET = $C_2^{(2)} \Pi_2 O_3^{(2)} + C_3^{(3)} \Pi_3 O_3^{(3)} + ...$

large pt	small p _T
$\Pi_n = 1$	$O_3^{(3)} = O$
$C_2^{(2)} O_3^{(2)} + C_3^{(3)} O_3^{(3)}$	$C_2^{(2)} \Pi_2 O_3^{(2)}$
QCD	Parton Shower

SCET has the right limits to interpolate between QCD and the parton shower

Christian Bauer

SCET vs PS/ME

Christian Bauer

Systematically improving parton showers

Christian Bauer

Naive parton showers...

Naive parton shower algorithms take into account \oslash Matrix elements for $2 \rightarrow 2$ interactions at tree level Additional partons generated by LO splitting functions LL resummation from Sudakov factors
 • Correct at LO and LL in limit $Q \gg p_T^{(1)} \gg p_T^{(2)} \gg p_T^{(3)} \gg ...$ Algorithms exist to add the following: Add matrix elements with more final states (Sherpa) Add matrix elements at 1-loop order (MC@NLO)

Possible improvements with SCET

Add matrix elements with more partons
Include more operators On in QCD→SCET matching
Add loop corrections to matrix elements
Calculate matching at higher order in PT
Add subleading logarithms to "Sudakov" factors
Calculate anomalous dimensions at higher order in PT

Requires straightforward, well defined calculations

To reproduce matrix elements with up to four large p_T partons need more operators in matching

 $QCD = C_2 O_2 + C_3 O_3 + C_4 O_4$

To reproduce matrix elements with up to four large p_T partons need more operators in matching

 $QCD = C_2 O_2 + C_3 O_3 + C_4 O_4$

To reproduce matrix elements with up to four large p_T partons need more operators in matching

 $QCD = C_2 O_2 + C_3 O_3 + C_4 O_4$

To reproduce matrix elements with up to four large p_T partons need more operators in matching

 $QCD = C_2 O_2 + C_3 O_3 + C_4 O_4$

Operators O3 and O4 contain difference between QCD matrix elements and SCET matrix elements

Christian Bauer

000000000000000

Add loop corrections

To reproduce matrix elements at higher loops need coefficients to higher order in perturbation theory

To obtain C_2 at one loop, calculate

$C_2 = 1 - \frac{\alpha_s C_F}{4\pi} \left(8 - \frac{7\pi^2}{6} + 3i\pi \right)$

Similar calculations possible for C₃, C₄, ...

Add subleading logarithms

- Summed by regular RG evolution
- Anomalous dimensions can be calculated at higher orders in perturbation theory
- For consistent resummation, need cofficient of log at (n+1)-loops and constant term at n-loops
- NLL resummation possible with existing calculations, but some subtleties due to operator mixing

Implementing the idea (work in progress with Frank Tackmann)

Correcting event generators

 Event generators populate phase space according to a certain differential distribution

 SCET allows to calculate the differential distributions, with systematically improvable uncertainties

Combine both approaches

Create N events with your favorite event generator
 For each event, calculate the differential weight for event generator (dσ_{PS}) and SCET result (dσ_{SCET})
 Reweigh the event by dσ_{SCET}/dσ_{PS}

Correcting event generators

Advantages:

Very general method, can incorporate arbitrary effects
Allows to rely on all the previous work
Allows to estimate uncertainties in the same way

Challanges:

- Need to know the precise event weight for the used event generator
- To obtain small weights generator used should be close to correct

Current Work: Create standalone program that takes output from event generators and reweighs (with errors) according to precise SCET distribution.

Very preliminary results

Some issues with PS implementation

- Momentum is not conserved at leading order in parton shower
- Need to make somewhat adhoc corrections
- Can change the shape of distribution functions

Very preliminary results

- While they are power suppressed, need to understand them to get proper weight
- They destroy the factorization of probabilities for an event
- Need to use different reshuffling

Need to check this does not affect distributions much

UC Davis, 12/08/06

cccc

Things to do

Finish implementation
Extend to hadronic collisions
Finish calculation of subleading logarithms
Do matching onto higher order operators
Do detailed studies comparing to experimental and other theoretical predictions

