

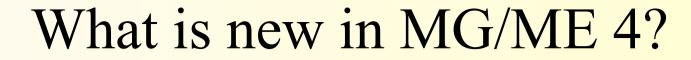
MadGraph/MadEvent 4 SUSY, 2HDM, new models and more!

Johan Alwall (SLAC)

Fabio Maltoni (UCL) Tim Stelzer (UIUC)
Simon de Visscher (UCL) Rikkert Frederix (UCL)
Michel Herquet (UCL)

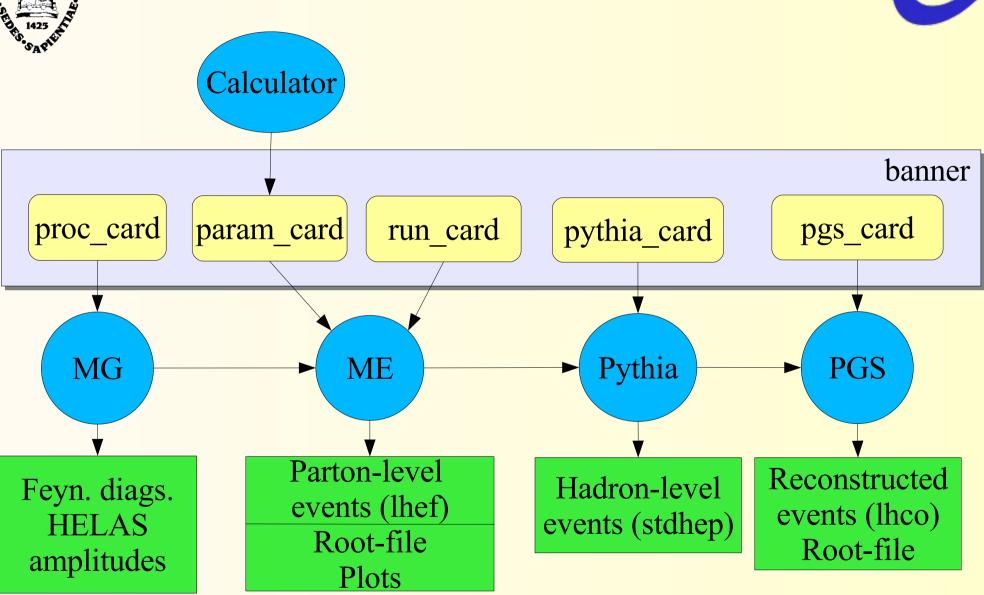
West coast LHC meeting, UC Davis, 8 December 2006

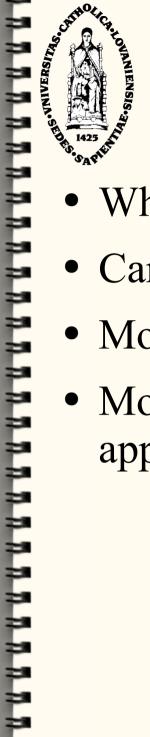
MadGraph: What is it?


- By T. Stelzer and W.F. Long [Phys. Commun. 81 (1994) 357-371]
- Given a process (specified in simple syntax), produces Feynman diagrams and a Fortran subroutine that computes the squared amplitudes by calls to the HELAS helicity amplitude library
- Reads particles.dat and interactions.dat files to know the particle content and interaction vertices of the model
- Produces info on the structure of Feynman diagrams to help phase-space integration
- Sums over protons (initial state), jets and leptons (final state)
- Manages processes with up to 8 final states particles

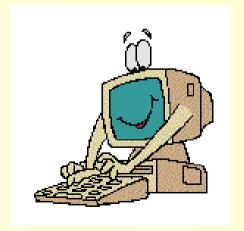
MadEvent: What is it?

- By F. Maltoni and T. Stelzer [JHEP 0302:027, 2003]
- Multi-purpose event generator
- Uses as input the process-dependent information (matrix elements and phase space mappings) produced by MadGraph
- The only event generator to exploit the powerful and general phase-space integration method named Single-Diagram-Enhanced multichannel integration:
 - * Uses the squared diagrams as basis for multi-channel integration $f_i = \frac{|A_i|^2}{\sum_i |A_i|^2} |A_{\text{tot}}|^2$
 - → Interference terms cannot introduce new poles
- Trivially parallelizable technique makes cluster use efficient



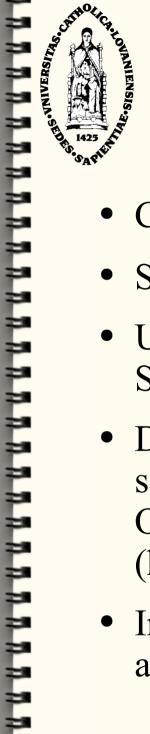

- Web-oriented, modular software structure
- New models
 - SUSY, 2HDM and Higgs EFT
 - Framework for easy user model implementation
- Multiple/inclusive processes in single run
- Pythia (hadronization) and PGS (detector sim.) packages for complete event simulation on-line
- Two new clusters (Rome and UCL)
- Local cluster installation/updating now easy using CVS

MG/ME 4 generation structure



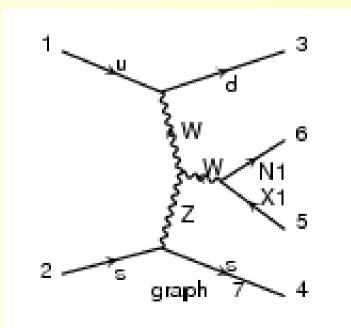
MG/ME new structure

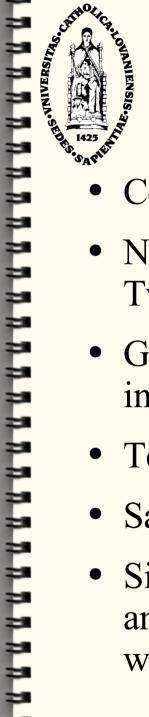
- Whole chain on web or downloaded and run locally
- Cards filled on the web or uploaded (reusable)
- Model parameters prepared with external calculator
- Modular structure easy to interface to other applications / add new functionality


So what about using it? Let me show you!

Calculators

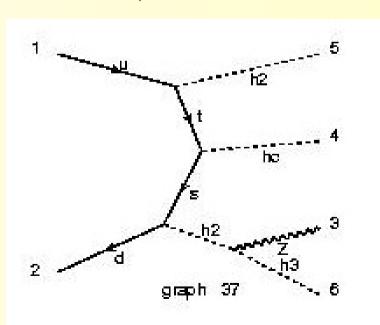
- SLHA-like model parameter input format (param_card)
- Can be used by other event generators (e.g. Pythia)
- Need to calculate dependent parameters (e.g. weak sector) and decay widths (to get right branching ratios)
- MSSM
 - Takes SLHA files from any SUSY spectrum generator
- 2HDM
 - Enter potential parameters and Yukawa couplings
 - Choice between Higgs basis and general basis
 - Calculates masses, mixings, couplings and decay widths




New models: MSSM

Hagiwara, Plehn, Rainwater, Stelzer + Alwall

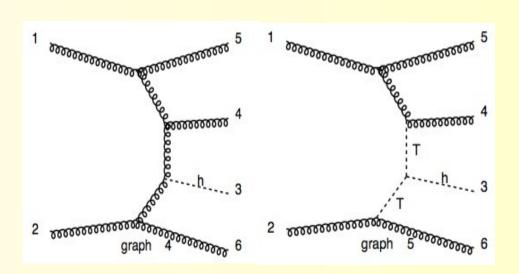
- CP and R-parity conserving MSSM
- Sfermion mixing and Yukawa couplings for 3rd gen.
- Uses SUSY Les Houches input files independent of SUSY breaking scheme
- Detailed comparison of cross sections between SMadGraph, Omega and Amegic++ (hep-ph/0512260)
- Input files for the 10 SPS points available



General 2HDM

de Vissher, Herquet

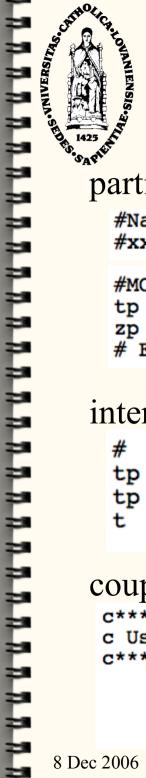
- Completely general 2HDM, with FCNC and CP violation
- New tree-level calculator (Herquet) with a web interface, TwoHiggsCalc, to generate the param_card for MadEvent
- Generic basis or Higgs basis, intensive use of recent basis invariance techniques (e.g. hep-ph/0504050)
- Tested in the SM & MSSM limit
- Sample files for various cases
- Simplified version without FCNC and off-diag. CKM elements on web



Higgs EFT

Frederix

- Effective couplings of Higgs to gluons
 - Uses effective non-propagating tensor particle to allow Higgs couplings to more than 3 gluons
 - Several new HELAS subroutines
 - Works for scalar and pseudo-scalar neutral Higgs bosons


User model

de Vissher

- General framework for user-defined models
 - User only needs to introduce
 - New particles
 - New interactions
 - New parameters (read from param card.dat)
 - Expressions for the new couplings

A Perl script takes care of generating all files needed by MadEvent!

- Easy to look at interesting subspaces of larger models
- Currently used for implementation of full UED (Alves)

User model

de Vissher

particles.dat

#Name anti_Name #xxx xxxx	Spin SFV	Linetype WSDC			Model PDG code	е
#MODEL EXTENSION tp tp~ zp zp # END	N F V	s W	TPMASS ZPMASS		8 32	

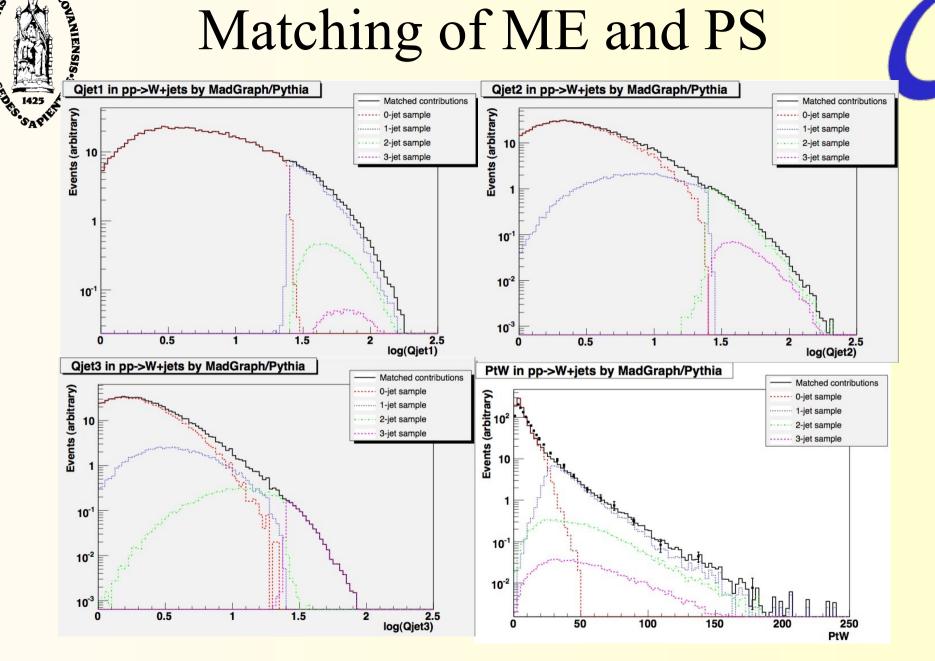
interactions.dat

```
USRVertex
        GG
tp tp g
               QCD
tp t zp GTPZP QED
  tp zp GTPZP QED
```

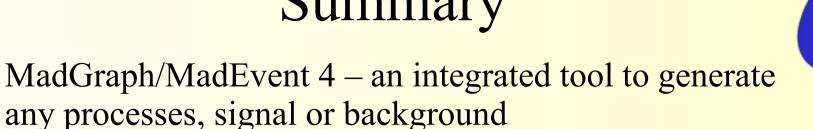
couplings.f

```
C**********************
c UserMode couplings
C************************
     GTPZP(1)=dcmplx(ee*param1,Zero)
     GTPZP(2)=dcmplx(ee*param1,Zero)
```


Work in progress


- More models: UED (Alves), ...
- Specification of complete decay chains (Stelzer-Alwall)
 - Allows for large number of final state particles
 - Keeps full spin correlations (still amplitude-squared!)
- "Generic" width calculator for new models (Reece)
- Interfaces to CMS and Atlas software suites
- New HELAS routines for higher-spin particles (Hagiwara)
- Inclusion of MadEvent in Marmoset (see Jesse Thaler's talk)

Work in progress (cont.)


- Matching of jet-production by matrix elements and parton showers (Alwall-Höche)
 - Combine ME parton-level jet production with parton showers without double-counting
 - Very important for W/Z+jets backgrounds,
 but also to understand jet structure of signals
 (e.g. when using jet veto)
 - CKKW-like with Sherpa showers (Höche) (analytic Sudakovs)
 - MLM-like with Pythia showers (Alwall)
 (Sudakov suppression from parton showers)

Differential jet rate for $0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 3$ jets and W pt in pp \rightarrow W+jets

Summary

- Several new models (MSSM, 2HDM, HEFT), and easy to implement more
- From model to detector in one run
 - as easy locally as on the web!
- Fast thanks to parallelized, cluster-oriented generation
- Clusters found at:
 - UCL: http://madgraph.phys.ucl.ac.be/
 - http://madgraph.roma2.infn.it/ - Rome:
 - http://madgraph.hep.uiuc.edu/ (still version 3) - UIUC:
- Try it out we are grateful for all feedback!

Backup slides

Higgs Basis (<u>more info</u>)

$$V = \mu_1 H_1^\dagger H_1 + \mu_2 H_2^\dagger H_2 - \left(\mu_3 H_1^\dagger H_2 + \text{h.c.}\right)$$

$$\frac{\lambda_1}{\lambda_1} \left(H_1^\dagger H_1\right)^2 + \frac{\lambda_2}{\lambda_2} \left(H_2^\dagger H_2\right)^2$$

$$+ \frac{\lambda_3}{\lambda_3} \left(H_1^\dagger H_1\right) \left(H_2^\dagger H_2\right) + \frac{\lambda_4}{\lambda_4} \left(H_1^\dagger H_2\right) \left(H_2^\dagger H_1\right)$$

$$+ \left[\left(\frac{\lambda_5 H_1^\dagger H_2}{\lambda_5 H_1^\dagger H_2} + \frac{\lambda_5 H_1^\dagger H_1}{\lambda_5 H_1^\dagger H_1} + \frac{\lambda_7 H_2^\dagger H_2}{\lambda_7 H_2^\dagger H_2}\right) \left(H_1^\dagger H_2\right) + \text{h.c.}\right]$$

$$\begin{array}{c} \text{lambdal} \\ \text{lambda2} \\ \text{lambda3} \\ \text{lambda4} \\ \text{lambda5} \\ \text{Norm of lambda6} \\ \end{array}$$

Generic Basis (more info)

$$V = \mu_1 \phi_1^{\dagger} \phi_1 + \mu_2 \phi_2^{\dagger} \phi_2 - \left(\mu_3 \phi_1^{\dagger} \phi_2 + \text{h.c.}\right)$$

$$+ \frac{1}{2} \lambda_1 \left(\phi_1^{\dagger} \phi_1\right)^2 + \frac{1}{2} \lambda_2 \left(\phi_2^{\dagger} \phi_2\right)^2$$

$$+ \lambda_3 \left(\phi_1^{\dagger} \phi_1\right) \left(\phi_2^{\dagger} \phi_2\right) + \lambda_4 \left(\phi_1^{\dagger} \phi_2\right) \left(\phi_2^{\dagger} \phi_1\right)$$

$$+ \left[\left(\frac{1}{2} \lambda_5 \phi_1^{\dagger} \phi_2 + \lambda_5 \phi_1^{\dagger} \phi_1 + \lambda_7 \phi_2^{\dagger} \phi_2\right) \left(\phi_1^{\dagger} \phi_2\right) + \text{h.c.}\right]$$
Tan(hata) which is

Tan(beta)=v2/v1	1
Phase of v2	0
Norm of mu3	0
lambdal	1
lambda2	1
lambda3	1
lambda4	0
Norm of lambda5	0
Norm of lambda6	0
Norm of lambda7	0
Phase of lambda5	0
Phase of lambda6	0

-Yukawa parameters

Phase of lambda7

Mass of Charged Higgs (GeV) 300

-Higgs basis (<u>more info</u>)

$$\mathcal{L}_Y = \frac{\overline{Q_L}\sqrt{2}}{v} \left[(M_d H_1 + \underline{Y_d} H_2) d_R + (M_u \tilde{H}_1 + \underline{Y_u} \tilde{H}_2) u_R \right]$$

$$+ \frac{\overline{E_L}\sqrt{2}}{v} \left[(M_e H_1 + \underline{Y_e} H_2) e_R \right]$$

-Generic Basis (<u>more info</u>)

Phase of lambda7 0

$$\mathcal{L}_Y = \frac{\overline{Q_L}\sqrt{2}}{v} \left[(\Delta_d \phi_1 + \Gamma_d \phi_2) d_R + (\Delta_u \tilde{\phi}_1 + \Gamma_u \tilde{\phi}_2) u_R \right]$$

$$+ \frac{\overline{E_L}\sqrt{2}}{v} \left[(\Delta_e \phi_1 + \Gamma_e \phi_2) e_R \right]$$

—Yukawa couplings to the second Higgs doublet of the down type quarks (norm and phase)

Y1D/G1D 0	0	Y1S/G1S 0	0	Y1B/G1B o	0
Y2D/G2D 0	0	Y2S/G2S 0	0	Y2B/G2B 0	0
Y3D/G3D 0	0	Y3S/G3S 0	0	Y3B/G3B 0	0

The cards

The proc card:

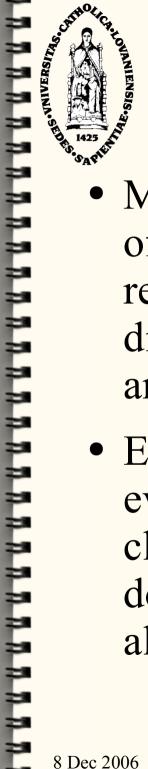
```
pp > W+jjj
QCD=3
QED=1
sm
```

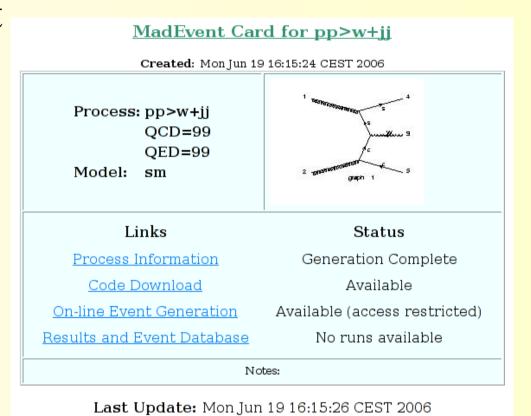
- Defines the process(es), order in couplings and model.
- The param_card:

```
Block MASS
4 1.4000000E+00
```

- Defines the model parameters (masses, widths and couplings) in SUSY Les Houches-like format
- The run_card:

```
1 = lpp1 ! beam 1 type
1 = lpp2 ! beam 2 type
7000 = ebeam1 ! beam 1 energy
7000 = ebeam2 ! beam 2 energy
```


- Defines the collider, cuts, parton densities and scales
- The pythia_card and pgs_card determine the operation of Pythia and PGS.


- Surf on one of our cluster (register, it's free!):
 - http://madgraph.phys.ucl.ac.be
 - http://madgraph.hep.uiuc.edu (still old version)
 - http://madgraph.roma2.infn.it
- Select a model, input a process and define max
 QCD/QED order and p,j,l definitions (proc_card)

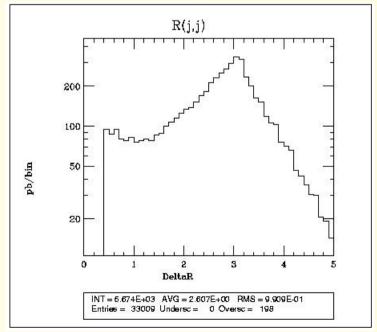
- MadGraph returns a list of subprocesses with related Feynman diagrams and HELAS amplitudes
- Either you generate events online on our clusters or you download the standalone code

- 4 "cards" (txt files) are needed for events generation
 - param_card : LHA compliant file with values for all the model parameters, should ALWAYS be produced by a "Calculator"
 - run_card : Collider parameters, # events, scales, cuts, ...
 - pythia_card : Pythia configuration (showering ...)
 - pgs_card : PGS configuration (detector type, ...)
- All these cards can be filled online (with web form)
 or by manually editing text files

Cards for input parameters						
Model Run Pythia PGS						
param_card.dat	run_card.dat	pythia_card.dat	pgs_card.dat			

• During event generation, MadEvent returns the current status of the computation

Run Name	Carde	Cards Status	Results	Jobs on the cluster			
Kun Name	Carus		Results	Queued	Running	Done	Total
Web	param_card run_card	Running 2 nd Refine	5669.739± 35.407(pb)	3	7	0	12


• When the run is finished, a full detailed set of output is available

Links	Events	Tag	Run	Collider	Cross section (pb)	Events
results plots banner	parton-level rootfile hadron-level (Pythia) reconstructed objects (PGS)	fermi	run1	p p 7000 x 7000 GeV	.57088E+04	10004

Graph	Cross Sect(pb)	Error(pb)	Events (K)	Eff	Unwgt	Luminosity
Sum	5700.109	12.197	3536	4.0		
P_gu_w+dg	<u>1582.500</u>	7.536	321	2.7		2.47
P_ug_w+dg	<u>1580.600</u>	7.688	323	2.8		2.74
P_dxg_w+uxg	<u>631.410</u>	3.878	46	1.3		2.46
P_gdx_w+uxg	630.880	2.927	129	1.7		7.07
P_udx_w+gg	<u>152.470</u>	0.867	47	1.2		19.10
P_dxu_w+gg	150.450	1.261	32	1.5		2.21
P_gg_w+uxd	145.470	0.688	48	1.0		16.90
P_gg_w+scx	145.440	0.897	30	1.1		14.40
P uu w+ud	95 099	0.510	69	1 4	Ī	24 20

Johan Alwall - MadGraph/MadEvent 4.0