Two Tales of Baryogenesis

Hitoshi Murayama（Berkeley，Kavli IPMU） UC Davis Joint Theory Seminar，Jan 27， 2020

Director of the Institute for the Physics
and Mathematics of the Universe

A lot of responsibility!

Director of the Universe

Not high enough authority

Voice of God

Director of the Universe

Oct 15, 2018
Kavli IPMU became officially a permanent institute on April 1, 2018

PASSING THE TORCH

Oct 15, 2018

Need a broad program

Dark Energy acgelerator v

Five evidences

for physics beyond SM

- Since 1998 , it became clear that there are at least five missing pieces in the SM
- non-baryonic dark matter
- neutrino mass
- dark energy
- apparently acausal density fluctuations
- baryon asymmetry

We don't really know their energy scales...

deuterium

Kirkman, Tytler, Suzuki, O'Meara, Lubin

- the same chemically
- energy levels
$E_{n}=-\alpha^{2} \mu c^{2} / 2$
- reduced mass differs by ~ I/4000 between H \& D

baryon density parameter $\Omega_{\mathrm{B}} h^{2}$

Beginning of Universe

I,000,000,00I
matter

fraction of second later

turned a billionth of anti-matter to matter

Universe Now

$$
\begin{gathered}
2 \\
\text { us }
\end{gathered}
$$

matter
 anti-matter

we were saved from the complete annihilation!

too many theories for a single number

Two tales

- Testing Leptogenesis with gravitational waves
- +Jeff Dror (Berkeley), Takashi Hiramatsu (ICRR), Kazunori Kohri (KEK), Graham White (TRIUMF)
- arXiv:1908.03227 accepted for PRL, Editors' Suggestion
- Asymmetric Matters from a dark first-order phase transition
- +Eleanor Hall (Berkeley), Thomas Konstandin (DESY), Robert McGehee (Berkeley)
- arXiv:1911.12342

Testing seesaw and leptogenesis by gravitational wave

Hitoshi Murayama（Berkeley，Kavli IPMU） ＋Jeff Dror（Berkeley），Takashi Hiramatsu（ICRR）， Kazunori Kohri（KEK），Graham White（TRIUMF） arXiv：1908．03227，accepted for PRL

Atmospheric Neutrinos

Zenith angle dependence

neutrinos

 morph1998
a half of expected

UUp/Down syst. error for μ-like
Prediction (flux calculation $\ldots \ldots \lesssim 1 \%$.... 1 km rock above $5 k \ldots 1.5 \%$....8\%
Data $\binom{$ Energy calib. for $\uparrow \downarrow \cdots 0.7 \%}{$ Non ν Background $\cdots<2 \%} 2.1 \%$

very light

$$
\begin{aligned}
& \text { neutrinos } \quad d \\
& u \vdash \square \quad c \bullet \\
& e \bullet \quad \mu \bullet \tau
\end{aligned}
$$

Seesaw

$$
\mathcal{L}=-y L N H-\frac{1}{2} M N N
$$

- Seesaw mechanism explains
- small but finite neutrino masses $m_{v} \sim v^{2} / M$
- baryon asymmetry of the Universe through leptogenesis

$$
\Gamma\left(N_{1} \rightarrow \nu_{i} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\nu}_{i} H^{*}\right) \propto \Im m\left(h_{1 j} h_{1 k} h_{l k}^{*} h_{l j}^{*}\right)
$$

- the dominant paradigm in neutrino physics
- probe to very high-energy scale
- notoriously difficult to test

Sakharov Conditions

- all three ingredients satisfied
- Baryon number violation
- lepton number violation + Electroweak anomaly (sphaleron effect)
- CP violation
- Yukawa couplings yia $L_{i} N_{a} H+M_{a} N_{a} N_{a}$
- even two generations sufficient
- Non-equilibrium
- out-of-equilibrium decay of N_{a} due to long lifetimes

Leptogenesis

$$
\tilde{m}_{1}=\frac{\left(m_{D}^{\dagger} m_{D}\right)_{11}}{M_{1}}
$$

di Bari, Plümacher, Buchmüller

how do we test it?

- possible three circumstantial evidences
- $0 v \beta \beta$
- CP violation in neutrino oscillation
- other impacts e.g. LFV (requires new particles/interactions $<100 \mathrm{TeV}$)
- archeology
- any more circumstantial evidences?

$M_{P I}$
Natural to think M is induced from symmetry breaking

$$
\text { e.g. } \mathcal{L}=-y\langle\varphi\rangle N N
$$

1st order Phase Transition

Taiki Hasegawa, Nobuchika Okada, Osamu Seto, arXiv:1904.03020

$\mathrm{U}(1)_{B-L}$

- Consider $\langle\phi\rangle \neq 0$
- M_{R} from $<\phi>V_{R} v_{R}$ or $\left\langle\phi^{2}\right\rangle V_{R} v_{R} / M_{P I}$
- U(1) breaking produces cosmic strings because $\Pi_{1}(U(1))=Z$
- nearly scale invariant spectrum
- simplification of the network produces gravitational waves
- stochastic gravitational wave background
https://www.ligo.org/science/Publication-S5S6CosmicStrings/index.php

cosmic strings

$\mathrm{G} \mu \sim \mathrm{v}^{2} / \mathrm{MPI}^{2}$

Kibble-Zurek mechanism

- far more defects in 2nd order
 phase transition than the original Kibble mechanism
- proximity to $T_{c}: \varepsilon=\left|T_{c}-T\right| / T_{c}$
- relaxation time: $\tau=\tau_{0} \varepsilon^{-\mu}$
- quenching rate: $\mathrm{T}_{\mathrm{Q}}=\left(t-t_{c}\right) / \varepsilon$
- available time for relaxation: $T(t)=\left|t-t_{c}\right|$
- $T_{0} \varepsilon\left(t_{t}\right)-\mu=\varepsilon\left(t_{t}\right) T_{Q}$
- $\varepsilon\left(\mathrm{t}_{\mathrm{t}}\right)=\left|\mathrm{T}_{\mathrm{Q}} / \mathrm{T}_{0}\right|^{-1 /(1+\mu)}$

monopoles

- Kibble mechanism:

$$
\left.\frac{n_{P D}}{s}\right|_{T=T_{c}} \approx\left(\frac{T_{c}}{M_{p l}}\right)^{3}
$$

- Kibble-Zurek mechanism (mean field):

$$
\left.\frac{n_{P D}}{s}\right|_{T=T_{c}} \approx 0.1 \frac{T_{c}}{M_{p l}}
$$

overabundant if $\boldsymbol{T}_{c}>1 \mathbf{0}^{6} \mathbf{~ G e V}$

- Kibble-Zurek mechanism (quantum):

$$
\left.\frac{n_{P D}}{s}\right|_{T=T_{c}} \approx 0.006\left(\frac{30 T_{c}}{M_{p l}}\right)^{\frac{3 \nu}{1+\nu}}
$$

Classification of gauge symmetries

- forbids $M V_{R} V_{R}$
- anomaly free with $Q d u L e+V_{R}$
- rank ≤ 5

$$
\begin{aligned}
& \text { - no magnetic monopoles } \\
& G_{B-L}=G_{\mathrm{SM}} \times U(1)_{B-L}, \\
& Q\left(3,2, \frac{1}{6}, \frac{1}{3}\right), d^{c}\left(3^{*}, 1, \frac{2}{3},-\frac{1}{3}\right), u^{c}\left(3^{*}, 1,-\frac{1}{3},-\frac{1}{3}\right), L\left(1,2,-\frac{1}{2},-1\right), e^{c}(1,1,+1,+1), \nu_{R}^{c}(1,1,1,+1) \\
& \begin{aligned}
A_{B-L} & =G_{\mathrm{SM}} \times U(1)_{B-L}, \\
G_{L R} & =S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}, \\
& Q\left(3,2,1, \frac{1}{3}\right),\left(d^{c}+u^{c}\right)\left(3^{*}, 1,2,-\frac{1}{3}\right), L(1,2,1,-1),\left(e^{c}+\nu_{R}^{c}\right)(1,1,2,+1)
\end{aligned} \\
& G_{421}=S U(4)_{\mathrm{PS}} \times S U(2)_{L} \times U(1)_{Y}, \quad(Q+L)(4,2,0),\left(d^{c}+e^{c}\right)\left(4^{*}, 1, \frac{1}{2}\right),\left(u^{c}+\nu_{R}^{c}\right)\left(4^{*}, 1,-\frac{1}{2}\right) \\
& G_{\text {flip }}=S U(5) \times U(1) \text {. } \\
& \left(Q+d^{c}+\nu_{R}^{c}\right)(10,1),\left(L+u^{c}\right)\left(5^{*},-3\right), e^{c}(1,5)
\end{aligned}
$$

Z_{2} matter parity: flips signs of all fermions $0=\pi_{2}(G) \rightarrow \pi_{2}(G / H) \rightarrow \pi_{1}(H) \rightarrow \pi_{1}(G) \rightarrow \pi_{1}(G / H) \rightarrow \pi_{0}(H) \rightarrow \pi_{0}(G)=0$

$$
\begin{array}{lllllllllll}
10^{-6} \\
10^{-7} \\
10^{-8} \\
10^{-9}
\end{array}
$$

J. Dror, T. Hiramatsu, K. Kohri, HM, G. White, arXiv:1908.03227 covers pretty much the entire range for leptogenesis! caveat: particle emission from cosmic strings

SO(10)

- It is natural to embed $\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}$ etc into $\mathrm{SO}(10)$
- However, $\mathrm{SO}(10) \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ doesn't lead to cosmic strings because $\pi_{1}(\mathrm{SO}(10) / \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1))=0$
- $\mathrm{SO}(10) \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)_{B-L}$ produces monopoles
- SO(10) scale is presumably $V \sim 10^{16} \mathrm{GeV}>\mathrm{V}$
- need inflation below this scale
- $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1) \mathrm{B-L} \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ produces strings
- strings can be cut by monopole-anti-monopole pairs through a tunneling process

monopoles

- string from $U(1)_{B-L}$ breaking is basically Abrikosov flux in a superconductor
- For the Higgs $\phi(\pm Q)$
- magnetic flux $h /(g Q) \times$ integer $(Q=1,2, \ldots)$
- minimum monopole charge h / g
- If $Q=1$, monopole can saturate the flux and cut the string
- If $Q=2$, the minimum string cannot be cut by monopoles

Schwinger

- Schwinger computed the production of $e^{+} e^{-}$pairs in a constant electric field in 3+1 dimension
- dualize it to magnetic field $\frac{\Gamma}{L}=\frac{e E}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n} e^{-\pi m^{2} n / e E}$
- cross section of the string $A \sim(g v)^{-2}$
- B A~2T/(g Q)
- length of the string $L \sim H^{-1}$
- strings get cut when $H \sim \Gamma / L \times L \sim \Gamma / L \times H^{-1}$
- string network persists until $H^{2} \sim(\Gamma / L) \sim(g v)^{2} \exp \left(-\pi m^{2} / g B\right)$
- monopole mass $m \sim V / g$
- survives to date if $v<10^{15} \mathrm{GeV}$

Hybrid inflation

- $\mathrm{U}(1)_{B-L}$ broken after inflation
$W=\lambda X\left(S^{+} S^{-}-v^{2}\right)$
$V=\lambda^{2}\left|S^{+} S^{-}-v^{2}\right|^{2}+\lambda^{2}|X|^{2}\left(\left|S^{+}\right|^{2}+\left|S^{-}\right|^{2}\right)+\frac{e^{2}}{2}\left(\left|S^{+}\right|^{2}-\left|S^{-}\right|^{2}\right)^{2}$
- D-flat direction $S=S^{+}=S^{-}$
$V=\lambda^{2}\left|S^{2}-v^{2}\right|^{2}+2 \lambda^{2}|X|^{2}|S|^{2}$
- flat: $S=0, V=\lambda^{2} v^{2}$
- falls down to $S=v$ near $X \sim 0$
- forms cosmic strings
- requires high $v \geq a$ few $10^{15} \mathrm{GeV}$

hybrid inflation

Conclusions

- stochastic gravitational waves as another possible circumstantial evidence for seesaw+leptogenesis
- for rank ≤ 5 gauge groups, more than a half of them produce cosmic strings
- future missions promising to cover most range of seesaw scales
- if we do detect scale-invariant gravitational waves, helps establish not only seesaw but also the breaking pattern
- if strings appear to break, evidence for grand unification!
- any experimental technique to probe gravitational waves of much higher frequencies?

Asymmetric Matters

from a dark first－order

phase transition

Hitoshi Murayama（Berkeley，Kavli IPMU） ＋Nell Hall（Berkeley），Thomas Konstandin （DESY），Robert McGehee（Berkeley） arXiv：1911．12342

Sakharov Conditions

- Standard Model may have all three ingredients
- Baryon number violation
- Electroweak anomaly (sphaleron effect)
- CP violation
- Kobayashi-Maskawa phase

$$
\underset{\mathrm{um}}{J} \propto \operatorname{det}\left[M_{u}^{\dagger} M_{u}, M_{d}^{\dagger} M_{d}\right] / T_{E W} 12 \sim 10^{-20} \ll \mid 0^{-10}
$$

- Non-equilibrium
- First-order phase transition of Higgs
- Experimentally testable?

Phase diagram for the Standard Model:

<H>=0 from gauge invariance (Elitzur) $<\mathrm{HtH}>$ is not an order parameter

for $m_{h}=125 \mathrm{GeV}$, it is crossover

No phase transition in the Minimal Standard Model

Scenario

Cohen, Kaplan, Nelson

- First-order phase transition
- Different reflection probabilities for t_{L}, t_{R}
- asymmetry in top quark
- Left-handed top quark asymmetry partially converted to lepton asymmetry via anomaly
- Remaining top quark asymmetry becomes baryon asymmetry
- need varying CP phase inside the bubble wall (G. Servant)
- fixed KM phase doesn't help
- need CPV in Higgs sector

Electric Dipole Moment

ARTICLE

- baryon asymmetry limited by the sphaleron rate

$$
\Gamma \sim 20 \alpha w^{5} T \sim 10^{-6} T
$$

Improved limit on the electric dipole moment of the electron

ACME Collaboration*

$$
d_{\mathrm{e}} \leq 1.1 \times 10^{-29} \mathrm{e} \mathrm{~cm}
$$

- Can't lose much more to obtain 10-9
- need
- new physics for 1st order PT at the Higgs scale v=250 GeV
- CP violationxefficiency $\geq 10^{-3}$

$$
d_{e} \approx \frac{e m_{e}}{\left(16 \pi^{2}\right)^{2}} \frac{1}{v^{2}} \sin \delta=1.6 \times 10^{-22} e \mathrm{~cm} \sin \delta
$$

dark sector $N_{\text {gen }}=1$

SM
$N_{\text {gen }}=3$

2 Higgs doublets with CPV
1st order PT
heavy leptons play role of top quark
light $\boldsymbol{u}, \mathbf{d}$

$$
n, p, \pi^{-} \quad \pi^{0} \quad \gamma^{\prime}-v \text { mixing } e^{+} e^{-}
$$

If $\boldsymbol{M}_{\boldsymbol{N}}>\boldsymbol{T}_{\text {sphaleron }} B_{\mathrm{SM}}=\frac{36}{133} B_{\text {dark }}, \quad L_{\mathrm{S}}$
If $\boldsymbol{M}_{\boldsymbol{N}}<\boldsymbol{T}_{\text {sphaleron }} \quad B_{\mathrm{SM}}=\frac{12}{37} B_{\text {dark }}, \quad L_{\mathrm{S}}$

$n-n$ scattering

- $n-n$ scattering has an anomalously large cross section $a=18.9 \mathrm{fm}$
- If so, it violates astrophysical bounds on self-interaction
- a fine cancellation between the bare and one-loop couplings in the pion-less EFT
- According to lattice simulations (HAL QCD), the cross section is more or less of the geometric size

v/c

baryon spectrum

- m_{u} and m_{d} free parameters
- If $m_{d}<m_{u} \ll \Lambda_{\mathrm{QCD}}, n^{\prime}$ dominates
- If $m_{u} \ll m_{d} \ll \Lambda_{Q C D}, p^{\prime}$ dominates, together with π^{\prime} - for charge neutrality
- possibly a resonant interaction $\pi^{\prime-} p^{\prime} \rightarrow \Delta^{0} \rightarrow \pi^{\prime-} p^{\prime}$
- may solve core/cusp problem

Robert McGehee, HM, Yu-Dai Tsai, in prep

Xiaoyong Chu, Camilo Carcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

some history

- asymmetric dark matter
- S. Nussinov, PLB 165, 55 (1985) "technocosmology"
- R. Kitano, HM, M. Ratz, arXiv:0807.4313, moduli decay
- D.E. Kaplan, M. Luty, K. Zurek, arXiv:0901.4117
- darkogenesis (= "EW baryogenesis" in the dark sector)
- J. Shelton, K. Zurek, arXiv:1008.1997

neutrino portal

$$
\begin{gathered}
\mathcal{L}=y^{\prime} \bar{L}^{\prime} H \nu_{R}+y_{i} \bar{L}_{i} H \nu_{R} \\
\epsilon_{i}=\frac{y_{i}}{\sqrt{\left(y^{\prime}\right)^{2}+\left(y_{i}\right)^{2}}}
\end{gathered}
$$

$$
M_{\nu}=\sqrt{\left(y^{\prime}\right)^{2}+\left(y_{i}\right)^{2}} v
$$

- charged current universality: $\varepsilon \ell^{2}<10^{-3}$
- $\mu \rightarrow e \gamma$ constraint: $\varepsilon_{e} \varepsilon_{\mu}<4 \times 10^{-5}\left(G_{F} M_{v}\right)$
- $\tau \rightarrow \mu \gamma$ constraint: $\varepsilon_{e} \varepsilon_{\mu}<0.03$ (GF M_{v})
- If $M_{v}<70 \mathrm{GeV}, \varepsilon^{2}<10^{-5}$ (DELPHI: $Z \rightarrow v \mathrm{~V}_{\mathrm{R}}, \mathrm{v}_{\mathrm{R}} \rightarrow$ lff)
- equilibration of asymmetries requires only $\varepsilon_{i}>10^{-16}$ or so
- (orders of magnitude estimates so far)

Dark Neutron Dark Matter

Dark Proton \& Pion Dark Matter

exotic signal

- SU(2)' instanton generates $u^{\prime} d^{\prime} d^{\prime \prime} v^{\prime} e^{-8 \pi 2 / g 2 / v^{2}}$
- dark neutron mixes to dark neutrino to neutrino portal to SM neutrino, decays into SM $\boldsymbol{\ell}+($ qqbar or $\boldsymbol{\ell} \boldsymbol{v})$
- indirect detection of gamma's from galactic halos $\tau>10^{25} \mathrm{sec}$
- can happen if $a^{\prime} w>0.3$

Essig, Kuflik, McDermott, Volansky, Zurek aarXiv:1309.4091

- not possible when $N_{\text {gen }}>1$

Conclusions

- Electroweak baryogenesis too testable, dead?
- do it in the dark sector
- dark $\operatorname{SU}(3) \times S U(2) \times U(1)$, one generation
- two Higgs doublet CPV, 1st order phase transition
- neutrino portal to transfer asymmetry to SM baryons
- dark neutron 1.33 or 1.58 GeV , or multi-component $p+\pi^{-}$
- amazingly wide array of experimental signatures
- dark proton good target for direct detection
- exotic Z-decay, h-decay (ILC, CEPC, FCC-ee)
- dark photon search at Belle II, LHC-b, beam dump
- gravitational wave at LIGO, LISA, Einstein Telescope, etc
- potential instanton-induced dark neutron decay in halos
- explain coincidence $\Omega_{\mathrm{Dm}} \sim \Omega_{b}$ if $N_{\mathrm{gen}}=3$ and unification

Five evidences

for physics beyond SM

- Since I998, it became clear that there are at least five missing pieces in the SM
- non-baryonic dark matter
- neutrino mass
- dark energy
- apparently acausal density fluctuations
- baryon asymmetry

We don't really know their energy scales...

experiments

healthy field!

Stifumany things to look forwardsto!

DDO 154 dwarf galaxy

can be explained if dark matter scatters against itself Need $\sigma / m \sim 1 \mathrm{~b} / \mathrm{GeV}$
only astrophysical information beyond gravity

Diversity in stellar distribution

Similar outer circular velocity and stellar mass, but different stellar distribution

- compact \rightarrow redistribute SIDM significantly

Ayuki Kamada

- extended \rightarrow unchange SIDM distribution

self interaction

- $\sigma / m \sim \mathrm{~cm}^{2} / \mathrm{g}$ $\sim 10^{-24} \mathrm{~cm}^{2} / 300 \mathrm{MeV}$
- flattens the cusps in NFW profile
- suppresses substructur
- actually desirable for dwarf galaxies?

SIDM

Spergel \& Steinhardt (2000)
now complete theory

Resonant scattering

Xiaoyong Chu, Camilo Garcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

Unified description of SIDM

- Hans Bethe: effective range theory

Xiaoyong Chu, Camilo Garcia-Cely, HM, arXiv:1908.06067

