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Particle physics from cosmology
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* Introduction
 Causality and gravitational waves spectrum
+ Effects of modified expansion history
+ Free streaming particles
 Forecast sensitivity to motivated BSM scenarios
+ Axions
* Supersymmetry



Gravitational wave astronomy

Livingston Hanford

* In 2015 LIGO had the first detection of gravitational waves
* LIGO/Virgo have observed 90 merger events (transient signals)

» Next target: stochastic gravitational wave signal
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Short duration sources

1% order phase transition

‘| \ | 2
P ol 7T\ |

« Common expectation in gauge theories
* Bubble nucleations of true vacuum and
subsequent expansion generates GW
 Transition usually completes quickly

compared to expansion rate

>QCDifm <<Ay, €
> Electroweak if m_ < 80 GeV x

Possible in many BSM scenarios



Example signal

10~

1078

- _
F LIGO
3
3
41"’{};
~~0
8oL
RECH) M
= NN ‘\{
Y
. 720
WYL 'j'
;-r_ l{"ifuunl L1l Lol co ol R ool L H-__gu|||
1073 10~ 1073 0.01 0.1 1 10 100

f1Hz]
*Ellis, Lewicki and Vaskonen, JCAP 11 (2020)



Outline

 Causality and gravitational waves spectrum
+ Effects of modified expansion history
+ Free-streaming particles
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Causal source

327rGa?p
!
Qaw (k) o< (H(K)II(—E))’
> There is a maximum correlation length, A,
because source duration is finite.

(TI(k)II(—k)) — const
k<< A1

'+ 2HR + k*h =

I1

Low wavelength modes are “independent”
of source dynamics
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Long wavelength modes
Source turns off much faster than mode frequency:

' 4+ 2HK + k*h = J&6(1 — Tp7)

Shortly after source turns off: {
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Super-horizon modes

After production: super-horizon modes remain frozen until horizon entry

J
h~ —, k<H
Hpr

Once they enter the horizon: oscillate with an amplitude that decays as a™*

J A
hl~
pPT Q

Amplitude sensitive to how long a mode wavelength stays
larger than horizon size (expansion history)
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In a radiation dominated universe

J a apr Hoca ! B ~ J apr
Hprapr a k a

h| ~

2
Qew (k) o< | k3| x k% x (‘MPT) x k>

phase (v = k
space

f3 universal scaling only if universe was radiation dominated
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For general equation of state

1—3w

p=wp ) Qo (k) k3_2(1—|-3w

)

equation
of state
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Free streaming relativistic particles

> We have shown equation of state affects spectrum by changing expansion
» Can something feedback into gravitational waves? — Free streaming particles

. > Free streaming particles follow geodesics
== > Tensor perturbations induce anisotropic
i stress, which affects gravitational waves
S > First studied by Weinberg in the context
of inflationary gravitational waves (free
streaming particles not present at
generation)
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Impact of free streaming particles

> Time dependence of h leads affects free streaming geodesics

11(7) = —4pe(7) | CdyK (kT — ky)l ()
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Free streaming and fast sources

K
0.07(-U)

0.06}
0.05}
0.04}
0.03}

II(7) = —4,0fs(7)/ dyK (kt — ky)W' (y) =(—+5 pesh(7))

Note that for super-horizon modes (kT << 1) :
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Time dependent frequency changes super-horizon evolution
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h(fes)/h(frs = 0)

Impact of free streaming particles
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Summary of effects

> Low frequency spectral shape of GW generated by phase transitions
is independent of details of the phase transition.

» Wavelengths longer than horizon size at PT are sensitive to the eq of
state of the universe and also to free streaming radiation:

1—3w
eq. of state: Qow (k) X k3_2( 1+3w )

16
free stream:  Qagw (k) K35 It
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* Introduction
e Causality and gravitational waves spectrum
+ Effects of modified expansion history
+ Free-streaming particles
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BSM targets: free streaming
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* New types of relativistic
particles in cosmology

 Searching for their effects at
much earlier times than N _

constraints (BBN & CMB)
 Effect present for free
streaming particles

What about interacting
particles?
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Equation of state

Even when the universe is radiation dominated we expect: w # %

T, =p—3p~p

T* [ 55 43 7 5 1 .
Sw = ( By + o Bg2 + 2By + === Bz + /%)%—3XH)4(
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New particles set sensitivity target

Qaw (k) o k310

Particles that were initially in thermal equilibrium and decouple are easier:

6~ 1072 X Ny, ¢

Particles that remain in equilibrium with Standard Model:

N,
5 ~3x 1074 df+55QCD ~ 10~
g« BQCD
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AXxions

One new degree of freedom. Out of reach for traditional N __ searches if it
decouples before temperature reaches weak scale.
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Supersymmetry

If supersymmetry solves the Higgs hierarchy problem: order 1 change in
the number of particles and beta functions somewhere above TeV scale
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Can we actually reach this sensitivities?
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How well could we do?

* We will assume only instrumental noise (optimistic)
* Use fisher information matrix to determine optimal sensitivity

- /df aQGW 2 4Q2 QW -+ QQGWQnmse + Qnmse
9 - 006 (ZQQGW + 2Qaw Lnoise + Q?loise)

observation time

signal dependence on noise power spectrum
parameter of interest
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() template

There are 3 main contributions to GW from phase transitions:
* Bubble wall collisions

* Sound waves

* Turbulence
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Sensitivity will depend on PT
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Axions LISA
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Axions DECIGO
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Conclusions & Outlook

» Gravitational waves are a window into the earliest stages of the universe

* GW from short lived cosmological sources expected to have universal
spectral shape at low frequencies: prime target to study cosmology

 Taking only instrumental noise into account, one could be able to
discover supersymmetry (or other symmetry solutions to naturalness)

* Probe presence of new radiation at very early universe. For strong signals
can beat sensitivity of CMB and BBN searches

* Motivates understanding whether we will be able to control other sources
of uncertainties to the required level

33



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

