Signals of new dynamics during the inflation era

LianTao Wang
Univ. of Chicago

Work in collaboration
with Zhong-zhi Xianyu 1910.12876, 2004.02887, with Zhong-zhi Xianyu, Yiming Zhong, 2109.14635
with Haipeng An, KunFeng Lyu, and Siyi Zhou, 2009.12381, 2111.xxxx
UC Davis. Oct. 25, 2021

Inflation:
 a stage for new dynamics

* High energy: H can be $10^{13} \mathrm{GeV}$.
* Can produce heavy new physics particles.
* Inflaton can travel a large distance in field space.
* Can trigger dramatic changes in spectator sectors which couple to the inflaton

This talk

* Signal of particle production. "Cosmological collider physics".
* Drama in the spectator sector, signal of a first order phase transition during the inflation.

This talk

* Signal of particle production. "Cosmological collider physics".
* Drama in the spectator sector, signal of a first order phase transition during the inflation.

Signal of particle production

Time of propagation:
$t=\frac{1}{H} \log \frac{k_{\text {short }}}{k_{\text {long }}}$
oscillatory signal
$\sim \sin (m t)=\sin \left(\frac{m}{H} \log \frac{k_{\text {short }}}{k_{\text {long }}}\right)$
"Cosmological collider"
Chen, Wang, 2009, 2012
Arkani-Hamed, Maldacena, 2015

More specifically

$$
\frac{\left\langle\zeta_{1} \zeta_{2} \zeta_{3}\right\rangle}{\langle\zeta \zeta\rangle_{\text {short }}\langle\zeta \zeta\rangle_{\text {long }}} \sim e^{-\pi \nu}\left[f(\nu)\left(\frac{k_{\text {long }}}{k_{\text {short }}}\right)^{\frac{3}{2}+i \nu}+c . c .\right] P_{s}(\cos \theta) \quad \nu=\sqrt{\frac{m_{\sigma}^{2}}{H^{2}}-\frac{9}{4}}
$$

$$
e^{-\pi \nu} \quad \text { Boltzmann suppressed if } m_{\sigma} \gg H
$$

$$
\left(\frac{k_{\text {long }}}{k_{\text {short }}}\right)^{\frac{3}{2}+i v} \quad \text { No oscillation if } \mathrm{m}_{\sigma}<3 / 2 \mathrm{H}
$$

The presence of oscillation signal requires $\mathrm{m}_{\sigma} \approx \mathrm{H}$

Example:

Relevant scales for inflation

$$
V_{\mathrm{inf}}^{1 / 4} \simeq 10^{16} \mathrm{GeV}
$$

$\left(\dot{\phi}_{0}\right)^{1 / 2} \simeq 10^{14 \div 15} \mathrm{GeV}$
$H \simeq 10^{13} \mathrm{GeV}$
$m_{3 / 2}, m_{\tilde{q}}, \ldots$

Strong dynamics

$\Lambda_{\text {TC }}, \cdots$
m_{ρ}, \ldots
m_{π}, \ldots

Example:

Relevant scales for inflation

$$
V_{\mathrm{inf}}^{1 / 4} \simeq 10^{16} \mathrm{GeV}
$$

$\left(\dot{\phi}_{0}\right)^{1 / 2} \simeq 10^{14 \div 15} \mathrm{GeV}$
$H \simeq 10^{13} \mathrm{GeV}$

SUSY

$$
\Lambda_{\mathrm{GUT}}, \Lambda_{\mathrm{string}}, \ldots
$$

Strong dynamics

m_{ρ}, \ldots

m_{π}, \ldots

Can be probed by cosmological collider

Sensitivity of the cosmological collider

* What kind of inflaton - new physics coupling lead to observable signals.

Many recent works:
X. Chen, Z. Xianyu, Y. Wang, et. al.
H. An, M. McAneny, A. Ridgway, M. Wise
H. Lee, D. Baumann, G. L. Pimentel.
S. Kumar, R. Sundrum
A. Hook, J. Huang, D. Racco

Size of the signal

$\left\langle\zeta_{1} \zeta_{2} \zeta_{3}\right\rangle=(2 \pi)^{4} P_{\zeta}^{2} \frac{1}{\left(k_{1} k_{2} k_{3}\right)^{2}} S\left(k_{1}, k_{2}, k_{3}\right)$
CMB: $\quad P_{\zeta}=\frac{H^{2}}{\dot{\phi}_{0}^{2}}\left(\frac{H}{2 \pi}\right)^{2} \simeq 2 \times 10^{-9} \quad \dot{\phi}_{0}^{1 / 2} \simeq 60 H$
$S\left(k_{1}, k_{2}, k_{3}\right) \sim f_{\mathrm{NL}} \sim \frac{1}{2 \pi P_{\zeta}^{1 / 2}} \times$ interactions
interactions = couplings, loops, propagators

For comparison. Planck: $f_{N L} \leqslant a$ few; LSS: $f_{N L} \sim 1 ; 21 \mathrm{~cm}: 10^{-2}$

1: non-derivative coupling

$$
\mathscr{L} \supset \lambda \phi^{2} \sigma^{2}+\mu \phi \sigma^{2}, \quad \sigma: \text { scalar }
$$

None-zero value of the inflaton field will generate a mass for σ.

$$
\delta m_{\sigma}=\lambda \phi_{0}^{2}, \quad \phi_{0}=\langle\phi\rangle
$$

For the mass of σ to be around H , without fine-tuning, we need

$$
\delta m_{\sigma}^{2}<H^{2} \rightarrow \lambda<\frac{H^{2}}{\phi_{0}^{2}}
$$

For a similar reason, we need $\mu<\frac{H^{2}}{\phi_{0}}$

1: non-derivative coupling

$$
\begin{gathered}
\delta m_{\sigma}^{2}<H^{2} \rightarrow \lambda<\frac{H^{2}}{\phi_{0}^{2}} \\
\sim \frac{1}{2 \pi P_{\zeta}^{1 / 2}} \cdot \frac{1}{16 \pi^{2}} \lambda \frac{\mu}{H}<\frac{1}{2 \pi P_{\zeta}^{1 / 2}} \frac{1}{16 \pi^{2}}\left(\frac{H}{\phi_{0}}\right)^{3}
\end{gathered}
$$

1: non-derivative coupling

Generic size of ϕ_{0} :

$$
N \simeq \int \mathrm{~d} \phi \frac{H}{\dot{\phi}_{0}} \sim \frac{H}{\dot{\phi}_{0}} \Delta \phi=\mathcal{O}(10) \quad \phi_{0} \sim \Delta \phi \sim N \dot{\phi}_{0} / H \Rightarrow \frac{H}{\phi_{0}} \sim \frac{2 \pi P_{\zeta}^{1 / 2}}{N} \sim 10^{-5}
$$

1: non-derivative coupling

Generic size of ϕ_{0} :
$N \simeq \int \mathrm{~d} \phi \frac{H}{\dot{\phi}_{0}} \sim \frac{H}{\dot{\phi}_{0}} \Delta \phi=\mathcal{O}(10) \quad \phi_{0} \sim \Delta \phi \sim N \dot{\phi}_{0} / H \Rightarrow \frac{H}{\phi_{0}} \sim \frac{2 \pi P_{\zeta}^{1 / 2}}{N} \sim 10^{-5}$

Hence: $\quad f_{\mathrm{NL}}^{\text {(osc) }} \sim \frac{1}{4 N^{3}} P_{\zeta} \quad$ tiny!

Lesson learned

* Sizable coupling to the inflaton can generate a mass correction to the matter field σ.
* Requiring this not to make σ too heavy requires small coupling, and small signal.
* Can't avoid by fine-tuning. Inflaton has a sizable excursion, can at most fine tune for a very narrow range.

2. Derivative coupling

* A consequence of an approximate $\phi \rightarrow \phi+\mathrm{C}$
* Well motivated from the flatness of inflaton potential.
* It turns out this is also favored for giving a sizable signal.

2. Derivative coupling

$$
\operatorname{Dim} 5: \quad \frac{1}{\Lambda} \partial_{\mu} \phi J^{\mu}, \frac{\phi}{\Lambda} F \wedge F
$$

Naive estimate:

$$
f_{\mathrm{NL}}^{(\text {osc) }} \sim \frac{1}{16 \pi^{2}} \frac{1}{2 \pi P_{\zeta}^{1 / 2}}\left(\frac{H}{\Lambda}\right)^{3}<\frac{1}{16 \pi^{2}} \frac{1}{2 \pi P_{\zeta}^{1 / 2}}\left(\frac{H}{\dot{\phi}_{0}^{1 / 2}}\right)^{3}=\frac{1}{16 \pi^{2}} \cdot \sqrt{2 \pi} P_{\zeta}^{1 / 4}
$$

At the same time, there is a further enhancement.

Modified dispersion relation

Particle production proportional to $\frac{\dot{\omega}}{\omega^{2}}$
A modified dispersion relation in the inflationary background of the form

$$
\begin{aligned}
& \omega^{2}=k_{\text {phys }}^{2}+2 \mu k_{\text {phys }}+m^{2}+\ldots, \text { where } k_{\text {phys }}=\frac{k}{a(t)} \\
& \rightarrow \frac{\dot{\omega}}{\omega^{2}} \simeq \frac{\mu}{\omega^{2}} \quad \text { Enhancement possible for sizable } \mu
\end{aligned}
$$

Coupling:

$$
\omega^{2}=k_{\text {phys }}^{2}+2 \mu k_{\text {phys }}+m^{2}+\ldots, \quad k_{\text {phys }}=\frac{k}{a(t)}
$$

Comes from $\vec{k} \cdot \hat{n}, \quad \hat{n}=$ another vector
Without broken rotational invariance, \hat{n} comes from spin.
Possible couplings:

$$
J^{\mu}=\bar{\psi} \gamma_{5} \gamma^{\mu} \psi, \quad \epsilon^{\mu \nu \rho \sigma} A_{\nu} \partial_{\rho} A_{\sigma}
$$

$$
\rightarrow \mu=\frac{\dot{\phi}_{0}}{\Lambda}
$$

Chiral fermion

$$
\mathcal{L}=\sqrt{-g}\left[\mathrm{i} \psi^{\dagger} \bar{\sigma}^{\mu} \mathrm{D}_{\mu} \psi-\frac{1}{2} m\left(\psi \psi+\psi^{\dagger} \psi^{\dagger}\right)+\frac{1}{\Lambda}\left(\partial_{\mu} \phi\right) \psi^{\dagger} \bar{\sigma}^{\mu} \psi\right]
$$

Chiral fermion

$$
\mathcal{L}=\sqrt{-g}\left[\mathrm{i} \psi^{\dagger} \bar{\sigma}^{\mu} \mathrm{D}_{\mu} \psi-\frac{1}{2} m\left(\psi \psi+\psi^{\dagger} \psi^{\dagger}\right)+\frac{1}{\Lambda}\left(\partial_{\mu} \phi\right) \psi^{\dagger} \bar{\sigma}^{\mu} \psi\right]
$$

$\exp (\pi \mu) \exp \left(-\frac{\pi}{H} \sqrt{m^{2}+\mu^{2}}\right) \simeq \exp \left(-\frac{\pi m^{2}}{2 H \mu}\right) \sim O(1), \quad$ for $\mu \gg m \gg H$
No $e^{-m / H}$-like suppression!

Enhanced mode peaks in a region around
$k_{\text {phys }} \sim \mu$, with size $\Delta k_{\text {phys }} \sim m$.
\rightarrow phase space $=$ a shell with volume $4 \pi \mu^{2} m$

Putting it together:

Overall exp factor: $e^{-\pi m^{2} / \mu H}$

Phase space: $4 \pi m \mu^{2}$

Signal can be large for $\mu>m>H$

General form of signal

$$
\mathcal{S} \approx A\left(\frac{k_{1}}{k_{3}}\right)^{-N}+B\left(\frac{k_{1}}{k_{3}}\right)^{-L} \sin \left(\omega \log \frac{k_{1}}{k_{3}}+\varphi\right)
$$

		B	L	ω
$s=0, m>\frac{3}{2}, \mu=0[7]$	tree	$e^{-\pi m}$	$\frac{1}{2}$	$\sqrt{m^{2}-\frac{9}{4}}$
$s=0,0<m<\frac{3}{2}, \mu=0[7]$	tree	-	$\frac{1}{2}-\sqrt{\frac{9}{4}-m^{2}}$	0
$s>0, m>s-\frac{1}{2}, \mu=0[13]$	tree	$e^{-\pi m}$	$\frac{1}{2}$	$\sqrt{m^{2}-\left(s-\frac{1}{2}\right)^{2}}$
$s>0,0<m<s-\frac{1}{2}, \mu=0[13]$	tree	-	$\frac{1}{2}-\sqrt{\left(s-\frac{1}{2}\right)^{2}-m^{2}}$	0
$s=0, m>\frac{3}{2}, \mu=0[7]$	1-loop	$e^{-2 \pi m}$	2	$2 \sqrt{m^{2}-\frac{9}{4}}$
Dirac fermion, $m>0, \mu=0[8]$	1-loop	$e^{-2 \pi m}$	3	$2 m$
Dirac fermion, $m>0, \mu>0[8]$	1-loop	$e^{2 \pi \mu-2 \pi \sqrt{m^{2}+\mu^{2}}}$	2	$2 \sqrt{m^{2}+\mu^{2}}$
$s=1, m>\frac{1}{2}, \mu \geq 0[10]$	1-loop	$e^{2 \pi \mu-2 \pi m}$	2	$2 \sqrt{m^{2}-\frac{1}{4}}$

With μ enhancement

Zhong-Zhi Xianyu and LTW. 1910.12876, 2004.02887

Full numerical calculation

Zhong-Zhi Xianyu, Yiming Zhong, and LTW. 2109.14635

Comparing with analytic est.

* Good agreement for $k_{1} / k_{3}>20$.
* Some shift in frequency for lower k_{1} / k_{3}

This talk

* Signal of particle production. "Cosmological collider physics".
* Drama in the spectator sector, signal of a first order phase transition during the inflation.

The excursion of the inflaton

$$
\Delta \phi \sim N_{\text {efold }} \sqrt{\epsilon} M_{\text {Planck }}
$$

Large excursion of the inflaton field plausible, even if we restrict ourselves to the case where $\Delta \phi<$ MPlanck

This is the case even for a small part of inflation with $N_{\text {efold }} \approx O(1)$

Any physics/observable effect?

Example: Inflaton + spectator

Inflation sector Single field slow roll...

Spectator, less energy, not driving spacetime evolution

Suppose the coupling is weak, suppressed by
some high scale $\mathrm{M} \sim \phi \sim \Delta \phi$
For example: $f\left(\frac{\phi}{M}\right) m_{\sigma}^{2} \sigma^{2}, g\left(\frac{\phi}{M}\right) b \sigma^{4}$, etc.
Field excursion of inflaton can change the mass and couplings in the spectator sector, leading to interesting dynamics.

For example

$$
\begin{array}{cl}
V(\phi, \sigma)=\frac{1}{2} \mu_{\mathrm{eff}}^{2}+\frac{\lambda}{4} \sigma^{4}+\frac{1}{8 \Lambda^{2}} \sigma^{6}+V_{\mathrm{inf}}(\phi), & \mu_{\mathrm{eff}}^{2}=-\left(m_{\sigma}^{2}-c^{2} \phi^{2}\right) \\
v_{1}(\phi, \sigma) & c^{2} \sim \frac{m_{\sigma}^{2}}{M^{2}} \ll 1
\end{array}
$$

Rolling inflaton \rightarrow (1st order?) phase transition in the spectator sector

1st order phase transition

Phase transition is 1st order, and spectator sector does not dominate energy density:

$$
H^{4} \ll m_{\sigma}^{4} \ll 3 M_{\mathrm{Pl}}^{2} H^{2} \quad \text { This is possible to arrange. }
$$

$$
\begin{aligned}
& r_{\text {bubble }} \ll H^{-1} \\
& t_{\text {bubble collision }} \sim r_{\text {bubble }} \ll H^{-1}
\end{aligned}
$$

An instantaneous source of GW.

GW in three regimes

Time of phase transition

जฟ sịnal $h_{i j}^{\prime \prime}+\frac{2 a^{\prime}}{a} h_{i j}^{\prime}-\nabla^{2} h_{i j}=16 \pi G_{N} a^{2} \sigma_{i j}$

$$
\tau_{*}^{-1}<k<\Delta_{\tau}^{-1}
$$

During inflation:
Mode starts inside horizon, oscillates till horizon exit.
\Rightarrow Amplitude depends on k.
\Rightarrow Leads to oscillatory pattern in frequency.
After reheating, modes re-enter the horizon

Oscillations

$$
\tau_{*}^{-1}<k<\Delta_{\tau}^{-1}
$$

$k>\Delta_{\tau}^{-1}$

Time scale of bubble collision $\approx \Delta_{\tau}$.

Oscillation pattern in frequency smeared out in this regime.

コฟฟ sịnal $h_{i j}^{\prime \prime}+\frac{2 a^{\prime}}{a} h_{i j}^{\prime}-\nabla^{2} h_{i j}=16 \pi G_{N} a^{2} \sigma_{i j}$

$$
k<\tau_{*}
$$

Mode outside horizon at the time of phase transition
No oscillation. Can treat the GW as if it is from a point source.

$$
\frac{d \rho_{\mathrm{GW}}^{\mathrm{osc}}}{d \log k}=\frac{2 G_{N}\left|\tilde{T}_{i j}(0,0)\right|^{2}}{\pi V a^{4}(\tau) a^{2}\left(\tau_{\star}\right)}\left\{\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k \Delta_{\tau}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]\right\}
$$

$$
\frac{\mathrm{d} \rho}{\operatorname{dlog\mathrm {k}}}\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k_{p} \Delta_{p}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]
$$

$$
\frac{d \rho_{\mathrm{GW}}^{\mathrm{osc}}}{d \log k}=\frac{2 G_{N}\left|\tilde{T}_{i j}(0,0)\right|^{2}}{\pi V a^{4}(\tau) a^{2}\left(\tau_{\star}\right)}\left\{\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k \Delta_{\tau}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]\right\}
$$

$$
\frac{\mathrm{d} \rho}{\mathrm{dlogk}}\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k_{p} \Delta_{p}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]
$$

$$
\frac{d \rho_{\mathrm{GW}}^{\mathrm{osc}}}{d \log k}=\frac{2 G_{N}\left|\tilde{T}_{i j}(0,0)\right|^{2}}{\pi V a^{4}(\tau) a^{2}\left(\tau_{\star}\right)}\left\{\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k \Delta_{\tau}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]\right\}
$$

$$
\frac{\mathrm{d} \rho}{\operatorname{dlogk}}\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k_{p} \Delta_{p}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]
$$

$$
\frac{d \rho_{\mathrm{GW}}^{\mathrm{osc}}}{d \log k}=\frac{2 G_{N}\left|\tilde{T}_{i j}(0,0)\right|^{2}}{\pi V a^{4}(\tau) a^{2}\left(\tau_{\star}\right)}\left\{\left[\tilde{\mathcal{E}}_{0}^{i}(k) \tilde{\mathcal{G}}_{0}^{f}(k)\right]^{2} k^{3}\left[1+\mathcal{S}\left(k \Delta_{\tau}\right) \cos 2 k\left(\tau_{\star}-\tau_{0}\right)\right]\right\}
$$

Depending on Smearing for $k \Delta_{\tau} \gg 1$ Oscillation Time evolution

Dependence on later evolution

$\tilde{\mathcal{G}}_{0}^{f}(k) \quad$ Depends on the evolution of the background spacetime during inflation
$\tilde{\mathcal{E}}_{0}^{i}(k) \quad$ Depends on the evolution of the background spacetime after inflation

Alternative scenarios can change the shape of the GW signal!

Scenarios of inflation and its aftermath

Scenarios of inflation Quasi de Sitter: $\quad a(\tau)=-\frac{1}{H \tau}$

Power law: $\quad a(t)=a_{0}\left(t / t_{0}\right)^{p}$

Lucchin and Matarrese, 1985
$p \rightarrow \infty$, quasi de Sitter

Scenarios after inflation:

Parameterized as

$$
a(t) \sim t^{\tilde{p}}
$$

	w	$\rho(a)$	\tilde{p}	$\tilde{\alpha}$
MD	0	a^{-3}	$2 / 3$	$-3 / 2$
RD	$1 / 3$	a^{-4}	$1 / 2$	$-1 / 2$
Λ	-1	a^{0}	∞	$3 / 2$
Cosmic string	$-1 / 3$	a^{-2}	1	∞
Domain wall	$-2 / 3$	a^{-1}	2	$5 / 2$
kination	1	a^{-6}	$1 / 3$	0

Impact on spectrum

Intermediate

UV

	RD	MD	$t^{\tilde{p}}$
dS	k^{-5}	k^{-7}	$k^{-3+2 \frac{p}{\bar{p}-1}}$
t^{p}	$k^{-3+2 \frac{p}{1-p}}$	$k^{-5+2 \frac{p}{1-p}}$	$\left.k^{-1+2\left(\frac{p}{1-p}+\frac{p}{\bar{p}-1}\right.}\right)$

Intermediate

	RD	MD	$t^{\tilde{p}}$
dS	k^{-1}	k^{-3}	$k^{1+2 \frac{p}{\tilde{p}-1}}$
t^{p}	$k^{1+2 \frac{p}{1-p}}$	$k^{-1+2 \frac{p}{1-p}}$	$k^{3+2\left(\frac{p}{1-p}+\frac{p}{p-1}\right)}$

IR

	RD	MD	$t^{\tilde{p}}$
dS	k^{3}	k^{1}	$k^{5+2 \frac{\tilde{p}}{\tilde{p}-1}}$
t^{p}	k^{3}	k^{1}	$k^{5+2 \frac{p}{\tilde{p}-1}}$

Comparing scenarios

Different inflationary scenarios.
\rightarrow different slope in UV part.

Scenarios after reheating.

$$
\tau_{2}=\mathrm{MD}-\mathrm{RD} \text { transition }
$$

Conclusions

* Cosmological observations can reveal new dynamics in the inflationary era.
* Production of new particles with $\mathrm{m} \sim \mathrm{H}$ leads to distinct signals.
* Non-derivative coupling does not lead to large signal due to correction to the mass of new particle
* Well motivated derivative couplings \rightarrow observable signals.

Conclusions

* Cosmological observations can reveal new dynamics in the inflationary era.
* Potentially large inflaton excursion can trigger new dynamics in a spectator sector.
* Can trigger 1st order phase transition \rightarrow GW.
* Can probe an era invisible from CMB/LSS observables.

Extra

More general configuration

2. Derivative coupling

Dim-6 (quasi single field):

$$
\mathcal{L} \supset \frac{c_{6}}{\Lambda^{2}}(\partial \phi)^{2} Q^{\dagger} Q-m_{Q}^{2} Q^{\dagger} Q-\lambda_{Q}|Q|^{4}
$$

Validity of EFT in inflationary background: $\Lambda^{2}>\dot{\phi}_{0}$
$\dot{\phi}_{0} \neq 0$ contributes to the mass of Q . To avoid fine tuning:

$$
\operatorname{Max}\left\{m_{Q}^{2}, \lambda_{Q} Q_{0}^{2}, \delta m_{Q}^{2}=c_{6}\left(\frac{\dot{\phi}_{0}}{\Lambda}\right)^{2}\right\} \lesssim H^{2} \quad \frac{c_{6}}{\Lambda^{2}} \lesssim \frac{H^{2}}{\dot{\phi}_{0}^{2}}=\frac{(2 \pi)^{2} P_{\zeta}}{H^{2}}
$$

2. Derivative coupling

$$
f_{\mathrm{NL}}^{(\mathrm{osc})}\binom{\lambda_{Q} Q_{0}^{\prime} Q_{-\odot}^{\prime}}{\phi_{c_{6} \dot{\phi}_{0} Q_{0} / \Lambda^{2}}^{\prime}} \sim \frac{1}{2 \pi P_{\zeta}^{1 / 2}}\left(\frac{c_{6}}{\Lambda^{2}} \dot{\phi}_{0} Q_{0}\right)^{3} \lambda_{Q} Q_{0} \frac{1}{H^{4}} \lesssim \lambda_{Q}^{-1}(2 \pi)^{2} P_{\zeta}
$$

Can be sizable $(\mathrm{O}(1))$ if $\quad: \lambda_{Q} \sim(2 \pi)^{2} P_{\zeta} \simeq 8 \times 10^{-8}$

Observing the signal

N_{e} : efold till the end of inflation $=$ time of the phase transition

1st order phase transition during inflation

Bubble nucleation rate: $\quad \frac{\Gamma}{V} \simeq m_{\sigma}^{4}-e^{-S_{4}}$
Efficient phase transition:

$$
\int_{-\infty}^{t} d t^{\prime} \frac{\Gamma}{V} \frac{1}{H^{3}} \simeq O(1) \rightarrow S_{4} \sim \log \left(\frac{\phi H}{\dot{\phi}} \frac{m_{\sigma}^{4}}{H^{4}}\right) \sim \log \left(\frac{\phi}{\epsilon^{1 / 2} M_{\mathrm{Pl}}} \frac{m_{\sigma}^{4}}{H^{4}}\right)
$$

Phase transition is 1 st order ($S_{4} \gg 1$), and spectator sector does not dominate energy density:

$$
H^{4} \ll m_{\sigma}^{4} \ll 3 M_{\mathrm{Pl}}^{2} H^{2}
$$

This is possible to arrange.

Typical bubble
 $r_{\text {bubble }}^{-1} \simeq \beta=\left|\frac{d S_{4}}{d t}\right|$

In our example:

$$
\frac{\beta}{H}=\left|\frac{d S_{4}}{d \log \mu_{\mathrm{eff}}^{2}}\right|(2 \epsilon)^{1 / 2} \times \frac{M_{\mathrm{PI}}}{\phi\left(1-m_{\sigma}^{2} /\left(c^{2} \phi^{2}\right)\right)} \sim\left|\frac{d S_{4}}{d \log \mu_{\mathrm{eff}}^{2}}\right| \times \frac{\Lambda^{2}}{\mu_{\mathrm{eff}}^{2}}
$$

CosmoTransitions

