

UC Davis - 8.11.21

Precision Measurements

At the frontier of experimental capabilities:

Departures from SM = Series in E/M Heavy New Physics

Effective Field Theories +> BSM Searches

(Colliders, Quantum Gravity, Cosmology,...)

Notation/Outline

 $A_{2\to 2}(s,t) = c_0 + c_2 s^2 + c_{2,1} s^2 t + c_4 s^4 + \dots + c_{n,m} s^n t^m$ (e.g. tree-level)

1.
$$UV \rightarrow IR$$

Arcs: UV-IR Connection

Consistency condition for EFTs

More UV-IR Connections

Bellazzini,Elias-Miro,Rattazzi,Riembau,FR'20

Moments appear everywhere in physics... e.g. stones $d\mu(x) = mass$ distributions

n=0: total mass M (sets units) n=1: centre of mass <RM

n=2: moment of inertia <R2M

Bounded

What bounds do moments satisfy?

Bounds - Positive Polynomials

Bellazzini, Elias-Miro, Rattazzi, Riembau, FR'20

Two-Sided Bounds

Bellazzini,Elias-Miro,Rattazzi,Riembau,FR'20

Any moment two-sided bounded in terms of \mathcal{A}_0 and \hat{s}

1.
$$UV \rightarrow IR$$

What are arcs in the IR EFT?

Bellazzini, Elias-Miro, Rattazzi, Riembau, FR'20 IR Arcs

EFT amplitude (forward)

$$\beta_{4} = \frac{7c_{2}^{2}}{160\pi^{2}}$$

$$A(s) = c_{0} + c_{2}s^{2} + c_{4}s^{4} + c_{6}s^{6} + \cdots$$

$$Smaller window in which theory looks tree-level$$

$$Arcs A_{n} \equiv \int_{\Omega_{s}} \frac{ds}{\pi i} \frac{A(s)}{s^{2n+3}}$$

$$Smaller window in which theory looks tree-level$$

$$Arcs A_{n} \equiv \int_{\Omega_{s}} \frac{ds}{\pi i} \frac{A(s)}{s^{2n+3}}$$

$$\mathcal{A}_0 = c_2 + \cdots$$
$$\mathcal{A}_1 = c_4 + \cdots$$
$$\mathcal{A}_2 = c_6 + \cdots$$

Weak Coupling: $A_n = c_{2n+2}$, all \mathcal{L} couplings captured by arcs Strong Coupling: high arcs dominated by c_2 loop effects! (e.g ChiPT) Information unaccessible

2. Applications (at weak coupling)

indeed, c's mixed by running

supersoft theories have low cutoff...

... so low that supersoftness unobservable! (dimension>8 operators cannot dominate)

Higher Spin always heavier than their size-1

3. Non forward & Gravity

Finite-t

NON-Forward = no bounds?

$$\cdots + c_{2,1}s^{2}t + c_{2,2}s^{2}t^{2} + \cdots$$

Galileon Nicolois, Rattazzi, Trincherini'08 (appears in massive/modified gravity)

If A(s,t) analytic*: arcs at $t\neq 0$!

 $A(s,t) = c_0 + c_2 s^2 + c_4 s^4 +$

Finite-t

NON-Forward = no bounds?

$$\cdots + c_{2,1}s^2t + c_{2,2}s^2t^2 + \cdots$$

Galileon Nicolois, Rattazzi, Trincherini'08 (appears in massive/modified gravity)

If A(s,t) analytic*: arcs at $t\neq 0$!

 $A(s,t) = c_0 + c_2 s^2 + c_4 s^4 + \cdot$

Finite-t

$$NON-Forward = no bounds?$$

$$A(s,t) = c_0 + c_2 s^2 + c_4 s^4 + \dots + c_{2,1} s^2 t + c_{2,2} s^2 t^2 + \dots$$

Galileon Nicolois, Rattazzi, Trincherini'08 (appears in massive/modified gravity)

If A(s,t) analytic*: arcs at $t\neq 0$!

Finite-t

NON-Forward = no bounds? $A(s,t) = c_0 + c_2 s^2 + c_4 s^4 + \dots + c_{2,1} s^2 t + c_{2,2} s^2 t^2 + \dots$

> Galileon Nicolois,Rattazzi,Trincherini'08 (appears in massive/modified gravity)

If A(s,t) analytic*: arcs at $t\neq 0$!

Finite-t

Alternatively, close to t=0 ...

$$\mathcal{A}_{0}(t) \equiv \int_{\bigcap_{\bar{s}_{t}}} \frac{ds}{\pi i} \frac{A(s,t)}{(s+\frac{t}{2})^{3}} = \frac{2}{\pi} \int_{\bar{s}}^{\infty} ds \sum_{\ell} \operatorname{Im} f_{\ell}(s) \frac{P_{\ell}(1+\frac{2t}{s})}{(s+\frac{t}{2})^{3}}$$
2D moment problem

at tree-level: same result Chiang, Huang, Rodina, Weng '21 Bellazzini, Riembau, FR' never to appear

...but beyond tree-level amplitude not analytic at t=0!
 bound with this approach disappears for massless particles

EFTS

Tree-level, beyond forward:

$$A(s,t) = \sum_{p,q} c_{p,q} s^p t^q = c_0 + c_2 s^2 + c_{2,1} s^2 t + \cdots$$

Of ∞ many coefficients, only 2 can lead the amplitude:

- Exp bound $m_g^{-1}\gtrsim 0.1 H$

Massive Gravity not compatible with unitarity bounds

4. Strong Coupling within the EFT

 $10\sqrt{}$ Do bounds apply for running coefficients $c_n(s)$?

IR

 $A(s) = c_2 s^2 + s^4 \left[c_4 + \beta_4 \log(-is) \right] - i\pi s^5 \beta_5 / 2 + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6'$

Strongish Coupling Arcs: suitable to access running

0VDo bounds apply for running coefficients $c_n(s)$?

IR

 $A(s) = c_2 s^2 + s^4 \left[c_4 + \beta_4 \log(-is) \right] - i\pi s^5 \beta_5 / 2 + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log^2(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6' \log(-is) \right] + s^6 \left[c_6 + \beta_6 \log(-is) + \beta_6'$

SM Precision tests

SM Precision tests

UV Assumptions

Low,Rattazzi,Vichi'12 Falkowski,Rychkow,Urbano'12 Remmen,Rodd'20 Zhang,Zhou'20

Stronger UV convergence \rightarrow Bounds/sum rules on

SM Precision tests

IR Effects alter Bounds

Change relation Wilson coeff. A arcs (on which bounds apply)

Polygons vs Polynomials Arkani-Hamed, Huang², 2020

Bellazzini, Elias-Miro, Rattazzi, Riembau, FR'20

Positivity from geometry

Different "functional" approach

Forward Bounds for infinite arcs same $1 - x/2 - x^2/8 + \cdots = q(x) = \sqrt{1 - x}$

- Focus on "Optimal" bounds for finite many arcs, (both forward and at finite-t)
- > Two-sided bounds

Suitable for EFT cutoff estimate
 Ideal for running

Precision Measurements

At the edge of experimental capabilities:

Precision Measurements

At the edge of experimental capabilities:

3. Finite-t

