

A Flavorful Composite Higgs Model

Connect the B anomalies with the Hierarchy Problem

based on arXiv:2108.08511, 2110.03125

Yi Chung QMAP, Department of Physics, UC Davis

November 15th, 2021 QMAP Particles/Cosmology Seminar

yichung@ucdavis.edu

A brief overview: the connection

A brief overview: the connection

Outline

Neutral Current B anomalies

- Hints of new physics from B-meson semileptonic decays
- EFT approach and simplified model

Composite Higgs Models

- SU(4)/Sp(4) Fundamental CHM
- U(1)' symmetry and Z' boson

• Z' phenomenology

- Solution to the Neutral Current B anomalies
- Constraints from FCNCs & Direct Z' Searches

• Connect the B anomalies with the Hierarchy Problem

Neutral Current B anomalies

yichung@ucdavis.edu

Semileptonic $b \rightarrow s \mu \mu$ decays

yichung@ucdavis.edu

Tests of Lepton Flavor Universality

yichung@ucdavis.edu

SMEFT coefficients

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.} \\ \mathcal{D}_{I}^{(\prime)} = \frac{m_b}{e} \left(\bar{s} \sigma_{\mu\nu} P_{R(L)} b \right) F^{\mu\nu} , \\ \mathcal{O}_{9\ell}^{(\prime)} = \left(\bar{s} \gamma_{\mu} P_{L(R)} b \right) (\bar{\ell} \gamma^{\mu} \ell) , \\ \mathcal{O}_{10\ell}^{(\prime)} = \left(\bar{s} \gamma_{\mu} P_{L(R)} b \right) (\bar{\ell} \gamma^{\mu} \gamma_5 \ell) , \\ \mathcal{O}_{S\ell}^{(\prime)} = \left(\bar{s} P_{R(L)} b \right) (\bar{\ell} \gamma^{\mu} \gamma_5 \ell) , \\ \mathcal{O}_{F\ell}^{(\prime)} = \left(\bar{s} \sigma_{\mu\nu} b \right) (\bar{\ell} \sigma^{\mu\nu} \ell) , \\ \mathcal{O}_{T\delta\ell} = \left(\bar{s} \sigma_{\mu\nu} b \right) (\bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell) . \\ \end{array}$$

yichung@ucdavis.edu

Flavorful Composite Higgs

8/40

SMEFT coefficients

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.}$$

$$O_9^{bs\mu\mu} = (\bar{s}\gamma^{\nu}P_Lb)(\bar{\mu}\gamma_{\nu}\mu)$$
$$O_{10}^{bs\mu\mu} = (\bar{s}\gamma^{\nu}P_Lb)(\bar{\mu}\gamma_{\nu}\gamma_5\mu)$$

yichung@ucdavis.edu

Global fit to SMEFT coefficients

Altmannshofer, Stangl 2103.13370						
	$b \rightarrow s \mu \mu$		LFU, B_s –	$ ightarrow \mu\mu$	all rare B decays	
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
$C_9^{bs\mu\mu}$	$-0.87^{+0.19}_{-0.18}$	4.3σ	$-0.74^{+0.20}_{-0.21}$	4.1σ	$-0.80^{+0.14}_{-0.14}$	5.7σ
$C_{10}^{bs\mu\mu}$	$+0.49^{+0.24}_{-0.25}$	1.9σ	$+0.60^{+0.14}_{-0.14}$	4.7σ	$+0.55^{+0.12}_{-0.12}$	4.8σ
$C_9^{\prime bs\mu\mu}$	$+0.39^{+0.27}_{-0.26}$	1.5σ	$-0.32^{+0.16}_{-0.17}$	2.0σ	$-0.14^{+0.13}_{-0.13}$	1.0σ
$C_{10}^{\prime bs\mu\mu}$	$-0.10^{+0.17}_{-0.16}$	0.6σ	$+0.06^{+0.12}_{-0.12}$	0.5σ	$+0.04^{+0.10}_{-0.10}$	0.4σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	$-0.34^{+0.16}_{-0.16}$	2.1σ	$+0.43^{+0.18}_{-0.18}$	2.4σ	$-0.01^{+0.12}_{-0.12}$	0.1σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.60^{+0.13}_{-0.12}$	4.3σ	$-0.35^{+0.08}_{-0.08}$	4.6σ	$-0.41^{+0.07}_{-0.07}$	5.9σ
For comparison, $C_9^{\mathrm{SM}}=4.1$, $C_{10}^{\mathrm{SM}}=-4.3$						

yichung@ucdavis.edu

Global fit to SMEFT coefficients

Altmannshofer, Stangl 2103.13370							
	$b \to s \mu \mu$		LFU, $B_s \to \mu \mu$		all rare B decays		
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull	
$C_9^{bs\mu\mu}$	$-0.87^{+0.19}_{-0.18}$	4.3σ	$-0.74^{+0.20}_{-0.21}$	4.1σ	$-0.80^{+0.14}_{-0.14}$	5.7σ	
$C_{10}^{bs\mu\mu}$	$+0.49^{+0.24}_{-0.25}$	1.9σ	$+0.60^{+0.14}_{-0.14}$	4.7σ	$+0.55^{+0.12}_{-0.12}$	4.8σ	
$C_9^{\prime bs\mu\mu}$	$+0.39^{+0.27}_{-0.26}$	1.5σ	$-0.32^{+0.16}_{-0.17}$	2.0σ	$-0.14^{+0.13}_{-0.13}$	1.0σ	
$C_{10}^{\prime bs\mu\mu}$	$-0.10\substack{+0.17\\-0.16}$	0.6σ	$+0.06^{+0.12}_{-0.12}$	0.5σ	$+0.04^{+0.10}_{-0.10}$	0.4σ	
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	$-0.34^{+0.16}_{-0.16}$	2.1σ	$+0.43^{+0.18}_{-0.18}$	2.4σ	$-0.01^{+0.12}_{-0.12}$	0.1σ	
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.60^{+0.13}_{-0.12}$	4.3σ	$-0.35\substack{+0.08\\-0.08}$	4.6σ	$-0.41^{+0.07}_{-0.07}$	5.9σ	
					$\Rightarrow C_{LL} = -$	-0.82	

For comparison,
$$C_9^{SM} = 4.1$$
 , $C_{10}^{SM} = -4.3$

yichung@ucdavis.edu

Simplified Model: Tree-level Mediators

New U(1)' local symmetry

Quark-Lepton global/local symmetry

yichung@ucdavis.edu

The scale of the New Physics

• Generic Tree:
$$\frac{1}{f_{\rm NP}^2} (\bar{s}\gamma^{\nu} P_L b) (\bar{\mu}\gamma_{\nu}\mu) \implies f_{\rm NP} \sim \sqrt{C_{\rm NP}} \times 36 \text{ TeV}$$

• MFV Tree:
$$\frac{1}{f_{\rm NP}^2} V_{tb} V_{ts}^* (\bar{s}\gamma^{\nu} P_L b) (\bar{\mu}\gamma_{\nu}\mu) \Rightarrow f_{\rm NP} \sim \sqrt{C_{\rm NP}} \times 7 \text{ TeV}$$

• The exact scale is also related to the ratio of charges. If it is 1/4, it becomes

$$f = (Q_{\rm SM}/Q_{\rm vacuum}) f_{\rm NP} \sim 1 - 2 \text{ TeV}$$

which is precisely the scale we expect for a solution to the Hierarchy Problem !!

Composite Higgs Models

yichung@ucdavis.edu

Higgs as pseudo-Nambu-Goldstone bosons

Light pions in QCD \leftrightarrow Light Higgs in EW

Composite Higgs Models

> Chiral symmetry breaking in Λ_{QCD}

```
SU(2)_L \times SU(2)_R \to SU(2)_V
```

which gives three massless NG bosons, i.e. pions!!

However, the symmetry is broken by EM interactions and quark masses, and we get massive pions.

> (Some global) symmetry breaking in $\Lambda_{EW} = f \sim 1 \text{ TeV}$

 $\mathcal{G} \to \mathcal{H} \ni SU(2)_L \times U(1)_Y$

which gives (at least) four NG bosons as Higgs doublet!! (ex: SO(5)/SO(4) MCHM)

The symmetry can be broken by different interactions (usually by electroweak interaction and Yukawa interaction) and give us the nontrivial Higgs potential.

Vacuum misalignment and the scale f

- If the vacuum $\langle \Sigma \rangle = \vec{F}$, the EW symmetry is preserved, and the Higgs is a massless Goldstone boson.
- Once Higgs gets a nontrivial potential and VEV, the electroweak symmetry is broken by

$$v = f \sin\langle\theta\rangle = f \sin\frac{\langle h\rangle}{f}$$

• The nonlinearity is described by the parameter

$$\xi \equiv \frac{v^2}{f^2} = \sin^2 \langle \theta \rangle = \sin^2 \frac{\langle h \rangle}{f}$$

For example, Higgs coupling

$$\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{SM}} = \cos\langle\theta\rangle = \sqrt{1-\xi} \approx 1-\frac{\xi}{2}$$

Choose a coset \mathcal{G}/\mathcal{H}

G	H	C	N_G	$\mathbf{r}_{\mathcal{H}} = \mathbf{r}_{\mathrm{SU}(2) \times \mathrm{SU}(2)} \left(\mathbf{r}_{\mathrm{SU}(2) \times \mathrm{U}(1)} \right)$	Ref.
SO(5)	SO(4)	~	4	${f 4}=({f 2},{f 2})$	[11]
$SU(3) \times U(1)$	$SU(2) \times U(1)$		5	$2_{\pm 1/2} + 1_0$	[10, 35]
SU(4)	$\operatorname{Sp}(4)$	\checkmark	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$	[29, 47, 64]
SU(4)	$[\mathrm{SU}(2)]^2 \times \mathrm{U}(1)$	√*	8	$(2,2)_{\pm 2} = 2 \cdot (2,2)$	[65]
SO(7)	SO(6)	\checkmark	6	${f 6}=2\cdot ({f 1},{f 1})+({f 2},{f 2})$	
SO(7)	G_2	√*	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$	[66]
SO(7)	$SO(5) \times U(1)$	√*	10	${f 10_0}=({f 3},{f 1})+({f 1},{f 3})+({f 2},{f 2})$	
SO(7)	$[SU(2)]^{3}$	√*	12	$({f 2},{f 2},{f 3})=3\cdot ({f 2},{f 2})$	_
$\operatorname{Sp}(6)$	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	~	8	$(4, 2) = 2 \cdot (2, 2)$	[65]
SU(5)	$SU(4) \times U(1)$	√*	8	$4_{-5} + \bar{4}_{+5} = 2 \cdot (2, 2)$	[67]
SU(5)	SO(5)	√*	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$	[9, 47, 49]
SO(8)	SO(7)	\checkmark	7	${f 7}=3\cdot ({f 1},{f 1})+({f 2},{f 2})$	
SO(9)	SO(8)	~	8	${f 8}=2\cdot ({f 2},{f 2})$	[67]
SO(9)	$SO(5) \times SO(4)$	*	20	$({f 5},{f 4})=({f 2},{f 2})+({f 1}+{f 3},{f 1}+{f 3})$	[34]
$[SU(3)]^2$	SU(3)		8	${f 8}={f 1_0}+{f 2_{\pm 1/2}}+{f 3_0}$	[8]
$[SO(5)]^2$	SO(5)	√*	10	${f 10}=({f 1},{f 3})+({f 3},{f 1})+({f 2},{f 2})$	[32]
$SU(4) \times U(1)$	${ m SU}(3) imes { m U}(1)$		7	$3_{-1/3} + \mathbf{\bar{3}}_{+1/3} + 1_0 = 3 \cdot 1_0 + 2_{\pm 1/2}$	[35, 41]
SU(6)	Sp(6)	√*	14	$14 = 2 \cdot (2, 2) + (1, 3) + 3 \cdot (1, 1)$	[30, 47]
$[SO(6)]^2$	SO(6)	√*	15	$15 = (1, 1) + 2 \cdot (2, 2) + (3, 1) + (1, 3)$	[36]

yichung@ucdavis.edu

Fundamental Composite Higgs Models

- Fundamental gauge dynamics with fermionic matter fields Cacciapaglia, Sannino 2002.04914
- The global flavor symmetry is bound to be (for species of N_f Dirac fermion)

 $SU(2N_f)$ for (pseudo-)real rep. Or $SU(N_f) \times SU(N_f)$ for complex rep. which leads to following breaking pattern

- 1. Real representation : $SU(2N_f)/SO(2N_f)$, e.g. SU(4)/SO(4)
- 2. Pseudo-real representation : $SU(2N_f)/Sp(2N_f)$, e.g. SU(4)/Sp(4)
- 3. Complex representation : $SU(N_f) \times SU(N_f)/SU(N_f)$, e.g. $SU(3) \times SU(3)/SU(3)$
- MCHM SO(5)/SO(4) does not satisfied \Rightarrow Next-to-MCHM SU(4)/Sp(4) with 5 pNGBs

The SU(4)/Sp(4) FCHM

- > The minimal coset include the Higgs doublet SU(4)/Sp(4) FCHM
- 4 Weyl hyperfermions in the fundamental representation of the $Sp(N_{HC})$ hypercolor group

$$\psi_L = (U_L, D_L) = (1, 2, 0), \quad \begin{array}{l} U_R = (1, 1, 1/2) \\ D_R = (1, 1, -1/2) \end{array} \implies \psi = (U_L, D_L, U_R^c, D_R^c)^T \end{array}$$

• Once the hypercolor becomes strongly coupled, hyperfermions form a condensate and breaks $SU(4) \rightarrow Sp(4)$, which can be described by a nonlinear Sigma model.

$$\langle \Sigma \rangle = \frac{1}{2\sqrt{2}} \begin{pmatrix} i\sigma_2 & 0 \\ 0 & i\sigma_2 \end{pmatrix} \cdot \mathbf{f} \implies i\pi_a X_a = \begin{pmatrix} ia \mathbb{I} & \sqrt{2} \left(\tilde{H}H \right) \\ -\sqrt{2} \left(\tilde{H}H \right)^{\dagger} & -ia \mathbb{I} \end{pmatrix}$$
Goldstone matrix Sym. Breaking scale

• The coset SU(4)/Sp(4) contains 5 pNGBs, including Higgs doublet *H* and a real singlet *a*

U(1)' symmetry and Z' boson

The real singlet a is the NGB of broken U(1)' symmetry

$$i\pi_a X_a = \begin{pmatrix} ia \mathbb{I} & \sqrt{2} \left(\tilde{H}H \right) \\ -\sqrt{2} \left(\tilde{H}H \right)^{\dagger} & -ia \mathbb{I} \end{pmatrix} \qquad U(1)' : \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix}$$

If the U(1)' symmetry is gauged

$$U(1)': \begin{pmatrix} \mathbb{I} & 0\\ 0 & -\mathbb{I} \end{pmatrix} \subset SU(4)$$

a TeV-scale Z' boson

• What is this U(1)' symmetry?

$$\psi = (U_L, D_L, U_R^c, D_R^c)^T \implies U(\mathbf{1})_{HB} \text{ symmetry}$$

Gauging the symmetry?

$$\mathcal{L}_{\text{int}} = g_{Z'} Z'_{\mu} \left(Q_{HB} \bar{\psi} \gamma^{\mu} \psi \right) \implies SU(2)^2 U(1)_{HB} \text{ anomaly} ?$$
$$= 1/N_{HC}$$

$U(1)_{SM_3-HB}$ symmetry and Z' boson

• Interaction of the Z' boson (the minimal anomaly free setup)

$$\mathcal{L}_{int} = g_{Z'} Z'_{\mu} \left(Q_{SM} \bar{F}_3 \gamma^{\mu} F_3 - Q_{HB} \bar{\psi} \gamma^{\mu} \psi \right)$$

= 1/4 = 1/N_{HC}
(SM₃ number – HB number)

• The Z' mass

$$M_{Z'} = 2 Q_{HB} g_{Z'} f \cos\left(\frac{V}{f}\right) = \frac{2}{N_{HC}} g_{Z'} f \cos\left(\frac{V}{f}\right)$$

• The Z' scale (B anomalies scale)

$$f' \equiv \frac{M_{Z'}}{g_{Z'}} = \frac{2}{N_{HC}} f \cos\left(\frac{V}{f}\right) \approx \frac{2}{N_{HC}} f$$

yichung@ucdavis.edu

$U(1)_{SM_3-HB}$ symmetry and Z' boson

• Interaction of the Z' boson (the minimal anomaly free setup)

$$\mathcal{L}_{\text{int}} = g_{Z'} Z'_{\mu} \left(Q_{SM} \bar{F}_3 \gamma^{\mu} F_3 - Q_{HB} \bar{\psi} \gamma^{\mu} \psi \right)$$

= 1/4 = 1/N_{HC}
(SM₃ number – HB number)

• The Z' mass

$$M_{Z'} = 2 Q_{HB} g_{Z'} f \cos\left(\frac{V}{f}\right) = \frac{2}{N_{HC}} g_{Z'} f \cos\left(\frac{V}{f}\right)$$

• The Z' scale (B anomalies scale)

$$f' \approx \frac{2}{N_{HC}} f$$

⇒ Relation between the two scales!!

yichung@ucdavis.edu

Z' phenomenology

yichung@ucdavis.edu

Specified Mixing Matrices

• For the SM fermion sector, we have

$$\mathcal{L}_{\rm int} = g_{Z'} Z'_{\mu} \left(\bar{F}^m_L \gamma^{\mu} Q^m_{F_L} F^m_L + \bar{F}^m_R \gamma^{\mu} Q^m_{F_R} F^m_R \right)$$

with the transformation and charge matrices (for left-handed f = d, e only)

$$U_{f_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_f & \sin \theta_f \\ 0 & -\sin \theta_f & \cos \theta_f \end{pmatrix} \implies Q_{f_L}^m = \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin^2 \theta_f & -\frac{1}{2} \sin 2\theta_f \\ 0 & -\frac{1}{2} \sin 2\theta_f & \cos^2 \theta_f \end{pmatrix}$$

• Two terms of our interest are

$$g_{sb} \equiv \frac{1}{4} g_{Z'} \epsilon_{sb} \quad \text{with} \quad \epsilon_{sb} = -\frac{1}{2} \sin 2\theta_d ,$$
$$g_{\mu\mu} \equiv \frac{1}{4} g_{Z'} \epsilon_{\mu\mu} \quad \text{with} \quad \epsilon_{\mu\mu} = \sin^2 \theta_e .$$

• The 3 key parameters are the scale $\,f'$, the mixing $\,\epsilon_{sb}\,$ and $\,\epsilon_{\mu\mu}\,$

Z' solution for Neutral Current B Anomalies

• Under the specified mixing metrices

$$\Delta \mathcal{L} = C_{LL} (\bar{s}_L \gamma^{\rho} b_L) (\bar{\mu}_L \gamma_{\rho} \mu_L) \text{ from}$$

with $C_{LL} = -\frac{g_{sb}g_{\mu\mu}}{M_{Z'}^2} (36 \text{ TeV})^2$

• The global fit result considering all rare B decay gives

$$C_{LL} = -\frac{g_{sb}g_{\mu\mu}}{M_{Z'}^2} (36 \text{ TeV})^2 = -\frac{\epsilon_{sb}\epsilon_{\mu\mu}}{f'^2} (9 \text{ TeV})^2 = -0.82 \pm 0.14$$

which requires

$$\frac{\epsilon_{sb}\epsilon_{\mu\mu}}{f'^2} = \frac{1}{(10 \text{ TeV})^2} \left(\frac{C_{LL}}{-0.82}\right) \implies f' = \sqrt{\epsilon_{sb}\epsilon_{\mu\mu} \left(\frac{-0.82}{C_{LL}}\right)} (10 \text{ TeV})$$

yichung@ucdavis.edu

FCNC Constraints - quark vertex

$$\begin{array}{l} & \searrow B_{s} - \overline{B}_{s} \text{ Meson Mixing} \\ & C_{B_{s}} \equiv \frac{\Delta M_{s}}{\Delta M_{s}^{SM}} \approx 1 + 5576 \left(\frac{g_{sb}}{M_{Z'}} \right)^{2} \\ \bullet \text{ The current bound :} \\ & \text{ Exp: } 17.757 \pm 0.021 \text{ ps}^{-1} \text{ (CDF+LHCb)} \\ & \text{ SM: } 18.5^{+1.2}_{-1.5} \text{ ps}^{-1} \text{ (Sum Rules)} \end{array}$$

• The constraint :

$$\frac{g_{sb}}{M_{Z'}} \leq \frac{1}{194 \text{ TeV}} \implies f' \geq \epsilon_{sb} \cdot 48.5 \text{ (TeV)} \implies f' \leq \epsilon_{\mu\mu} \cdot 2 \text{ (TeV)} \text{ (combined)}$$

$$f' = \sqrt{\epsilon_{sb}\epsilon_{\mu\mu}} \text{ (10 TeV)}$$

FCNC Constraints - lepton vertex

> Lepton Flavor Violation $\tau \rightarrow \mu \mu \mu$

$$BR(\tau \to 3\mu) = \frac{2m_{\tau}^5}{1536\pi^3 \Gamma_{\tau}} \left(\frac{g_{Z'}^2}{16M_{Z'}^2} \sin^3\theta_e \cos\theta_e\right)^2$$
$$= 1.28 \times 10^{-6} \left(\frac{1 \text{ TeV}}{f'}\right)^4 \epsilon_{\mu\mu}^3 (1 - \epsilon_{\mu\mu})^2$$

• The current bound : $< 2.1 \times 10^{-8} ~{\rm at}~90\%~{\rm CL}$

• The constraint :

$$\left(\frac{1 \text{ TeV}}{f'}\right)^4 \epsilon^3_{\mu\mu} (1 - \epsilon_{\mu\mu}) < 1.6 \times 10^{-2} \sim \frac{1}{60}$$

Combined Analysis : f' v. s. $\epsilon_{\mu\mu}$

yichung@ucdavis.edu

Direct Z' Searches

• Decay width

Combined Analysis : f' v. s. $M_{Z'}$

yichung@ucdavis.edu

Connecting with FCHM

yichung@ucdavis.edu

Put back the FCHM assumption

• The interaction of the Z' boson

$$\mathcal{L}_{\text{int}} = g_{Z'} Z'_{\mu} \left(Q_{SM} \bar{F}_3 \gamma^{\mu} F_3 - Q_{HB} \bar{\psi} \gamma^{\mu} \psi \right)$$

= 1/4 = 1/N_{HC}

- \Rightarrow The strength and running of gauge coupling $g_{z'}$
- The relation between the Z' scale (B anomalies scale)

$$f' \approx \frac{2}{N_{HC}} f$$

 \Rightarrow include the constraints on the CHM scale *f*

Constraints on the gauge coupling $g_{z'}$

• The running of $g_{Z'}$ is calculated and expressed using $\alpha_{Z'}$

$$\alpha_{Z'}^{-1}(\mu) = \alpha_{Z'}^{-1}(\text{TeV}) + 0.37 \, b' \, \log_{10} \left(\frac{\mu}{\text{TeV}}\right) \quad \text{ where } \quad b' = -\frac{2}{3} \left[1 + \frac{4}{N_{HC}}\right]$$

• The coupling becomes non-perturbative when $\Lambda = 10^n$ TeV, where

$$n = -\frac{\alpha_{Z'}^{-1}(\text{TeV})}{0.37 \, b'} \approx \left(\frac{51 \, N_{HC}}{4 + N_{HC}}\right) \frac{1}{g_{Z'}^2(\text{TeV})}$$

• To avoid reaching the Landau pole too fast, there are bounds for $g_{Z'}$ at the TeV

$$N_{HC} = 2 (b' = -2) : \Lambda > 10^{16} \text{ TeV}, \quad g_{Z'} < 1.0 \qquad \Lambda > 10^3 \text{ TeV}, \quad g_{Z'} < 2.4$$

 $N_{HC} = 4 (b' = -\frac{4}{3}) : \Lambda > 10^{16} \text{ TeV}, \quad g_{Z'} < 1.3 \qquad \Lambda > 10^3 \text{ TeV}, \quad g_{Z'} < 2.9$

Constraints on the CHM scale *f*

• Lower bound : Higgs coupling measurement

CHM:
$$\kappa = \kappa_V = \kappa_F = \cos\left(\frac{\langle h \rangle}{f}\right) = \sqrt{1-\xi}$$

EXP: $\kappa_V = 1.03 \pm 0.03$, $\kappa_F = 0.97 \pm 0.07$
 $\Longrightarrow \quad \xi \le 0.1$, $f \ge 780 \text{ GeV}$

• Upper bound : required fine-tuning

$$V(h) = \alpha f^2 \sin^2\left(\frac{h}{f}\right) + \beta f^4 \sin^4\left(\frac{h}{f}\right) \implies \text{(personal)} \quad f \lesssim 1600 \text{ GeV}$$
$$\alpha \simeq -(63 \text{ GeV})^2, \qquad \beta \simeq 0.033 \quad 4\pi\sqrt{-\alpha} \sim 800 \text{ GeV}$$

yichung@ucdavis.edu

yichung@ucdavis.edu

Flavorful Composite Higgs

Combined Analysis : f(f') v. s. $M_{Z'}$

 $f' \approx \frac{2}{N_{HC}} f$

36/40

Conclusions

- The Z' boson from SU(4)/Sp(4) FCHM can explain the B anomalies
- U(1)' symmetry is the 3rd generation number minus Hyperbaryon number
- A TeV-scale Z' boson with universal couplings to the 3rd generation fermions
- The *Z*' scale and the CHM scale and are related by $f' \approx (2/N_{HC}) f$
- Interesting parameter space is still viable and will be probed in near future

What is the next !?

- Relieve the assumptions (parameter space with smaller θ_e ?)
- Connect with the flavor puzzle (why the third generation is much heavier ?)

yichung@ucdavis.edu

More about Z' direct searches

• The cross sections for each decay channel based on $M_{Z'} = 1.4$ TeV with different f'.

f'(TeV)	$g_{Z'}$	$\sigma_{tt}(\mathrm{fb})$	$\sigma_{bb}(\mathrm{fb})$	$\sigma_{\tau\tau}(\mathrm{fb})$	$\sigma_{\mu\mu}({\rm fb})$
1.2	1.17	4.7	4.7	0.78	0.78
1.5	0.93	3.0	3.0	0.50	0.50
1.8	0.78	2.1	2.1	0.35	0.35
Current	bounds	~ 40	6	1.5	0.7
Future p	prospects	~ 10	~ 2	~ 0.6	~ 0.2

- There could also be flavor violating decays like $Z'
 ightarrow \mu au$
- Important difference from other Z' models the partial width ratio

 $\Gamma_{tt}:\Gamma_{bb}:\Gamma_{\ell\ell}:\Gamma_{\nu\nu}\sim 3:3:1:1$

Extended Hypercolor Group

• The 4 Weyl fermions required under $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\psi_L = (U_L, D_L) = (1, 2, 0),$$

 $U_R = (1, 1, 1/2), \quad D_R = (1, 1, -1/2).$

• The SM fermion and hyperfermions under $SU(4)_{PS_3} \times SP(N_{HC}) \times SU(2)_L \times SU(2)_R$

$$F_L = (4, 1, 2, 1), \quad \psi_L = (1, N_{HC}, 2, 1),$$

 $F_R = (\bar{4}, 1, 1, 2), \quad \psi_R = (1, N_{HC}, 1, 2).$

• The minimal unified group $G_{EHC_3} = SU(4 + N_{HC})_{EHC_3} \times SU(2)_L \times SU(2)_R$

$$f_{L/R} = \begin{pmatrix} t^r \ t^g \ t^b \ \nu_\tau \ U^1 \ \cdots \ U^{N_{HC}} \\ b^r \ b^g \ b^b \ \tau \ D^1 \ \cdots \ D^{N_{HC}} \end{pmatrix}_{L/R} \implies Y' = c_{Y'} \text{ Diag}(1, 1, 1, 1, -\frac{4}{N_{HC}}, \cdots -\frac{4}{N_{HC}})$$

Generation-dependence from Horizontal group

The generation-dependence can can arise naturally if the U(1)' symmetry is the linear combination of U(1)_{SM-HB} and U(1)_H,

	$SM_{1,2}$	SM_3	HF
Q_{SM-HB}	1/12	1/12	$-1/N_{HC}$
Q_H	-1/12	1/6	0
$Q' = Q_{SM-HB} + Q_H$	0	1/4	$-1/N_{HC}$

• Or from the linear combination of $U(1)_{EHC}$ and $U(1)_{H}$,

	$\mathrm{SM}_{1,2}$	SM_3	$\mathrm{HF}_{1,2}$	HF_{3}
Q_{EHC}	1/12	1/12	$-1/(3N_{HC})$	$-1/(3N_{HC})$
Q_H	-1/12	1/6	-1/12	1/6
$Q' = Q_{EHC} + Q_H$	0	1/4	$-1/12 - 1/(3 N_{HC})$	$1/6 - 1/(3 N_{HC})$