The missing final state puzzle in the monopole-fermion scattering

Ryutaro Matsudo

KEK Theory Center
April 19, 2021

In collaboration with Ryuichiro Kitano

Seminar at UC Davis

arXiv:2103.13639

Rubakov-Callan effect

Monopole

mesons
[V. A. Rubakov (1982), C. G. Callan (1982)]

- When the proton collides with a GUT monopole, it decays into a positron and mesons.
- The effect has been used to put constraint on the monopole flux in the Universe.

Helicity flip: One-flavor case

$$
\langle\bar{f} f\rangle \propto \frac{1}{r^{3}}
$$

- The helicity flips even in the massless QED.
- The only possible source of the fermion number violation is the chiral anomaly, which is a non-perturbative effect of QED.
- As the effect of the anomaly, the fermion condensate is nonzero.

Puzzle: Two-flavor massless case

$$
\begin{aligned}
& f_{L}^{1} \\
&\left\langle\left(\bar{f}^{1} f^{1}\right)\left(\bar{f}^{2} f^{2}\right)\right\rangle \propto \frac{1}{r^{6}}
\end{aligned}
$$

Any fermion cannot be the final state due to the flavor charge conservation.

? = Pancake (Wall with boundary)

Soliton of the phase of the fermion condensate

Outline

(1) Missing final state puzzle
(2) Review: S-wave approximation
(3) Pancake soliton
(4) Soliton picture of the scattering

Outline

(1) Missing final state puzzle

(2) Review: S-wave approximation

(3) Pancake soliton

4 Soliton picture of the scattering

Helicity flip

- If there is a monopole and a charge, the electromagnetic field carries an angular momentum, (\hat{r}_{0} : The unit vector pointing from the monopole to the charge)

$$
\vec{J}_{\mathrm{EM}}=\frac{1}{4 \pi} \int d^{3} x \vec{r} \times(\vec{E} \times \vec{B})=-\frac{1}{2} \hat{r}_{0} .
$$

- If the incoming particle has a helicity $-1 / 2$ (left-handed), the total angular momentum is zero.
- After the scattering, the angular momentum from the electro magnetic field has the opposite direction to the particle momentum.
- To conserve the total angular momentum, the helicity of the particle has to flip.

$$
\begin{align*}
\vec{J}_{\mathrm{EM}} & =-\frac{1}{2} \hat{r}_{0} \\
\text { (M) } \underset{\hat{r}_{0}}{\leftarrow} & \oplus \underset{\overrightarrow{J_{h}}=\frac{1}{2} \hat{r}_{0}}{\mathrm{~L}} \tag{M}
\end{align*}
$$

Set up

- We consider an $S U(2)$ gauge theory with an adjoint Higgs and 4 flavors of Weyl fermions, where $S U(2)$ is spontaneously broken down to $U(1)$.
- The global symmetry is $S U(4)$.

$$
S U(2) \text { doublets }\{\overbrace{\left(\binom{a_{1}^{+}}{b_{1}^{-}},\binom{a_{2}^{+}}{b_{2}^{-}},\binom{a_{3}^{+}}{b_{3}^{-}},\binom{a_{4}^{+}}{b_{4}^{-}}\right)}^{S U(4) \text { quadruplets (fund. rep.) }}
$$

- The theory can be regarded as an approximation of $S U(5)$ GUT:

$$
\binom{a_{1}}{b_{1}}=\binom{e_{L}^{+}}{d_{L}^{3}}, \quad\binom{a_{2}}{b_{2}}=\binom{\bar{d}_{L}^{3}}{e_{L}^{2}}, \quad\binom{a_{3}}{b_{3}}=\binom{u_{L}^{1}}{\bar{u}_{L}^{2}}, \quad\binom{a_{4}}{b_{4}}=\binom{\bar{u}_{L}^{2}}{\bar{u}_{L}^{1}} .
$$

The low energy effective theory

- We approximate the theory as the gauge theory of the unbroken $U(1)$.
a : The $U(1)$ gauge field,
a_{j} : The Weyl fermions with charge +1 ,
b_{j} : The Weyl fermions with charge -1 .
- The 't Hooft-Polyakov monopole is approximated by the (background) Dirac monopole.
- X, Y bosons, GUT Higgs bosons are considered to be infinitely heavy.

The missing final state puzzle

- The helicity, the $U(1)$ charge and the representation of $S U(4)$ are

$$
a_{j}:(L,+1, \square), \quad b_{j}:(L,-1, \square), \quad \bar{a}_{j}:(R,-1, \bar{\square}), \quad \bar{b}_{j}:(R,+1, \square)
$$

- If the initial state is a_{j}, the final state should be a particle with $(R,+1, \square)$. However, there are no particle with this quantum number.
- The s-wave approximation implies that, when the initial state is a_{1}, the final state is something like

$$
\frac{b_{1}}{2}+\frac{\bar{b}_{2}}{2}+\frac{\bar{b}_{3}}{2}+\frac{\bar{b}_{4}}{2} .
$$

$b_{j} / 2$: "Semiton", the state with halves of the $U(1)$ charge, the flavor charge and the spin of b_{j}.

It is hard to interpret what this "semiton state" actually is.

Interpretation of the final state

Probabilistic interpretation [C. G. Callan (1984), V. A. Rubakov (1988)]:

- In the $S U(5)$ GUT,

$$
\begin{array}{rlll}
a_{1}=e_{L}^{+}, & a_{2}=\bar{d}_{L}^{3}, & a_{3}=u_{L}^{1}, & a_{4}=u_{L}^{2}, \\
b_{1}=d_{L}^{3}, & b_{2}=e_{L}^{-}, & b_{3}=\bar{u}_{L}^{2}, & b_{4}=\bar{u}_{L}^{1} .
\end{array}
$$

- "The semiton state" is

$$
\frac{1}{2} e_{R}^{+}+\frac{1}{2} u_{R}^{1}+\frac{1}{2} u_{R}^{2}+\frac{1}{2} d_{L}^{3}
$$

- The state is interpreted as

$$
\frac{1}{\sqrt{2}}\left|e_{R}^{+}, \mathrm{M}\right\rangle+\frac{1}{\sqrt{2}}\left|u_{R}^{1} u_{R}^{2} d_{L}^{3}, \mathrm{M}\right\rangle \quad ?
$$

This is problematic because $e_{R}^{+}=\bar{b}_{2}$ is in the antifundamental representation of $S U(4)$, i.e., the flavor charge is not conserved.

- If massless QED is unitary, there must be a final state.
- The non-perturbative effect of QED can make an appropriate final state.

Outline

(1) Missing final state puzzle

(2) Review: S-wave approximation
(3) Pancake soliton

4 Soliton picture of the scattering

S-wave approximation and bosonization

- The final state is obtained as the soliton in the bosonized theory in the s-wave approximation, where we only consider the spherically symmetric fields.

$$
S_{4 d}=\int d^{4} x\left[-\frac{1}{4 g^{2}} f \star f+\sum_{j=1}^{4}\left(i \bar{a}_{j} \bar{\sigma}^{\mu} D_{\mu} a_{j}+i \bar{b}_{j} \bar{\sigma}^{\mu} D_{\mu} b_{j}\right)\right]
$$

$\xrightarrow{\text { S-wave approximation, bosonization }}$

$$
S_{2 d}=\int_{0}^{\infty} d r \int_{-\infty}^{\infty} d t\left[\frac{1}{2 \pi} \sum_{i=1}^{4}\left(\left(\partial_{t} \phi_{i}\right)^{2}-\left(\partial_{r} \phi_{i}\right)^{2}\right)-\frac{g^{2}}{32 \pi^{3}} \frac{1}{r^{2}}\left(\sum_{i=1}^{4} \phi_{i}\right)^{2}\right]
$$

Fermions are kinks

- The fermions correspond to the kink solitons.

Kinks $=$ Fermions with the charge +1
Anti-kinks $=$ Fermions with the charge -1
Incoming (anti-)kinks $=a_{j}\left(\bar{a}_{j}\right)$
Outgoing (anti-)kinks $=\bar{b}_{j}\left(b_{j}\right)$

- The kink corresponds to the s-wave state of the fermion in 4 d .

Currents and boundary conditions

- The currents of $U(1)$ and the maximal torus of $S U(4)$ is $(\alpha, \beta=t, r)$

$$
\begin{aligned}
& 4 \pi r^{2} J^{\alpha}=\frac{1}{2 \pi} \sum_{j} \varepsilon_{\alpha \beta} \partial_{\beta} \phi_{j}, \\
& 4 \pi r^{2} J_{(1,-1,0,0)}^{\alpha}=\frac{1}{2 \pi} \varepsilon_{\alpha \beta} \partial_{\beta}\left(\phi_{1}-\phi_{2}\right), \\
& 4 \pi r^{2} J_{(0,0,1,-1)}^{\alpha}=\frac{1}{2 \pi} \varepsilon_{\alpha \beta} \partial_{\beta}\left(\phi_{3}-\phi_{4}\right), \\
& 4 \pi r^{2} J_{(1,1,-1,-1)}^{\alpha}=\frac{1}{2 \pi} \partial_{\alpha}\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right) .
\end{aligned}
$$

$J_{(\ldots)}^{\alpha}$ is the current of $U(1)$ generated by $\operatorname{diag}(\ldots)$.

- The boundary condition is determined so that any charge does not flow into the infinitesimal region around the monopole to prohibit the existence of the dyon:

$$
4 \pi r^{2} J^{r}=0, \quad 4 \pi r^{2} J_{(\ldots)}^{r}=0 \text { at } r=0,
$$

which implies

$$
\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}=0, \phi_{1}=\phi_{2}, \phi_{3}=\phi_{4}, \partial_{r}\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)=0 .
$$

Scattering process

- When the initial state is a_{1}, the final state corresponds to the soliton:

$$
\begin{aligned}
& \phi_{1}(0)=\phi_{2}(0)=\pi, \quad \phi_{1}(\infty)=2 \pi, \quad \phi_{2}(\infty)=0, \quad \phi_{3}(0)=\phi_{4}(0)=-\pi, \\
& \phi_{3}(\infty)=\phi_{4}(\infty)=0 .
\end{aligned}
$$

- The final state seems to be $b_{1} / 2+\bar{b}_{2} / 2+\bar{b}_{3} / 2+\bar{b}_{4} / 2$, which is hardly interpreted.

$$
\left\{\begin{array}{l}
\phi_{1}: \pi \rightarrow 2 \pi \\
\phi_{2}: \pi \rightarrow 0 \\
\phi_{3}:-\pi \rightarrow 0 \\
\phi_{4}:-\pi \rightarrow 0
\end{array}\right.
$$

Massive case: No puzzle

In the massive case, this puzzle disappears.

- When we introduce the mass term,

$$
m_{1}\left(a_{1} b_{2}+a_{2} b_{1}+\text { h.c. }\right)+m_{2}\left(a_{3} b_{4}+a_{4} b_{3}+\text { h.c. }\right)
$$

- The global symmetry reduces to $U(1) \times U(1)$, which is generated by

$$
H_{1}=\operatorname{diag}(1,-1,0,0), \quad H_{2}=\operatorname{diag}(0,0,1,-1),
$$

and the charge correspond to

$$
H_{3}=\operatorname{diag}(1,1,-1,-1)
$$

is not conserved.

- There is a candidate of the final state

$$
\begin{aligned}
& a_{1}:\left(L,+1, Q_{(1,-1,0,0)}=1, Q_{(0,0,1,-1)}=0\right) \\
& \quad \rightarrow \bar{b}_{2}:\left(R,+1, Q_{(1,-1,0,0)}=1, Q_{(0,0,1,-1)}=0\right)
\end{aligned}
$$

Numerical result in massive case

According to the numerical simulation [S. Dawson \& A. N. Schellekens (1983)], the scattering process is as follows :

What happens when we take the massless limit?

- In the scattering process, when the semitons reach $r \sim 1 / m$, the values of ϕ_{i} at the core start to change.
- This means that, in the region where $r \ll 1 / m$, the theory can be regarded as the massless theory.
- In the massless limit, every point is near the monopole.

Outline

(1) Missing final state puzzle
(2) Review: S-wave approximation
(3) Pancake soliton
4) Soliton picture of the scattering

Fermion condensates

- In the s-wave approximation, the final state is described as a soliton in the bosonized theory.
\Rightarrow To interpret this in the 4d theory, a "bosonized" picture in 4d is needed.
- The effective theory of the phases of the fermion condensates can be regarded as such a theory.
- Fact: In the monopole background, operators of the fermion fields have nonzero expectation values:

$$
\begin{aligned}
& \left\langle\left(\bar{b}^{i} \bar{\sigma}_{\mu} a_{j}\right)\left(\bar{a}^{k} \bar{\sigma}^{\mu} b_{l}\right)\right\rangle=\frac{1}{r^{6}}\left(c_{1} \delta_{j}^{i} \delta_{l}^{k}+c_{2} \delta_{l}^{i} \delta_{j}^{k}\right), \\
& \left\langle\left(a_{i_{1}} b_{i_{2}}\right)\left(a_{i_{3}} b_{i_{4}}\right)\right\rangle=\frac{1}{r^{6}} c_{3} \varepsilon_{i_{1} i_{2} i_{3} i_{4}} .
\end{aligned}
$$

- The condensation is the seed of the helicity flip.
- By "integrating in" the phases of these condensates, and integrating out the fermions fields, we obtain the effective theory of the phases.
- The variables of the effective theory is the following four:
θ_{A} : the phase of $\left(a_{1} b_{2}\right)\left(a_{3} b_{4}\right), \quad \theta_{1 j}$: the phase of $\left(\bar{b}^{1} \bar{\sigma}_{\mu} a_{1}\right)\left(\bar{a}^{j} \bar{\sigma}^{\mu} b_{j}\right)$
- It is convenient to express them using the phases of the fermion fields. Let α_{j} be the phase of a_{j} and β_{j} be that of b_{j}, which means

$$
a_{1} \rightarrow e^{i \theta} a_{1} \quad \text { corresponds to } \alpha_{1} \rightarrow \alpha_{1}+\theta .
$$

- The genuine variables are expressed as

$$
\theta_{A}=\sum_{j}\left(\alpha_{j}+\beta_{j}\right), \quad \theta_{1 j}=\alpha_{1}-\beta_{1}-\alpha_{j}+\beta_{j} \quad \text { for } j=2,3,4 .
$$

- There are configurations of α_{j} and β_{j} that represent an identical configuration of the phases of the condensates

Pancakes

- We find that pancake configurations of the phases can be fermions by determining the quantum numbers of the object.

- The pancake is a $2+1$ dimensional object.
- On the bulk of the pancake, the value of $\alpha_{j}\left(\beta_{j}\right)$ gradually changes from 0 to 2π.
- $\alpha_{j}\left(\beta_{j}\right)$ winds around the boundary of the pancake.
\Rightarrow The boundary is a string of the phase.
Slice of pancake

$$
\alpha_{j}=2 \pi \sim 0
$$

The effective theory of the phases of the fermion condensates

- Due to the chiral anomaly, the phase shift of the fermion causes the shift of the Lagrangian:

$$
\begin{array}{ll}
a_{j} \rightarrow e^{i \theta} a_{j} & \Rightarrow \quad \mathcal{L} \rightarrow \mathcal{L}+\frac{1}{8 \pi^{2}} \theta f \wedge f \\
b_{j} \rightarrow e^{i \theta} b_{j} & \Rightarrow \quad \mathcal{L} \rightarrow \mathcal{L}+\frac{1}{8 \pi^{2}} \theta f \wedge f
\end{array}
$$

- To reproduce this, the effective theory of α_{j}, β_{j} has to contain the term,

$$
\frac{1}{8 \pi^{2}} \sum_{j}\left(\left(\alpha_{j}+\beta_{j}\right)(f \wedge f)\right) .
$$

- The $U(1)$ current is read off as

$$
J^{\mu}=\varepsilon^{\mu \nu \rho \sigma} \frac{1}{4 \pi^{2}} \sum_{j} \partial_{\nu}\left(\alpha_{j}+\beta_{j}\right) f_{\rho \sigma} .
$$

Monopole bag and pancake

- Let us consider the monopole surrounded by the wall of α_{1}.
- Witten effect: Because there is a monopole, $f=\sin \theta d \theta d \varphi / 2$, the charges are

$$
\begin{aligned}
& J^{\mu}=\varepsilon^{\mu \nu \rho \sigma} \frac{1}{4 \pi^{2}} \sum_{j} \partial_{\nu}\left(\alpha_{j}+\beta_{j}\right) f_{\rho \sigma}, \\
& \Rightarrow \quad Q=\int d^{3} x J^{0}=\frac{1}{2 \pi} \sum_{j} \int_{0}^{\infty} d r \partial_{r}\left(\alpha_{j}+\beta_{j}\right)=1 .
\end{aligned}
$$

- This object corresponds to the kink in the s-wave theory.
- The wall with a boundary is the pancake. There are edge modes that contribute to the charge so that the total charge is an integer.

The edge state

- By substituting the 2π jump of α_{j} into the effective Lagrangian $\sum_{j}\left(\alpha_{j}+\beta_{j}\right) f \wedge f /\left(8 \pi^{2}\right)$, we obtain the Chern-Simons theory as the theory on the wall:

$$
\frac{1}{4 \pi} \int a \wedge f
$$

- When the wall has the boundary, the CS theory is not gauge invariant. \Rightarrow There has to be a chiral edge mode:

$$
\begin{aligned}
& \frac{1}{4 \pi} \int_{\mathbb{R} \times D^{2}} a \wedge f+\frac{1}{4 \pi} \int_{\partial D^{2}}\left(D_{x} \phi\left(D_{t} \phi+v D_{x} \phi\right) d x d t-\phi f\right), \\
& D \phi:=d \phi-a, \quad a \rightarrow a+d \lambda, \quad \phi \rightarrow \phi+\lambda .
\end{aligned}
$$

- ϕ is a 2π-periodic scalar, thus we can define the winding number of ϕ,

$$
\frac{1}{2 \pi} \int_{\partial D^{2}} d \phi
$$

- The pancake with the exited edge state with this winding number ± 1 can be considered as a fermion.

The charge of the edge state

- The $U(1)$ charge is

$$
Q=\frac{1}{2 \pi} \int_{\partial D^{2}}(d \phi-a)+\frac{1}{2 \pi} \int_{D^{2}} f .
$$

In the gauge where the Dirac string does not penetrate the pancake, the charge is given as a winding number of ϕ around the edge.

- The quantum eigenstate of $\int_{\partial D^{2}} d \phi / 2 \pi$ with the eigenvalue $+1(-1)$ in the edge theory has the charge ± 1.
- Classically, the state corresponds to the solution of the eq. of motion of the edge theory. If we neglect the gauge fields, it is

$$
\phi= \pm 2 \pi(x-v t) / L
$$

- By introducing the background fields of the maximal torus of $S U(4)$, we can confirm that the edge state also have the flavor charge corresponding to the fundamental representation.

The spin of the pancake

- The spin of the object is given as the generator of the translation along the edge:

$$
J^{z}=\frac{L}{2 \pi} P_{x}=\frac{L}{8 \pi^{2}} \int_{0}^{L} d x\left(\partial_{x} \phi\right)^{2}
$$

where we neglect the gauge fields.

- By substituting the solution $\phi= \pm 2 \pi(x-v t) / L$, we obtain

$$
J^{z}=\frac{1}{2}
$$

- The direction of the spin depends only on the orientation of the wall, and does not depend on the charge.

Original and new fermions

- The pancakes can be regarded as fermions.
- Some of them have opposite helicity to the original fermions.
\Rightarrow New fermions!
- The final state of the monopole-fermion scattering is identified with the new fermions.

Original

New

Massive case

- We introduce the mass term

$$
m_{1}\left(a_{1} b_{2}+a_{2} b_{1}+\text { h.c. }\right)+m_{2}\left(a_{3} b_{4}+a_{4} b_{3}+\text { h.c. }\right)
$$

- The global symmetry reduces to $U(1) \times U(1)$, whose generators are

$$
H_{1}=\operatorname{diag}(1,-1,0,0), \quad H_{2}=\operatorname{diag}(0,0,1,-1) .
$$

- There are no quantum number corresponding to $H_{3}=\operatorname{diag}(1,1,-1,-1)$.

$$
\begin{aligned}
& a_{1}:\left(L,+1, Q_{H_{1}}=1, Q_{H_{2}}=0\right) \\
& \bar{b}_{2}:\left(R,+1, Q_{H_{1}}=1, Q_{H_{2}}=0\right)
\end{aligned}
$$

$$
a_{1}
$$

$$
\bar{b}_{2}
$$

Outline

(1) Missing final state puzzle
(2) Review: S-wave approximation

3 Pancake soliton

4 Soliton picture of the scattering

Boundary condition at the core of the monopole

- In the process of the scattering, the boundary condition at the core of the monopole plays an important role.
- For the action to be finite, it has to be satisfied that

$$
\sum_{j}\left(\alpha_{j}+\beta_{j}\right)=0
$$

- For the background gauge field of $S U(4)$ to be coupled to the theory, it has to be satisfied that

$$
\alpha_{j}-\beta_{j}-\alpha_{k}+\beta_{k}=0, \quad \forall j, k .
$$

- When α_{1} changes from 0 to 2π at the core, the β_{j} change as

$$
\beta_{1}=\alpha_{1} / 2, \quad \beta_{2}=\beta_{3}=\beta_{4}=-\alpha_{1} / 2 .
$$

to maintain the boundary condition.

Pancake-monopole scattering

- The wall of the red line corresponds to an $S U(4)$ rotation (associated with a $U(1)$ gauge transformation) of the phases, and thus it is transparent, i.e., there is no object actually.

(2)

(3)

(4)

(5)

$$
\alpha_{1}=0
$$

Massive case

- In the massive case, there appears additional condensates:

$$
\left\langle a_{j} b_{j+1}\right\rangle \propto \frac{m^{3}}{r^{6}}, \quad\left\langle a_{j+1} b_{j}\right\rangle \propto \frac{m^{3}}{r^{6}}, \quad \text { for odd } j
$$

- In the massive case, the region

$$
\alpha_{1}=2 \pi, \quad \beta_{1}=\pi, \quad \beta_{2}=\beta_{3}=\beta_{4}=-\pi
$$

is no longer the vacuum, because the additional condensates change.

(I)

(II)
$\alpha_{1}=2 \pi$

Summary

- When a charged fermion collides with a monopole, the helicity of the s-wave component of the fermion has to flip irrespective of what the UV theory is.
- The only possible source of this flip is the chiral anomaly. This means that when there is a monopole, the effect of the anomaly is not suppressed in QED.
- As a consequence, there is a fermion condensate violating the fermion number conservation.
- Puzzle: If there are two flavors of massless Dirac fermions, any fermion cannot be the final state of the monopole-fermion scattering due to the flavor charge conservation.
- We solve this puzzle by identifying the final state as the new fermion, which is the soliton of the fermion condensates in the monopole background.

Backup

The $U(1)$ charge and the $S U(4)$ charges in s-wave approximation

- The $U(1)$ charge is

$$
Q=\frac{1}{2 \pi} \sum_{j} \int_{0}^{\infty} d r\left(\partial_{r} \phi_{j}\right)=\frac{1}{2 \pi} \sum_{j}\left(\phi_{j}(\infty)-\phi_{j}(0)\right) .
$$

- The $S U(4)$ charge corresponding to $\operatorname{diag}(1,-1,0,0)$ is

$$
Q_{(1,-1,0,0)}=\frac{1}{2 \pi}\left(\phi_{1}(\infty)-\phi_{2}(\infty)-\phi_{1}(0)+\phi_{2}(0)\right)
$$

- The $S U(4)$ charge corresponding to $\operatorname{diag}(0,0,1,-1)$ is

$$
Q_{(0,0,1,-1)}=\frac{1}{2 \pi}\left(\phi_{3}(\infty)-\phi_{4}(\infty)-\phi_{3}(0)+\phi_{4}(0)\right)
$$

- The expression of the $S U(4)$ charge corresponding to $\operatorname{diag}(1,1,-1,-1)$ depends on the particles are incoming or outgoing. For incoming particles $\partial_{t} \phi_{j}^{\mathrm{in}}=\partial_{r} \phi_{j}^{\mathrm{in}}$, it is

$$
\begin{aligned}
4 \pi r^{2} J_{(1,1,-1,-1)}^{t} & =\frac{1}{2 \pi} \partial_{t}\left(\phi_{1}^{\mathrm{in}}+\phi_{2}^{\mathrm{in}}-\phi_{3}^{\mathrm{in}}-\phi_{4}^{\mathrm{in}}\right)=\frac{1}{2 \pi} \partial_{r}\left(\phi_{1}^{\mathrm{in}}+\phi_{2}^{\mathrm{in}}-\phi_{3}^{\mathrm{in}}-\phi_{4}^{\mathrm{in}}\right) \\
\Rightarrow Q_{(1,1,-1,-1)} & =\frac{1}{2 \pi}\left(\left(\phi_{1}^{\mathrm{in}}+\phi_{2}^{\mathrm{in}}-\phi_{3}^{\mathrm{in}}-\phi_{4}^{\mathrm{in}}\right)(\infty)-\left(\phi_{1}^{\mathrm{in}}+\phi_{2}^{\mathrm{in}}-\phi_{3}^{\mathrm{in}}-\phi_{4}^{\mathrm{in}}\right)(0)\right)
\end{aligned}
$$

The currents and the boundary condition

- We couple the background gauge fields for the maximal torus of $S U(4)$.
- The covariant derivative is given as

$$
\left(d-i a-i \sum_{l=1}^{3} A_{l}\left[H_{l}\right]_{j j}\right) a_{j}, \quad H_{l}: \text { Cartan generators of } S U(4)
$$

- The anomaly implies the terms in the effective theory of α_{j}, β_{j} :

$$
\frac{1}{8 \pi^{2}} \sum_{j}\left(\alpha_{j}\left(f+\sum_{l} F_{l}\left[H_{l}\right]_{j j}\right)^{2}+\beta_{j}\left(-f+\sum_{l} F_{l}\left[H_{l}\right]_{j j}\right)^{2}\right)
$$

- The currents are, for $F_{l}=0$,

$$
\star J=\frac{1}{4 \pi^{2}} \sum_{j}\left(d \alpha_{j}+d \beta_{j}\right) f, \quad \star J_{l}=\frac{1}{4 \pi^{2}} \sum_{j}\left[H_{l}\right]_{j j}\left(d \alpha_{j}-d \beta_{j}\right) f
$$

- For the action to be finite, the term containing f has to be zero at the core of the monopole, and thus

$$
\begin{aligned}
& \sum_{j}\left(\alpha_{j}+\beta_{j}\right)=0, \\
& \alpha_{j}-\beta_{j}-\alpha_{k}+\beta_{k}=0, \quad \forall j, k, \quad \text { at } r=0 .
\end{aligned}
$$

Monopole bag and pancake

- Let us consider the monopole surrounded by the wall of α_{1}.
- Because there is a monopole, $f=\sin \theta d \theta d \varphi / 2$, the charges are

$$
\begin{aligned}
& Q=\int d^{3} x J^{0}=\frac{1}{2 \pi} \sum_{j} \int_{0}^{\infty} d r \partial_{r}\left(\alpha_{j}+\beta_{j}\right)=1, \\
& Q_{l}=\int d^{3} x J_{l}^{0}=\frac{1}{2 \pi} \sum_{j}\left[H_{l}\right]_{j j} \int_{0}^{\infty} d r \partial_{r}\left(\alpha_{j}-\beta_{j}\right)=\left[H_{l}\right]_{11} .
\end{aligned}
$$

This means the object has the same charges of a_{1}.

- This object corresponds to the kink in the s-wave theory.
- The wall with a boundary is the pancake. There are edge modes that contribute to the charge so that the total charge is an integer.

Pancake soliton

- When the wall has the boundary, there has to be a chiral edge mode to maintain the gauge invariance:

$$
\begin{aligned}
& \frac{1}{4 \pi} \int_{\mathbb{R} \times D^{2}}\left(a+\sum_{l} A_{l}\left[H_{l}\right]_{j j}\right)\left(f+\sum_{l^{\prime}} F_{l^{\prime}}\left[H_{l^{\prime}}\right]_{j j}\right) \\
& +\frac{1}{4 \pi} \int_{\partial D^{2}}\left(D_{x} \phi\left(D_{t} \phi+v D_{x} \phi\right) d x d t-\phi\left(f+\sum_{l} F_{l}\left[H_{l}\right]_{j j}\right)\right) \\
& D \phi:=d \phi-a-A_{l}\left[H_{l}\right]_{j j}, a \rightarrow a+d \lambda, A_{l} \rightarrow A_{l}+d \lambda_{l}, \phi \rightarrow \phi+\lambda+\lambda_{l}\left[H_{l}\right]_{j j}
\end{aligned}
$$

- ϕ is a 2π-periodic scalar.
- The $U(1)$ and $S U(4)$ charges are

$$
\begin{aligned}
& Q=\frac{1}{2 \pi} \int_{\partial D^{2}} D \phi+\frac{1}{2 \pi} \int_{D^{2}}\left(f+\sum_{l} F_{l}\left[H_{l}\right]_{j j}\right) \\
& Q_{l}=\frac{1}{2 \pi} \int_{\partial D^{2}} D \phi\left[H_{l}\right]_{j j}+\frac{1}{2 \pi} \int_{D^{2}}\left(f+\sum_{m} F_{m}\left[H_{m}\right]_{j j}\right)\left[H_{l}\right]_{j j}
\end{aligned}
$$

In the gauge where the Dirac string does not penetrate the pancake, the charges are given as a winding number of ϕ around the edge.

- Additional condensates are

$$
\left\langle a_{j} b_{j+1}\right\rangle \propto \frac{m^{3}}{r^{6}}, \quad\left\langle a_{j+1} b_{j}\right\rangle \propto \frac{m^{3}}{r^{6}}, \quad \text { for odd } j
$$

- The genuine variables are

$$
\begin{aligned}
& \varphi_{12}=\alpha_{1}+\beta_{2}, \quad \varphi_{21}=\alpha_{2}+\beta_{1}, \quad \varphi_{34}=\alpha_{3}+\beta_{4}, \quad \varphi_{43}=\alpha_{4}+\beta_{3}, \\
& \theta_{13}=\alpha_{1}-\beta_{1}-\alpha_{3}+\beta_{3}
\end{aligned}
$$

- The pancake of $\theta_{13}: 0 \rightarrow 2 \pi$, that is, the string of $\left(\alpha_{1}: 0 \rightarrow 2 \pi, \beta_{2}: 0 \rightarrow-2 \pi\right)$, or ($\left.\alpha_{2}: 0 \rightarrow 2 \pi, \beta_{1}: 0 \rightarrow-2 \pi\right)$, etc., does not have any charge because we cannot couple the background gauge field corresponding to $H_{3}=\operatorname{diag}(1,1,-1,-1)$.
\Rightarrow The pancake of α_{1} and that of β_{2} cannot be distinguished.

