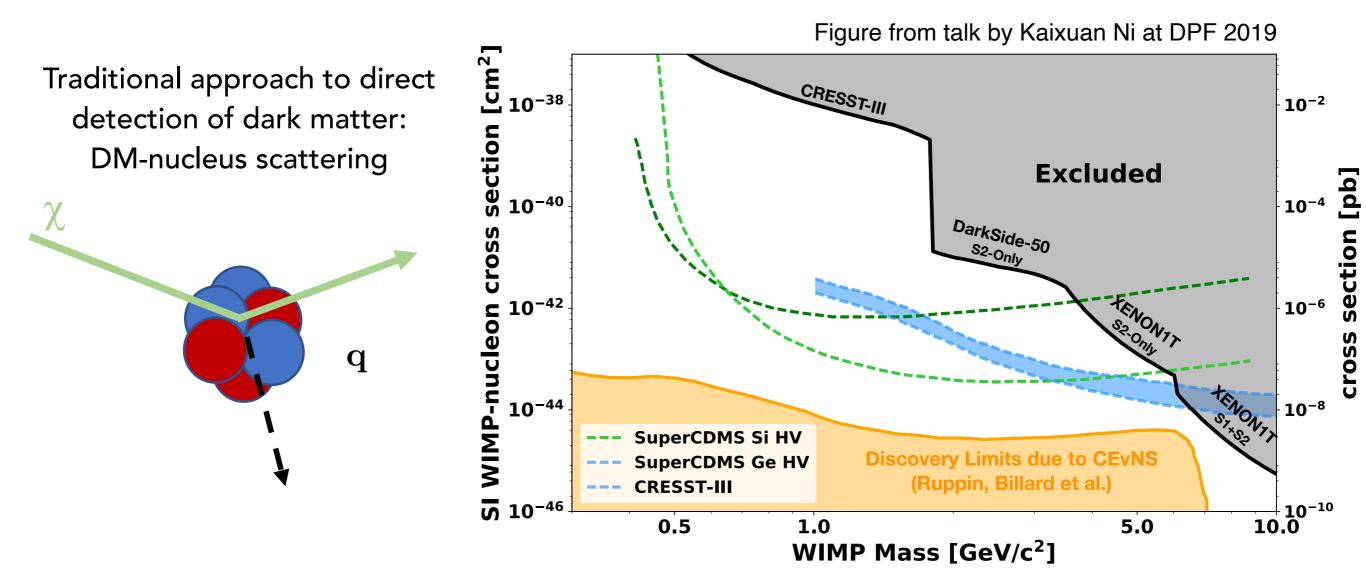
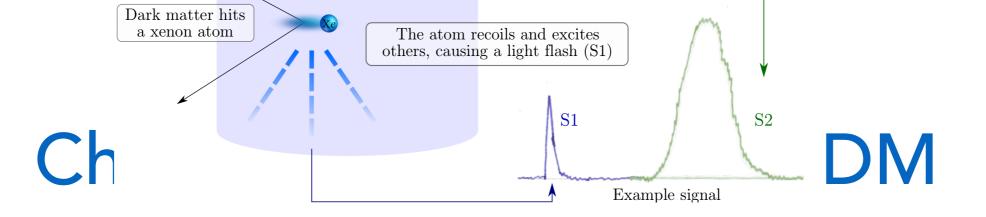
Direct detection of sub-GeV dark matter with the Migdal effect in semiconductors

Tongyan Lin UCSD

November 30, 2020 UC Davis seminar

Motivation





Kinematics of nuclear recoils from light dark matter

$$E_R = \frac{\left|\mathbf{q}\right|^2}{2m_N} \le \frac{2\mu_{\chi N}^2 v^2}{m_N}$$

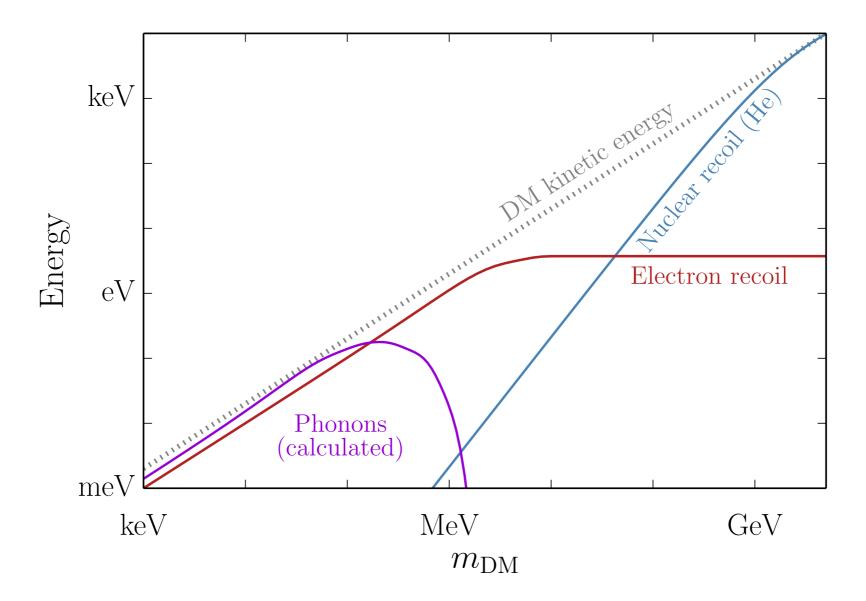
$$E_R^{\text{threshold}} \gtrsim 30 \,\text{eV} \rightarrow m_\chi \gtrsim 0.5 \,\text{GeV}$$

Drops quickly below $m_\chi \sim 10 \,\text{GeV}$

Best nuclear recoil threshold is currently $E_R > 30 \text{ eV}$ (CRESST-III) with DM reach of $m_{\gamma} > 160 \text{ MeV}$.

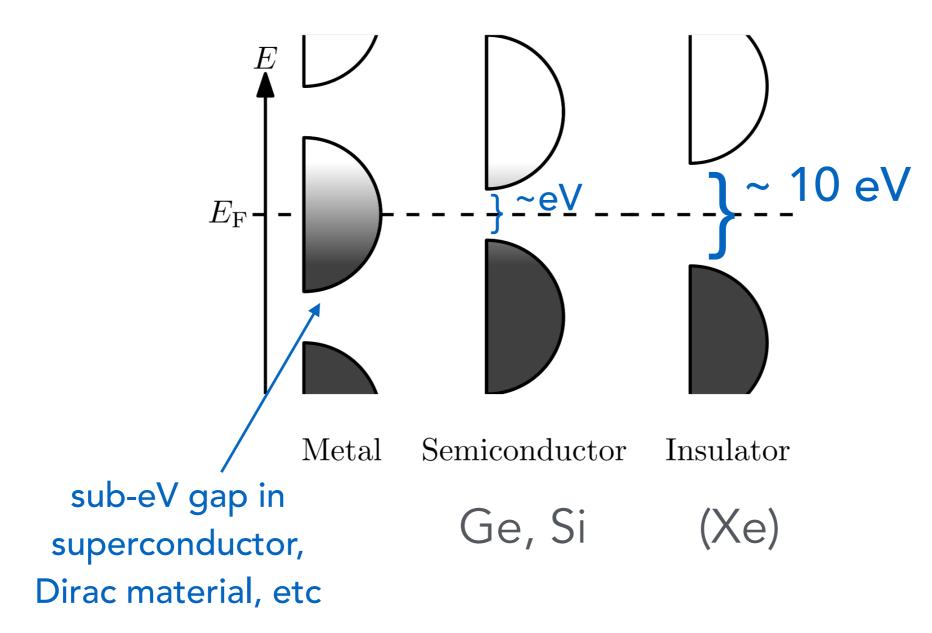
The kinematics of DM scattering against **free** nuclei is inefficient, and it does not always describe target response accurately.

Material properties matter

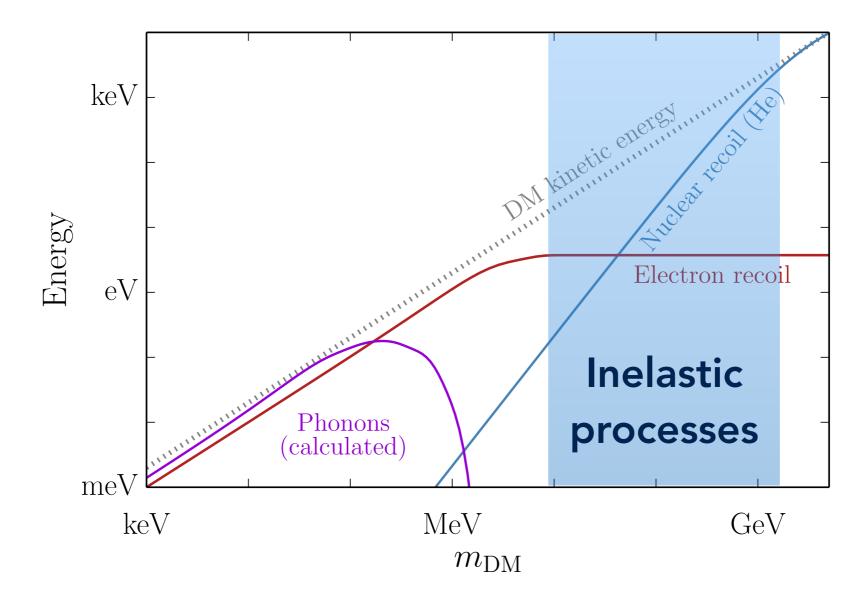


Nuclear response is phonon-dominated at low energies. Electronic response depends on details of band structure/eigenstates.

Electron recoils

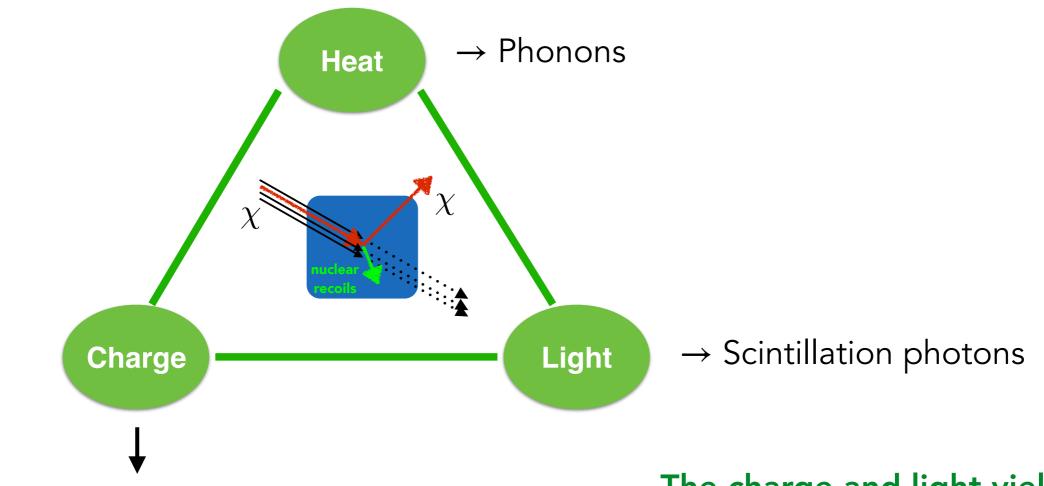


Material properties matter



Inelastic nuclear recoils or $2 \rightarrow 3$ processes can also extract more DM kinetic energy.

Challenges for sub-GeV DM



ionized atoms or electron-hole pairs in semiconductors

The charge and light yield for nuclear recoils below few hundred eV is not well understood, but expected to be ~0 on average.

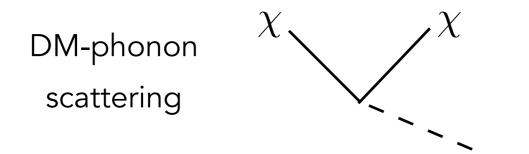
1. Decreasing the heat threshold

 Detectors in development to reach heat/phonon thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB)

1. Decreasing the heat threshold

- Detectors in development to reach heat/phonon thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB)
- Direct phonon excitations from DM scattering

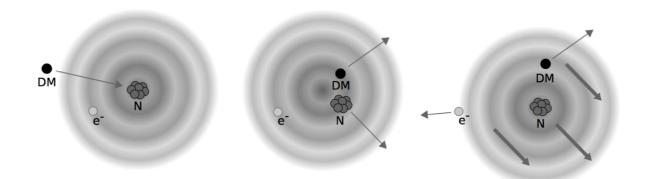
At low enough energies, cannot treat as free nucleus; harmonic potential matters. $\omega \approx 1 - 100 \text{ meV}$ for acoustic and optical phonons in crystals. (many works, e.g. Griffin, Knapen, TL, Zurek 2018; Cox, Melia, Rajendran 2019)



Kinematics of phonons relevant (and advantageous) for sub-MeV dark matter

2. Increasing the charge signal

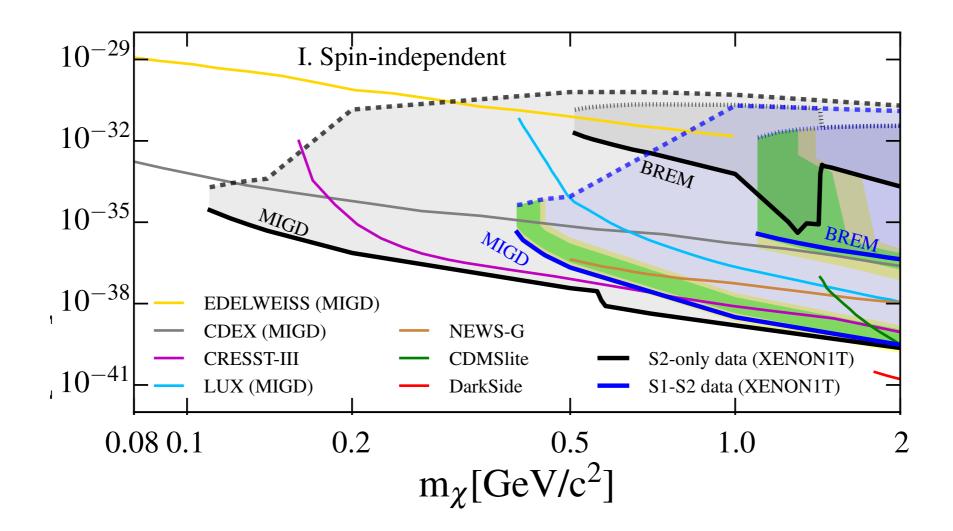
Atomic Migdal effect
 Ionization of electrons
 which have to 'catch up'
 to recoiling nucleus
 (e.g. Ibe, Nakano, Shoji, Suzuki 2017)



From 1711.09906

• Bremsstrahlung of (transverse) photons in LXe Kouvaris & Pradler 2016

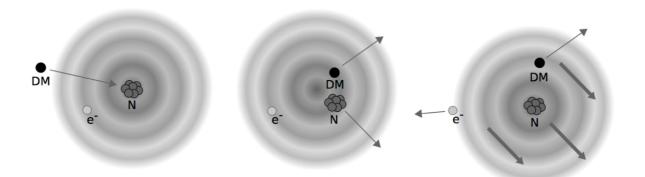
2. Increasing the charge signal



Results from XENON1T search (PRL 2019)

2. Increasing the charge signal

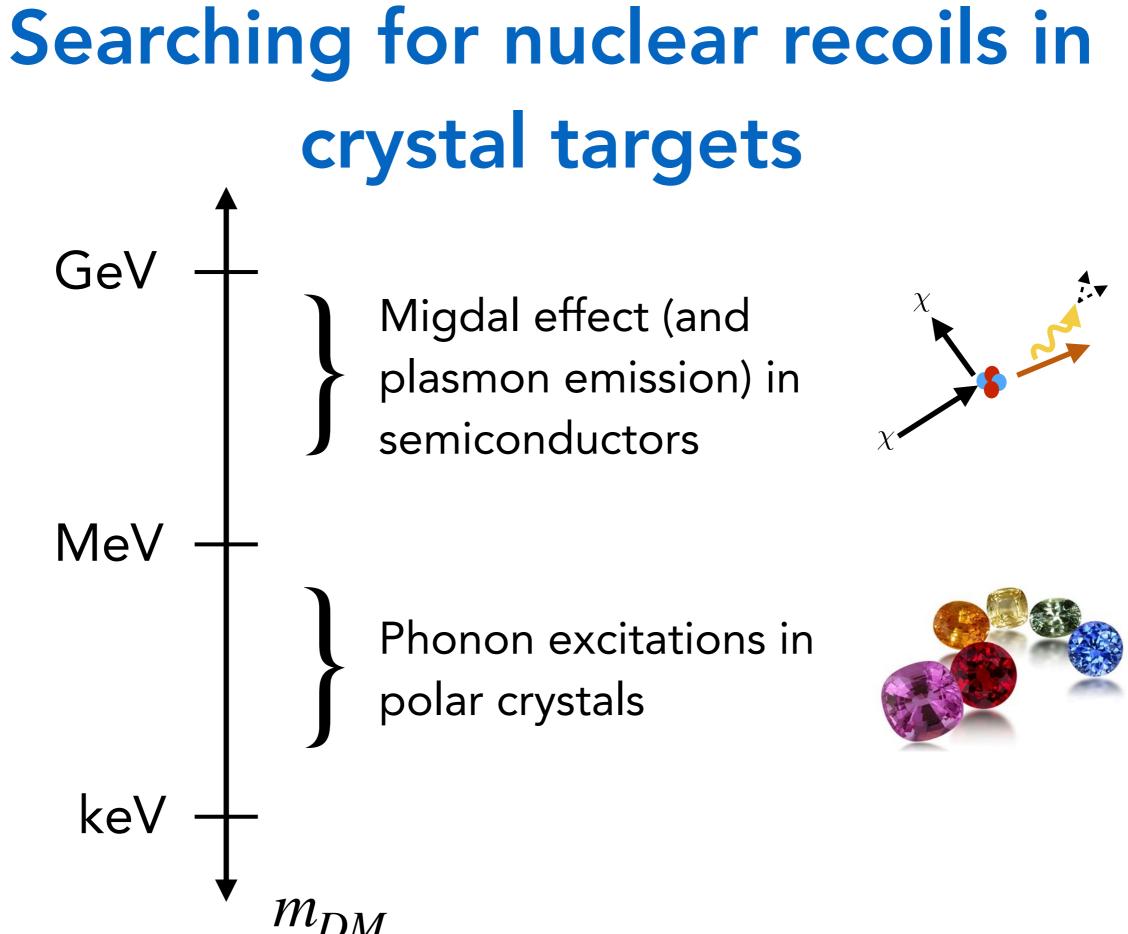
Atomic Migdal effect
 Ionization of electrons
 which have to 'catch up'
 to recoiling nucleus
 (e.g. Ibe, Nakano, Shoji, Suzuki 2017)

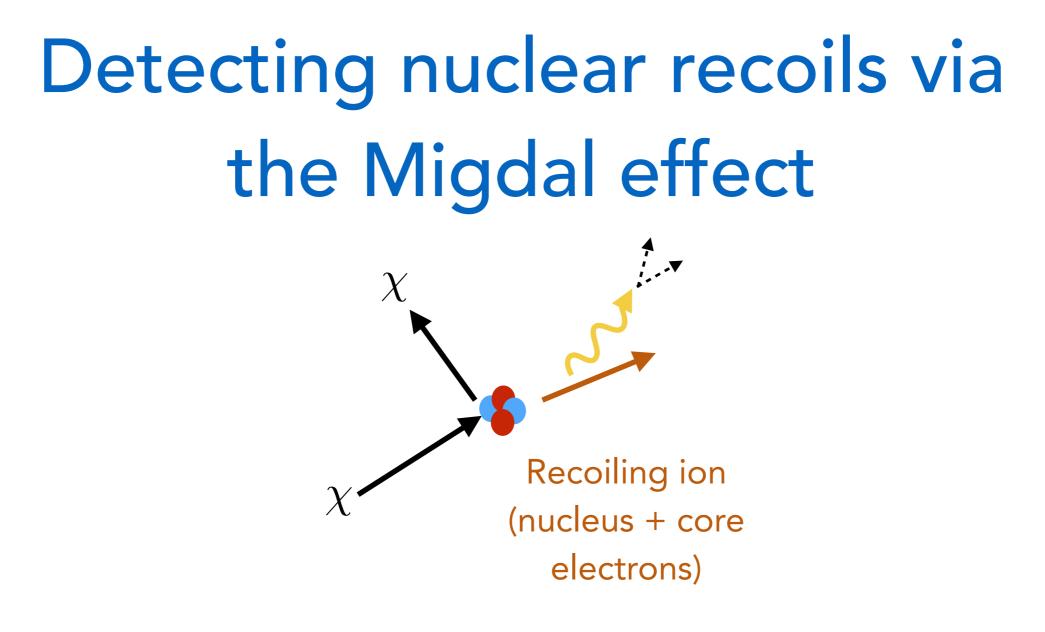


From 1711.09906

- Bremsstrahlung of (transverse) photons in LXe Kouvaris & Pradler 2016
- Migdal effect (including plasmon emission) in semiconductors

Many-body effects are relevant in many of these cases!

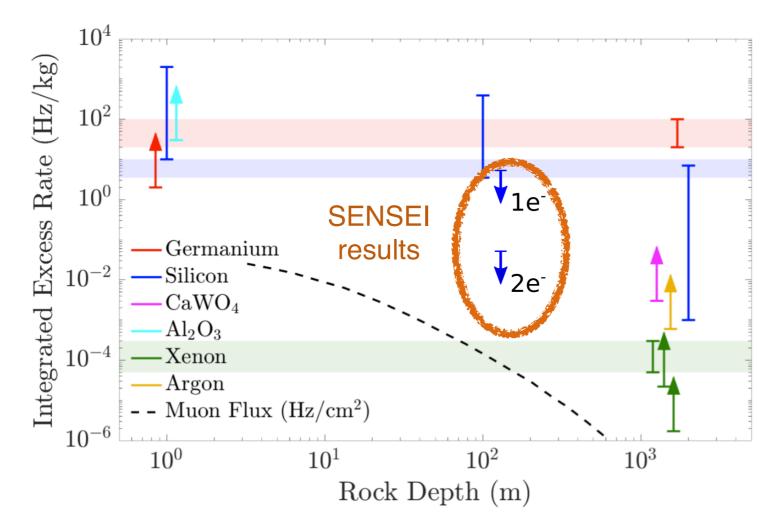




With Jonathan Kozaczuk (2003.12077) + with Jonathan Kozaczuk and Simon Knapen (2011.09496)

Plasmons from dark matter?

Proposed by Kurinsky, Baxter, Kahn, Krnjaic (2002.06937) as an explanation of low-energy rates in semiconductor DD experiments.

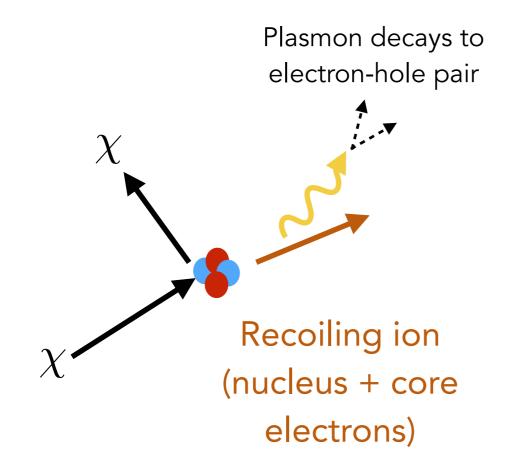


- Excess in 1e- or 2e- bins (assumption requiring plasmon decays to phonons)
- If nuclear recoil, requires $O(10^{-3} 1)$ probability to produce plasmons
- Could also be excited by large flux of fast-moving millicharged DM

Slide from SENSEI talk, based on figure from Kurinsky et al.

Plasmons from dark matter?

Our goal in 2003.12077: calculate the plasmon excitation rate from nuclear recoils in semiconductors. This is an additional charge signal that can improve reach for sub-GeV DM.



Assumptions

For nuclear recoil energy $\omega_{\text{phonon}} \ll E_R \lesssim E_{\text{core}}$ treat as a free nucleus with tightly bound core electrons. Valid for $10 \text{ MeV} \lesssim m_{\chi} \lesssim 1 \text{ GeV}.$

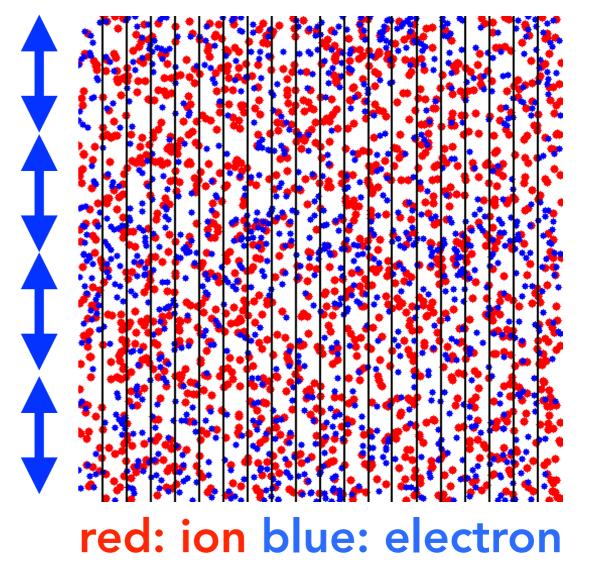
Plasmons

• Simple picture: uniform displacement of electrons by **r**

$$-e\mathbf{E} = 4\pi\alpha_{em}n_e\mathbf{r}$$
$$\ddot{\mathbf{r}} = -\omega_p^2\mathbf{r}$$

 $\begin{array}{ll} \text{Plasma} & \\ \text{frequency} & \\ \end{array} \omega_p^2 \equiv \frac{4\pi\alpha_{em}n_e}{m_e} \end{array}$

 Plasmons are quantized longitudinal E-field excitations in the medium (contrast with "transverse photons") Electron gas in fixed ion background



Electron gas model

- Toy model: bremsstrahlung of a longitudinal mode in a metal (degenerate electron gas in fixed ion background)
- Plasmon appears as a zero of the dielectric function

Gauss's law without external source $\hat{\epsilon}_L(\omega, \mathbf{k})\mathbf{k} \cdot \mathbf{E} = 0 \rightarrow \mathbf{k} \cdot \mathbf{E} \neq 0$ when $\hat{\epsilon}_L(\omega, \mathbf{k}) = 0$

Electron gas model

- Toy model: bremsstrahlung of a longitudinal mode in a metal (degenerate electron gas in fixed ion background)
- Plasmon appears as a zero of the dielectric function

Gauss's law without external source $\hat{\epsilon}_L(\omega, \mathbf{k})\mathbf{k} \cdot \mathbf{E} = 0 \rightarrow \mathbf{k} \cdot \mathbf{E} \neq 0$ when $\hat{\epsilon}_L(\omega, \mathbf{k}) = 0$

• Or as a pole in the longitudinal propagator

$$D^{00}(\omega, \mathbf{k}) = \frac{1}{k^2 \hat{\epsilon}_L(\omega, \mathbf{k})} = \frac{1}{k^2 - \Pi_L(\omega, \mathbf{k})}$$
(Coulomb gauge)
$$\hat{\epsilon}_L(\omega, \mathbf{k}) = 1 - \frac{\Pi_L(\omega, \mathbf{k})}{k^2}$$

. Refs. [: :]). $4k \mid \langle 2p_F \rangle$ kv_F / $| (2p_F) + (\omega + i\eta)$ q. ?? can be evaluthe Fermi surface to tes $|\mathbf{p}\rangle$ with $p < p_F$, nteristempromiofindse plasma frequency is given by width, the plasmon is only well-de (roughly 2.4 keV in Si or Ge). $\omega_p^2 = \frac{4\pi\alpha_{em}n_e}{m_e}$ Because of the momentum cut (4)for plasmons, it is only kinematic • Plasmon is infinitely long lived where n_{e} is the number density of valence electrons, m_{e} is the (formschiedle) kelecthois toysmodel $\sim 10^{-2}$ is the in (kv r) Spectrum of longitudinal stationshe $v \gtrsim 0$ in the electronegas, it is possib produced by DM with typical halo Fermi velocity. if they are produced in association The plasmon appears as a zero in Eq. ??, which in the small $k \operatorname{Horickhas} (k v F) k \operatorname{Horickhas} (k v F) = 30$ tion such as a nuclear recoil; this ge $\frac{\hat{k}_{P'}}{\hat{k}_{F}} = \frac{\hat{k}_{P'}}{\hat{k}_{F}} + \frac{\hat{k}_{P'}}{\hat{k}_{L}} = \frac{\hat{k}_{P}}{\hat{k}_{L}} + \frac{\hat{k}_{P}}{\hat{k}_{L}} = \frac{\hat{k}_{P}}{\hat{k}_{P}} + \frac{\hat{k}_{P}}{\hat{k}_{P}} = \frac{\hat{k}_{P}}{\hat{k}_{P}} + \frac{\hat{k}_{P}}{\hat{k}_{P}} = \frac{\hat{k}_{P}}{\hat{k}_{P}} + \frac{\hat{k}_{P}}{\hat{k}_{P}} = \frac{\hat{k}_{P}}{\hat{k}_{P}} + \frac$ 30 tions of the 2-bodyckinematics by absorb most of the indimentum. And process is from the point of view of 20 Platow-energy ion cannot excite the p Thus the plasmon mode has frequency ω_p at k = 0 and has a websine mode has frequency ω_p at k = 0 and has a websine mode has frequency ω_p at k = 0 and the has a websine mode has frequency ω_p at k = 0 and the has a second ing energy and momentum conserva an off-shell ion emits the plasmon. have taken the act by DN with there is no imaginary off and Digneral there is a finite width Γ or inverse part, but in general there is a finite width Γ or inverse fly possible in the higher hat, which can be accounted for The rate for DM-nucleus scatterin sion can be obtained in the electron machinery of quantum field theory. by taking $\omega^{21S} \xrightarrow{\text{high}}{\omega^{2}} \overset{is}{\to} \overset{high}{\omega^{2}} \overset{i}{\to} \overset{i}{\omega^{2}} \overset{i}{\to} \overset{i}{\omega^{2}} \overset{i}{\to} \overset{i}{\omega^{2}} \overset{i}{\to} \overset{i}{\omega^{2}} \overset{i}{\to} \overset{i}{\omega^{2}} \overset{i}{\to} \overset{i}{\to} \overset{i}{\omega^{2}} \overset{i}{\to} \overset{i}{\to}$ ply²DM-nucleus scattering accomp e for plasmons to be jong-lived at small k. Meannetic bremsstrahfung radiation [? elocities of $k^{v} \gtrsim \frac{10}{2} r_{F,x}^{m}$ the plasmon dispersion matches nal longitudinal mode. We use the Witte Anethatieany accessible single electron-hole excitawhich obtained simple analytic ap sionsund thrus station large decay width. Given t20 s large k-dependent plasmon pole location llowing the recoil to

Electron gas model

Standard bremsstrahlung calculation in QFT but with final longitudinal mode

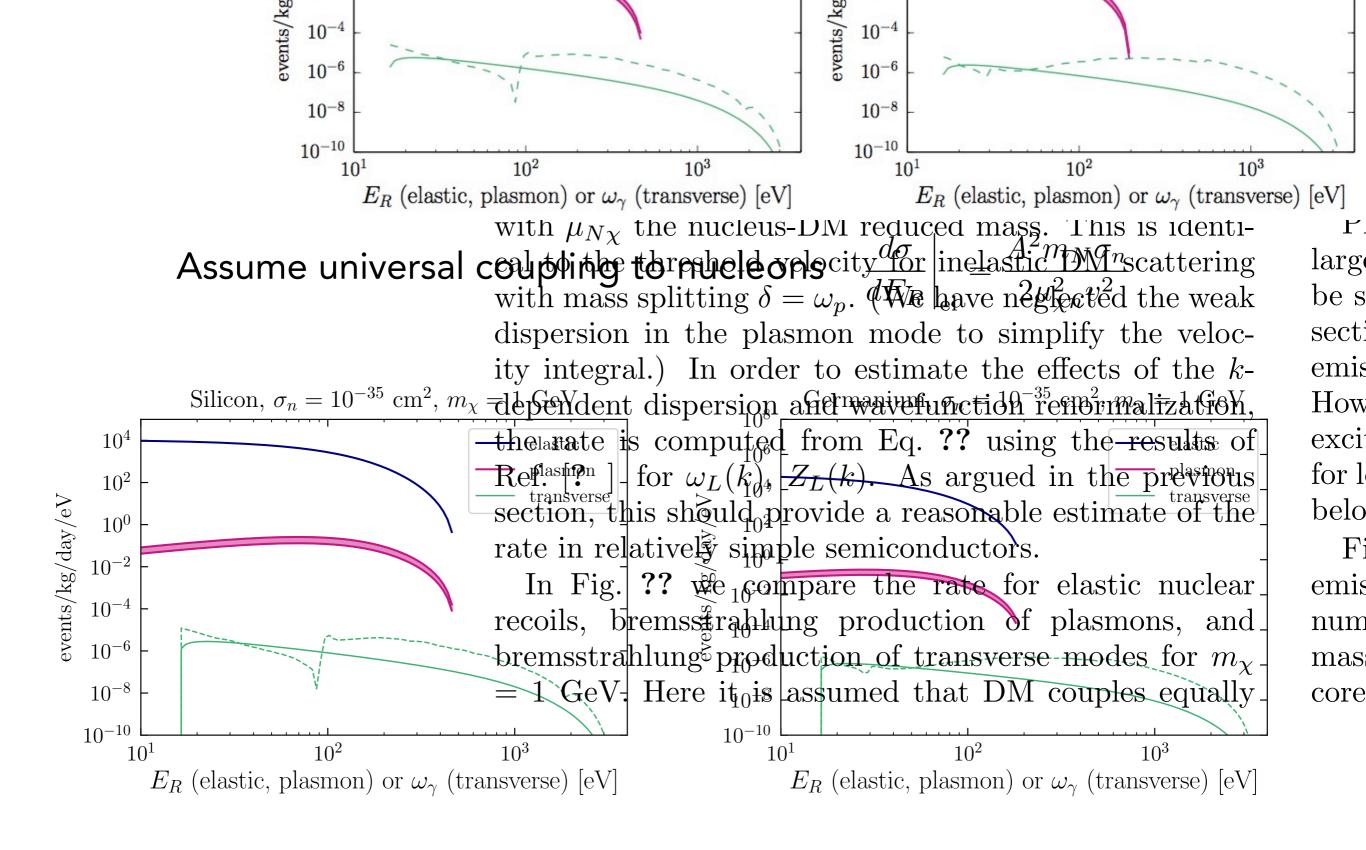
 $\chi(p) + N \to \chi(p') + N(q_N) + \omega_L(k)$

In the limit of soft brem, $k \ll \sqrt{2m_N E_R}$ (valid for us):

 $\frac{d^2 \sigma_{\text{plasmon}}}{dE_R dk} = \frac{2Z_{\text{ion}}^2 \alpha_{em}}{3\pi} \frac{Z_L(k)k^2}{\omega_L(k)^3} \frac{E_R}{m_N} \times \left| \frac{d\sigma}{dE_R} \right| \quad \text{Elastic DM-nucleus scattering cross section}$

Roughly 4-6 orders of magnitude larger than brem of transverse photons

Bremsstrahlung of plasmons is low-probability, but allows low-energy nuclear recoils to be detected with charge signals in semiconductors.

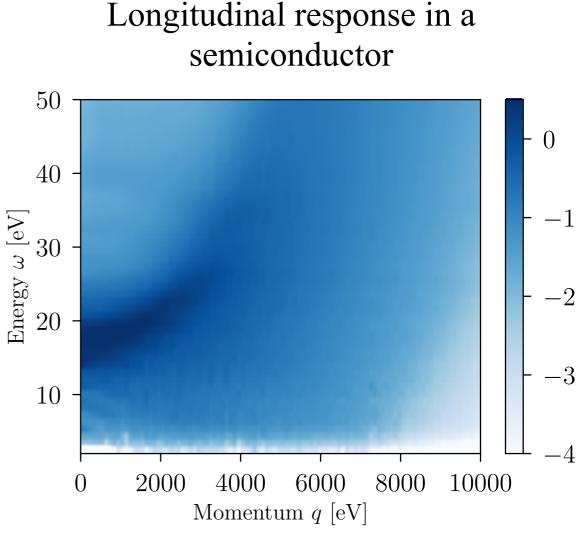


Plasmon production in semiconductors

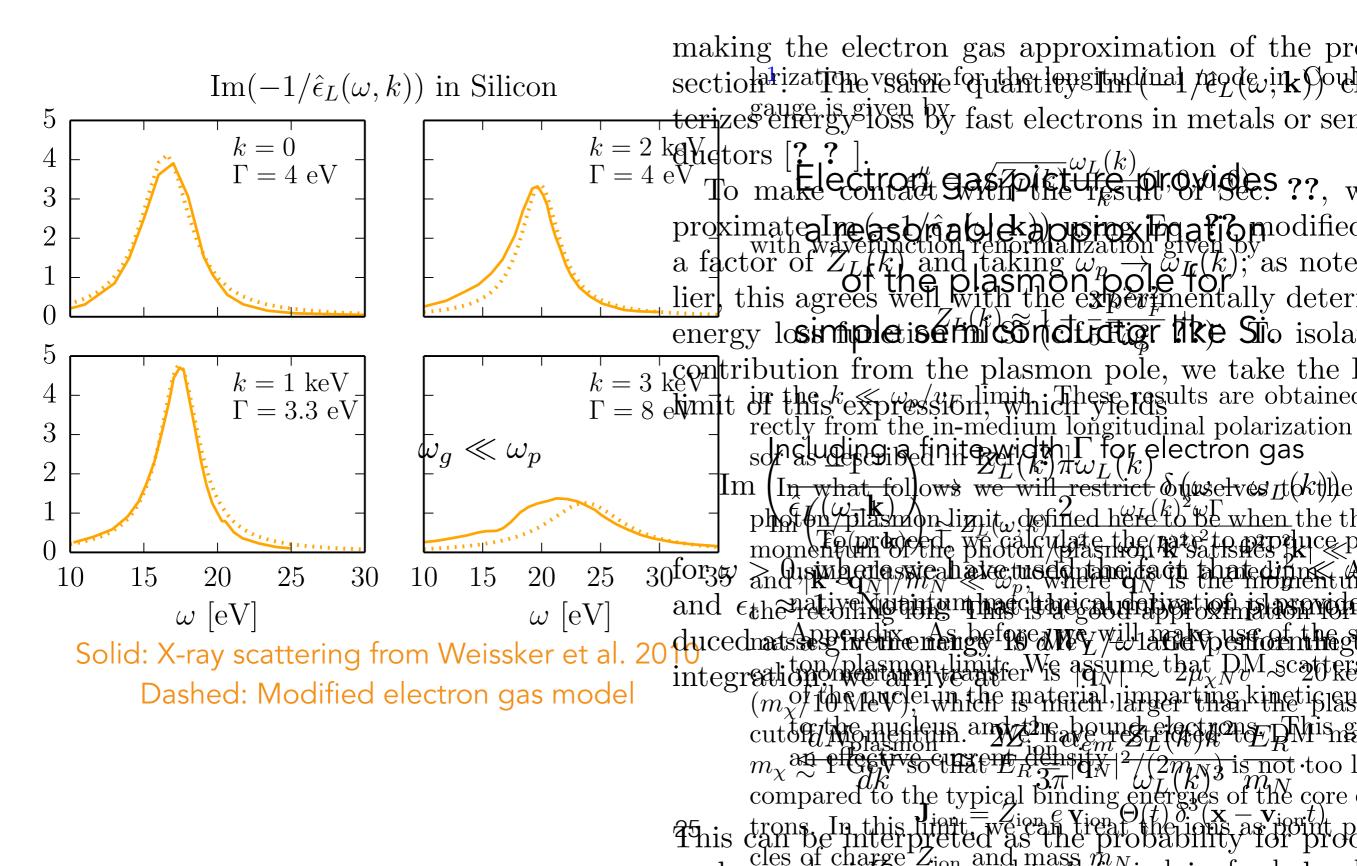
Differences from electron gas model:

- Band gap: $\omega_g \sim O(1) \text{ eV}$ (but $\omega_g \ll \omega_p$)
- Electron wavefunctions: plane waves \rightarrow Bloch waves
- Plasmon decays by interband transitions.

We deal with this by rewriting plasmon production in terms of $\hat{\epsilon}_L$



Energy loss function



Ionization signals from nuclear recoils

Probability for inelastic process with plasmon production:

$$\frac{dN_L}{d\omega dk} = \frac{4Z_{\rm ion}^2 \alpha_{em}}{3\pi^2} \frac{E_R}{m_N} \frac{k^2}{\omega^3} \operatorname{Im}\left(\frac{-1}{\hat{\epsilon}_L(\omega, \mathbf{k})}\right)$$

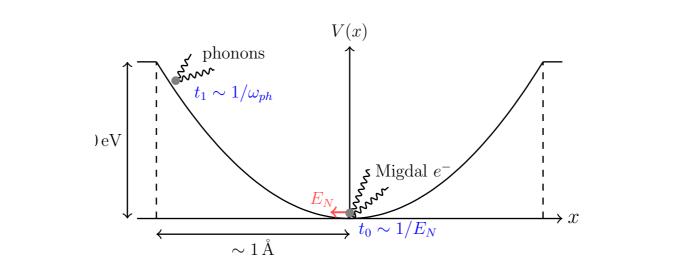
Expect a plasmon resonance at ~16 eV (5-6 electrons). Possible even when expected nuclear recoil is well below 16 eV.

But energy loss function contains **all** electronic excitations (charge signals), even away from plasmon pole.

We can use density functional theory (DFT) codes to numerically compute the full energy loss function.

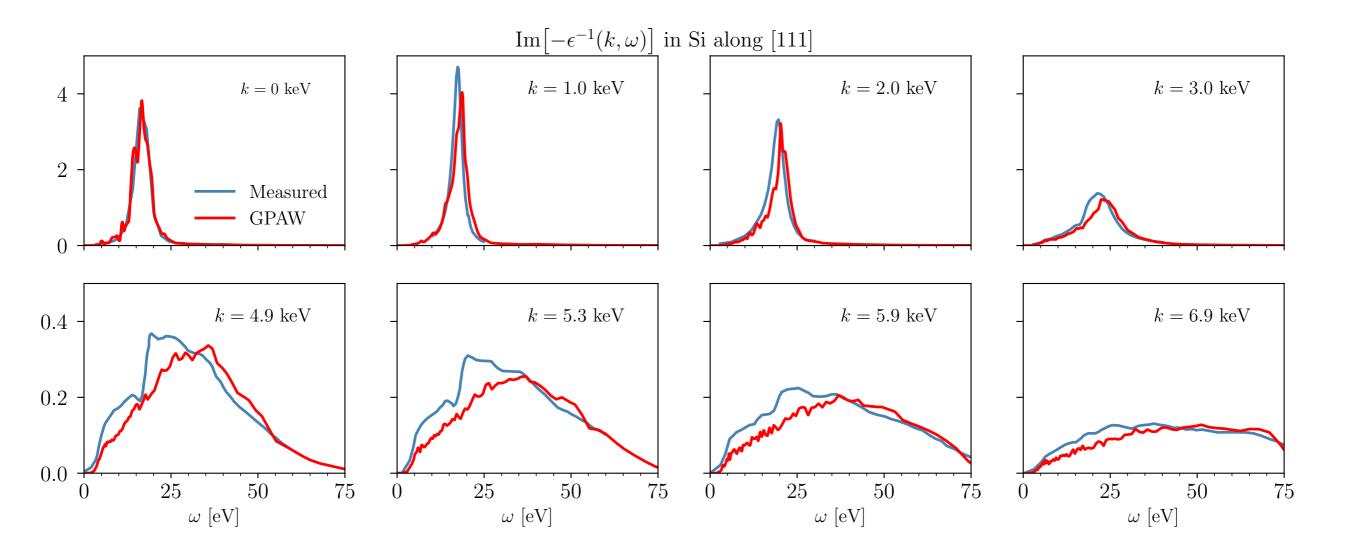
Full rate in semiconductors

Newer work, with Knapen and Kozaczuk:



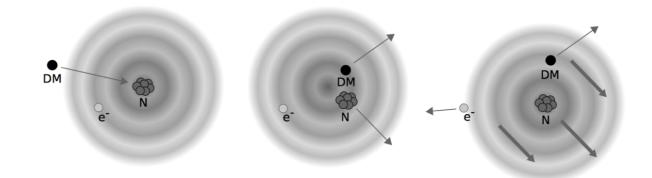
Usual DM-nucleus scattering $\frac{d\sigma}{d\omega} = \frac{2\pi^{2}A^{2}\sigma_{n}}{m_{\chi}^{2}v_{\chi}} \int \frac{d^{3}\mathbf{q}_{N}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{p}_{f}}{(2\pi)^{3}} \delta(E_{i} - E_{f} - \omega - E_{N}) \times 4\alpha Z_{ion}^{2} \sum_{\mathbf{K}} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \left[\frac{1}{\omega - \mathbf{q}_{N} \cdot (\mathbf{k} + \mathbf{K})/m_{N}} - \frac{1}{\omega} \right]^{2} \\
F(\mathbf{p}_{i} - \mathbf{p}_{f} - \mathbf{q}_{N} - \mathbf{k} - \mathbf{K})^{2} \\
[\epsilon_{\mathbf{K}\mathbf{K}}(\mathbf{k}, \omega)]^{2} \times \frac{4\pi^{2}\alpha}{V} \sum_{\mathbf{p}_{e}} \frac{|[\mathbf{p}_{e} + \mathbf{k}]e^{i\mathbf{r}\cdot\mathbf{K}}]\mathbf{p}_{e}]\Omega|^{2}}{|\mathbf{k} + \mathbf{K}|^{2}} (f(\mathbf{p}_{e}) - f(\mathbf{p}_{e} + \mathbf{k})) \,\delta(\omega_{\mathbf{p}_{e} + \mathbf{k}} - \omega_{\mathbf{p}_{e}} - \omega)} \\
Form factor accounting for multiphonon response in a harmonic crystal Energy loss function (ELF) with momentum <math>\mathbf{k} + \mathbf{K}$ and energy ω deposited to electrons 27

Energy loss function



Boost initial state to frame of moving nucleus:

$$|i\rangle \to e^{im_e \mathbf{v}_N \cdot \sum_\beta \mathbf{r}_\beta} |i\rangle$$



Nucleus recoils with velocity \mathbf{v}_N

Transition probability $|\mathcal{M}_{if}|^2$

$$\mathcal{M}_{if} = \langle f | e^{im_e \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta}} | i \rangle \approx im_e \langle f | \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta} | i \rangle$$

Problem with applying this to semiconductors: boosting argument does not apply because of crystal lattice.

Our result provides a generalization of the atomic Migdal effect with a simple physical interpretation.

$$\begin{split} im_e \left\langle f \right| \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta} \left| i \right\rangle \\ &= \mathbf{v}_N \cdot \frac{1}{\omega} \left\langle f | \Sigma_{\beta} \mathbf{p}_{\beta} | i \right\rangle \\ &= -\mathbf{v}_N \cdot \frac{1}{\omega^2} \left\langle f | \Sigma_{\beta} [\mathbf{p}_{\beta}, H_0] | i \right\rangle = \frac{-i}{\omega^2} \left\langle f | \sum_{\beta} \frac{Z_N \alpha \mathbf{v}_N \cdot \hat{\mathbf{r}}_{\beta}}{|\mathbf{r}_{\beta} - \mathbf{r}_N|^2} | i \right\rangle. \end{split}$$

Fourier transform (in time) of dipole potential from recoiling nucleus

$$\begin{split} im_e \left\langle f \right| \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta} \left| i \right\rangle \\ &= \mathbf{v}_N \cdot \frac{1}{\omega} \left\langle f | \Sigma_{\beta} \mathbf{p}_{\beta} | i \right\rangle \\ &= -\mathbf{v}_N \cdot \frac{1}{\omega^2} \left\langle f | \Sigma_{\beta} [\mathbf{p}_{\beta}, H_0] | i \right\rangle = \frac{-i}{\omega^2} \left\langle f | \sum_{\beta} \frac{Z_N \alpha \mathbf{v}_N \cdot \hat{\mathbf{r}}_{\beta}}{|\mathbf{r}_{\beta} - \mathbf{r}_N|^2} | i \right\rangle \end{split}$$

Fourier transform (in time) of dipole potential from recoiling nucleus

Atomic Migdal effect

$$\frac{dP(E_N)}{d\omega} \approx \left(\frac{4\pi Z_N \alpha}{\omega^2}\right)^2 \sum_{i,f} \left| \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{\mathbf{v}_N \cdot \mathbf{k}}{k^2} \left\langle f | e^{i\mathbf{k}\cdot\mathbf{r}} | i \right\rangle \right|^2 \delta\left(E_i + \omega - E_f\right)$$

Semiconductor Migdal effect

$$\frac{dP}{d\omega} \approx \frac{(4\pi Z_{\rm ion}\alpha)^2}{\omega^4 V} \sum_{\mathbf{p}_e} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{|\mathbf{v}_N \cdot \mathbf{k}|^2}{k^4} \frac{\left| [\mathbf{p}_e + \mathbf{k} |\mathbf{p}_e]_\Omega \right|^2}{|\epsilon(\mathbf{k}, \omega)|^2} \times \left(f(\mathbf{p}_e) - f(\mathbf{p}_e + \mathbf{k}) \right) \delta(\omega_{\mathbf{p}_e + \mathbf{k}} - \omega_{\mathbf{p}_e} - \omega)$$

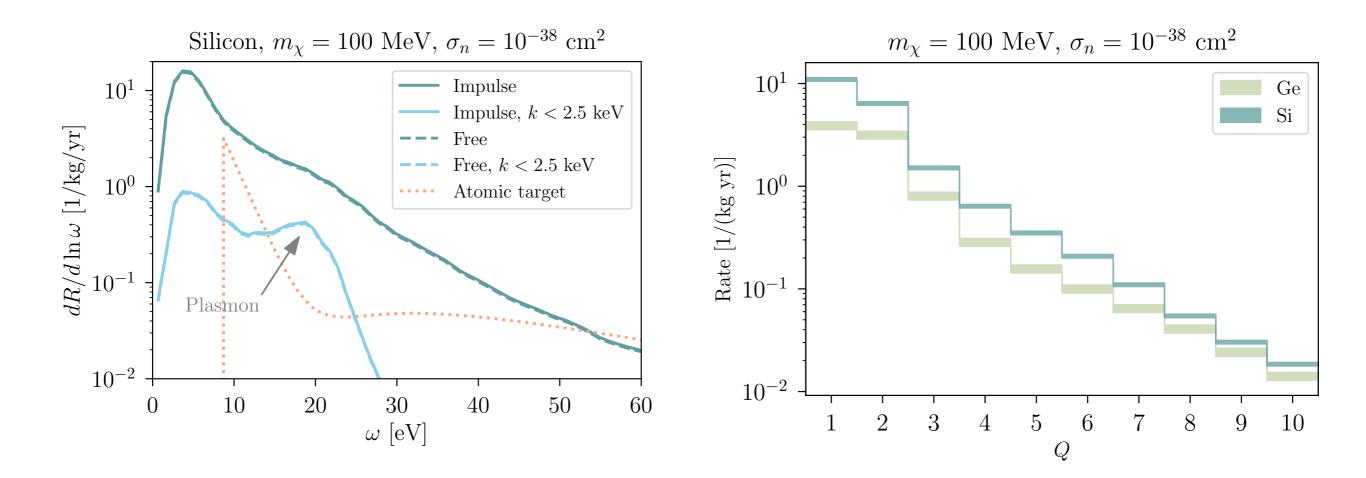
$$\begin{split} im_e \left\langle f \right| \mathbf{v}_N \cdot \sum_{\beta} \mathbf{r}_{\beta} \left| i \right\rangle \\ &= \mathbf{v}_N \cdot \frac{1}{\omega} \left\langle f | \Sigma_{\beta} \mathbf{p}_{\beta} | i \right\rangle \\ &= -\mathbf{v}_N \cdot \frac{1}{\omega^2} \left\langle f | \Sigma_{\beta} [\mathbf{p}_{\beta}, H_0] | i \right\rangle = \frac{-i}{\omega^2} \left\langle f | \sum_{\beta} \frac{Z_N \alpha \mathbf{v}_N \cdot \hat{\mathbf{r}}_{\beta}}{|\mathbf{r}_{\beta} - \mathbf{r}_N|^2} | i \right\rangle. \end{split}$$

Fourier transform (in time) of dipole potential from recoiling nucleus

Interpretation: the Migdal effect is just an in-medium analog of bremsstrahlung. The moving nucleus generates an electric field, which can excite an electron.

This operator relation does NOT hold in semiconductors. Starting from $\langle f | \mathbf{v}_N \cdot \mathbf{r} | i \rangle$ would generate the dipole potentials of all nuclei (that is, boosting all nuclei). We argue for starting from the dipole form.

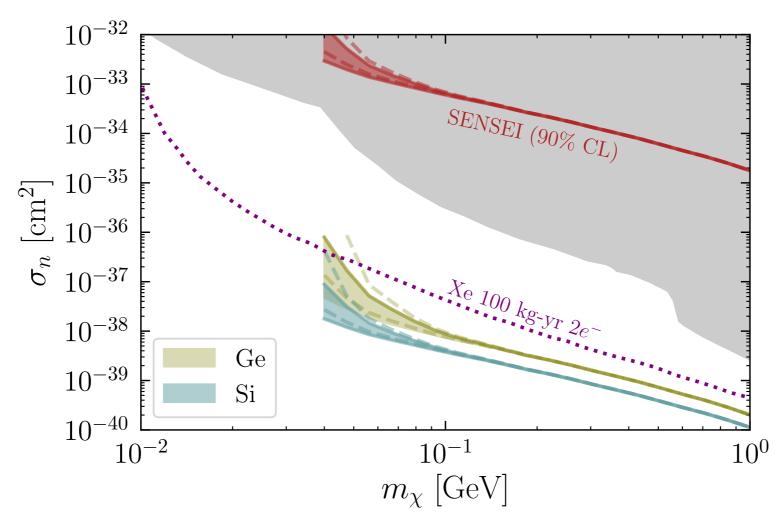
Full rate in semiconductors



Rate in semiconductors is much larger due to lower gap for excitations.

Sensitivity in semiconductors

1 kg-year exposure, with Q > 2 (similar to proposed experiments)



The Migdal effect in semiconductors can enhance sensitivity to nuclear recoils from sub-GeV dark matter

Summary

We presented the first derivation and calculation of the Migdal effect in semiconductors, which had previously been studied primarily in atomic targets.

To understand sub-GeV DM scattering in materials, we need to understand the material response, accounting for in-medium properties and collective excitations.

