Composite Higgs models at the LHC and beyond

Da Liu

Argonne National Laboratory

Outline

-Naturalness as guideline

Resonances in the composite
 Higgs models

- Indirect signatures

- Conclusion

Motivation

A first step towards the dynamics of EWSB!

A small parameter is natural if setting it to zero leads to an enhanced symmetry

Guideline for model building

 $\mathcal{L} = -m_{\psi}\bar{\psi}_{L}\psi_{R} - m_{\phi}^{2}\phi^{\dagger}\phi + gA_{\mu}\bar{\psi}\gamma^{\mu}\psi + y\phi\bar{\psi}_{L}\psi_{R} + \lambda(\phi^{\dagger}\phi)^{2}$

- Enhanced photon number conservation

$$g = 0 \Rightarrow [N_{\gamma}, H] = 0$$

- Enhanced scalar number conservation

$$y = 0 \Rightarrow [N_{\phi}, H] = 0$$

 $\mathcal{L} = -m_{\psi}\bar{\psi}_{L}\psi_{R} - m_{\phi}^{2}\phi^{\dagger}\phi + gA_{\mu}\bar{\psi}\gamma^{\mu}\psi + y\phi\bar{\psi}_{L}\psi_{R} + \lambda(\phi^{\dagger}\phi)^{2}$

- Enhanced chiral symmetry

$$m_{\psi} = 0 \implies \psi_L \to e^{i\alpha} \psi_L, \phi \to e^{i\alpha} \phi$$

- Enhanced Shift symmetry

$$m_{\phi} = 0, \quad \lambda = 0 \Rightarrow \phi \to \phi + c$$

$$\mathcal{L} = -m_{\psi}\bar{\psi}_{L}\psi_{R} - m_{\phi}^{2}\phi^{\dagger}\phi + gA_{\mu}\bar{\psi}\gamma^{\mu}\psi + y\phi\bar{\psi}_{L}\psi_{R} + \lambda(\phi^{\dagger}\phi)^{2}$$

- No enhanced symmetry

$$m_{\phi} = 0$$

- Small Higgs mass not natural

Naturalness as Guideline

- Compositeness

$$\Lambda_{\rm IR} \sim \Lambda_{\rm UV} e^{-8\pi^2/g_{\rm UV}^2}$$

- Supersymmetry

$$Q \left| \phi \right\rangle = \left| \psi \right\rangle$$
 Enhanced chiral symmetry

Composite Higgs models

Kaplan, Georgi & Dimopoulos Contino, Nomura and Pomarol Agashe, Contino and Pomarol

Composite Higgs models

$$g_* \equiv g_{\Psi}, g_{\rho}$$

Partial compositeness

Light Higgs wants Light top partners

$$\xi = \frac{v^2}{f^2}$$
 Measure the fine-tuning

D.M, M.S &J.S '12; A.P & F.R '12 O.M, G.P & A.W '12; A.D.S, O.M, R.R & A.W '12

Direct searches: Spin-1

Dibosons provide the smoking gun!

Pappadopulo, Thamm, Torre and Wulzer

Direct searches: spin-1/2

Simone, Matsedonskyi, Rattazzi and Wulzer

Direct searches: Single production

Lower mass threshold!

Simone, Matsedonskyi, Rattazzi and Wulzer

Cascade decays

Have kinematical advantage!

D. Greco and DL'14

DL, L.T. Wang and K. P. Xie '18

Indirect Signatures

Indirect Signature

- A set of selection rules
 - Preserve the nonlinearity: g*
 - Explicit breaking y_f, g, g'

Indirect Signature

Indirect Signature

$$\mathcal{O}_W = \frac{ig}{2m_*^2} (H^{\dagger} \sigma^a \overleftrightarrow{D^{\mu}} H) D^{\nu} W^a_{\mu\nu} \Rightarrow c_W \sim 1$$

Strong multipole interactions

DL, A. Pomarol, R. Rattazzi & F. Riva 16

Strong multipole interactions

$$\mathcal{O}_{2W} = -\frac{1}{2m_*^2} D^\mu W^a_{\mu\nu} D_\rho W^{a\rho\nu} \Rightarrow c_{2W} \sim \frac{g^2}{g_*^2} \qquad c_{2W} \sim 1$$

Strong multipole interactions

$$\mathcal{O}_{HW} = \frac{ig}{m_*^2} (D^{\mu}H)^{\dagger} \sigma^a (D^{\nu}H) W^a_{\mu\nu} \Rightarrow c_{HW} \sim \frac{g_*^2}{16\pi^2}, \quad 1 \qquad \frac{g_*}{g}$$

Mass scale reach HL-LHC

Model	Di-boson	S-parameter	LHC $h \to Z\gamma$	LHC $h \rightarrow \gamma \gamma$	LHC dilepton
SILH	4.0	2.5	$1.7\sqrt{\frac{g_*}{4\pi}}$	0.34	$0.69\sqrt{\frac{4\pi}{g_*}}$
Remedios	$10.6\sqrt{\frac{g_*}{4\pi}}$				13.4
Remedios+MCHM	$10.6\sqrt{\frac{g_{*}}{4\pi}}$	2.5	1.7	6.5	13.4
Remedios+ $ISO(4)$	$17.6\sqrt{\frac{g_*}{4\pi}}$	2.5	$7.5\sqrt{\frac{g_*}{4\pi}}$	6.5	13.4

 Precision measurement at the HL-LHC will be very promising.

 A lot of data can make a big difference here!

DL and L.T.Wang '18

Beyond the LHC

More from Higgs non-linearity

 $\mathcal{L}_2 \propto f^2 \mathrm{Tr}[d_\mu d^\mu]$

C. Cheung, K. Kampf, J. Novotny, C.H. Shen and J. Trnka 16

Soft bootstrap

$$\pi^{a'} = \pi^a + [F_1(\mathcal{T})]_{ab} \epsilon^b, \quad [F_1(0)]_{ab} = \delta^{ab}$$

I. Low:1412.2145,1412.2146

Soft bootstrap

- Finding the covariant objects

$$d^a_\mu(\pi,\partial) = \frac{\sqrt{2}}{f} [F_2(\mathcal{T})]_{ab} \partial_\mu \pi^b , \quad E^i_\mu(\pi,\partial) = \frac{2}{f^2} \partial_\mu \pi^a [F_4(\mathcal{T})]_{ab} (T^i \pi)^b$$

- The solution is unique

$$F_1(\mathcal{T}) = \sqrt{\mathcal{T}} \cot \sqrt{\mathcal{T}}, \qquad F_2(\mathcal{T}) = \frac{\sin \sqrt{\mathcal{T}}}{\sqrt{\mathcal{T}}}, \qquad F_4(\mathcal{T}) = -\frac{2i}{\mathcal{T}} \sin^2 \frac{\sqrt{\mathcal{T}}}{2}$$

I. Low:1412.2145,1412.2146

A set of unknown Wilson coefficients

More from Higgs non-linearity

$$\partial_{\mu} \to \partial_{\mu} - igW^{r}_{\mu}T^{rL} - ig'B_{\mu}T^{3R}$$

$$d^{a}_{\mu} = \delta^{a4} \sqrt{2} \frac{\partial_{\mu} h}{f} + \frac{\delta^{ar}}{\sqrt{2}} \sin(\theta + h/f) (W^{r}_{\mu} - \delta^{r3} B_{\mu})$$

Signs of Higgs non-linearity

More from Higgs non-linearity

$$\partial_{\mu} \to \partial_{\mu} - igW^{r}_{\mu}T^{rL} - ig'B_{\mu}T^{3R}$$

$$(E_{\mu}^{L/R})^{r} = \frac{1 \pm \cos(\theta + h/f)}{2} W_{\mu}^{r} + \frac{1 \mp \cos(\theta + h/f)}{2} B_{\mu} \delta^{r3}$$

Signs of Higgs non-linearity

Prediction from Higgs non-linearity

D. Liu, I. Low and Z. Yin '18

Predictions from Higgs non-linearity

D. Liu, I. Low and Z. Yin '18

Prediction from Higgs non-linearity

D. Liu, I. Low and Z. Yin '18

Conclusion

 Compositeness is an elegant way to address the hierarchy problem.

 Resonance searches and precision measurement are both important.

- Higgs non-linearity predicts universal relations, can be probed in the future electron collider.

Back-up Slides

Effective Operators

We are focusing on the following dimension-six operators:

$$\begin{split} \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a}, \qquad \mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{2W} &= -\frac{1}{2} D^{\mu} W_{\mu\nu}^{a} D_{\rho} W^{a\rho\nu}, \qquad \mathcal{O}_{2B} = -\frac{1}{2} \partial^{\mu} B_{\mu\nu} \partial_{\rho} B^{\rho\nu} \\ \mathcal{O}_{HW} &= ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a}, \qquad \mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ \mathcal{O}_{3W} &= \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^{b} W^{c\rho\mu}, \qquad \mathcal{O}_{T} = \frac{g^{2}}{2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) (H^{\dagger} \overleftrightarrow{D}_{\mu}) H \\ \mathcal{O}_{R}^{u} &= ig'^{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \bar{u}_{R} \gamma^{\mu} u_{R}, \qquad \mathcal{O}_{R}^{d} = ig'^{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \bar{d}_{R} \gamma^{\mu} d_{R} \\ \mathcal{O}_{L}^{q} &= ig'^{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \bar{Q}_{L} \gamma^{\mu} Q_{L}, \qquad \mathcal{O}_{L}^{(3)q} &= ig^{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right) \bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L} \end{split}$$

$$\mathscr{L} = \mathscr{L}_{\mathrm{SM}} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$$

Helicity structure for WW

 $q_L \bar{q}_R \to W^+ W^-$

(h_{W^+},h_{W^-})	SM	\mathcal{O}_W	\mathcal{O}_{HW}	\mathcal{O}_B	\mathcal{O}_{HB}	\mathcal{O}_{3W}
(\pm,\mp)	1	0	0	0	0	0
(0, 0)	1	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	0
$(0,\pm),(\pm,0)$	$\frac{m_W}{E}$	$\frac{Em_W}{\Lambda^2}$	$rac{Em_W}{\Lambda^2}$	$\frac{Em_W}{\Lambda^2}$	$\frac{Em_W}{\Lambda^2}$	$rac{Em_W}{\Lambda^2}$
(\pm,\pm)	$\frac{m_W^2}{E^2}$	$\frac{m_W^2}{\Lambda^2}$	$rac{m_W^2}{\Lambda^2}$	$\frac{m_W^2}{\Lambda^2}$	0	$\frac{E^2}{\Lambda^2}$

 $q_R \bar{q}_L \rightarrow W^+ W^-$

(h_{W^+},h_{W^-})	SM	\mathcal{O}_W	\mathcal{O}_{HW}	\mathcal{O}_B	\mathcal{O}_{HB}	\mathcal{O}_{3W}
(\pm,\mp)	0	0	0	0	0	0
(0, 0)	1	$rac{m_W^2}{\Lambda^2}$	$rac{m_W^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	0
$(0,\pm),(\pm,0)$	$\frac{m_W}{E}$	$rac{m_W^2 m_Z^2}{\Lambda^2 E^2}$	$rac{Em_W}{\Lambda^2}$	$\frac{Em_W}{\Lambda^2}$	$\frac{Em_W}{\Lambda^2}$	$rac{m_W^2 m_Z^2}{\Lambda^2 E^2}$
(\pm,\pm)	$\frac{m_W^2}{E^2}$	$rac{m_W^2}{\Lambda^2}$	$rac{m_W^2}{\Lambda^2}$	$\frac{m_W^2}{\Lambda^2}$	0	$rac{m_W^2}{\Lambda^2}$

\mathcal{I}^h_i	$rac{m_W^2}{m_ ho^2} C_i^h (\mathrm{ILC})$
(1) $h Z_{\mu} \mathcal{D}^{\mu\nu} Z_{\nu} / v$	$5.83 imes10^{-4}$
(2) $h Z_{\mu\nu} Z^{\mu\nu} / v$	$3.93 imes10^{-4}$
(3) $h Z_{\mu} \mathcal{D}^{\mu\nu} A_{\nu} / v$	
$(4) h Z_{\mu\nu} A^{\mu\nu} / v$	$3.88 imes 10^{-4}$
\mathcal{I}_i^{3V}	$rac{m_W^2}{m_ ho^2}C_i^{3V}(\mathrm{ILC})$
$(\delta g_1^Z) i g c_w W^{+\mu\nu} W^\mu Z_ u + h.c.$	$6.1 imes 10^{-4}$
$(\delta\kappa_{\gamma})ieW^+_{\mu}W^{ u}A^{\mu u}$	$6.4 imes 10^{-4}$
$\frac{(\delta g_1^Z) i g c_w W^{+\mu\nu} W^{\mu} Z_{\nu} + h.c.}{(\delta \kappa_{\gamma}) i e W^+_{\mu} W^{\nu} A^{\mu\nu}}$	6.1×10^{-4} 6.4×10^{-4}

$$ext{UR1}: rac{N_{ ext{UR1}}}{\delta\kappa_{\gamma}} = \sqrt{1-\xi} \; .$$

(a) Measured ξ as a function of $\delta \kappa_{\gamma}$, using N_{UR1} as an input.

M. Luty and T. Okui 04

Conformal Technicolor

From R. Rattazzi, V. Rychkov, E. Tonni and A. Vichi 08