The WIMP Next Door: Simplified Models for Hidden Sector Dark Matter

Jared A. Evans

jaredaevans@gmail.com

Department of Physics University of Illinois, Urbana-Champaign

JAE, Gori, Shelton - 170[5-6].xxxxx

The WIMP Next Door

What we know

What we know

The cynic's response: NOTHING

What we know

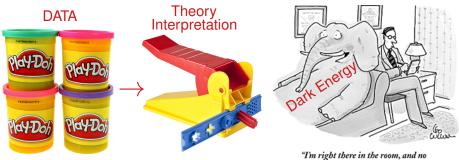
The cynic's response: NOTHING

"Tm right there in the room, and no one even acknowledges me."

What we know

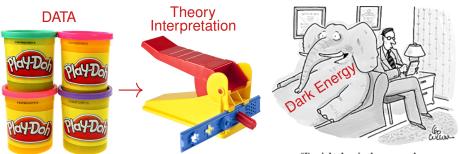
The cynic's response: NOTHING

DATA



"Tm right there in the room, and no one even acknowledges me."

What we know


The cynic's response: NOTHING

"I'm right there in the room, and no one even acknowledges me."

What we know

The cynic's response: NOTHING

"Tm right there in the room, and no one even acknowledges me."

Three possibilities:

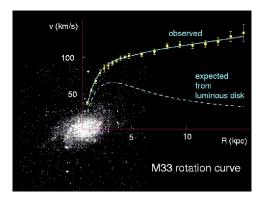
Explain the elephant

Find flaw(s) in data

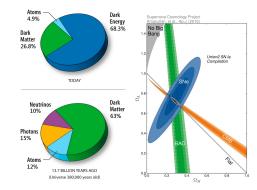
Fix our fun factory

What we know

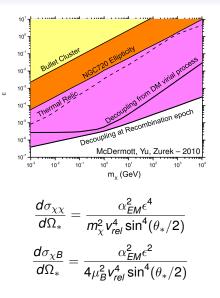
The cynic's response: NOTHING

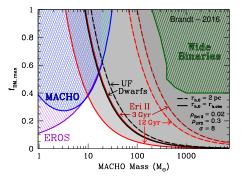


Evans (UIUC)


The WIMP Next Door

What we know (what elephant?)


1. It exists - LOTS of evidence


- 1. It exists LOTS of evidence
- 2. There is a lot of it

- 1. It exists LOTS of evidence
- 2. There is a lot of it
- 3. It is dark

- 1. It exists LOTS of evidence
- 2. There is a lot of it
- 3. It is dark
- 4. It isn't MACHOs (baryons)

- 1. It exists LOTS of evidence
- 2. There is a lot of it
- 3. It is dark
- 4. It isn't MACHOs (baryons)
- 5. Self-interactions aren't huge

What we know (what elephant?)

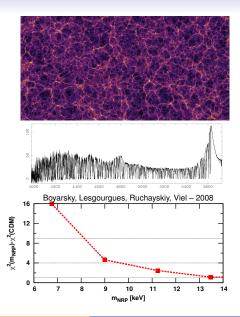
- 1. It exists LOTS of evidence
- 2. There is a lot of it
- 3. It is dark
- 4. It isn't MACHOs (baryons)
- 5. Self-interactions aren't huge
- 6. It isn't too light

Boson: deBroglie wavelength $\lambda_{dB} = \frac{2\pi}{mv} \lesssim 1 \text{ kpc}$

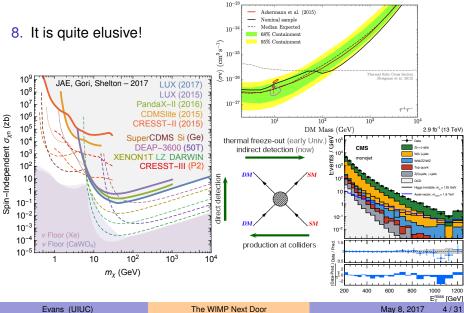
$$m_{DM} \ge 1 imes 10^{-22} \ {
m eV}$$

Hu, Barkana, Gruzinov – 2000 Hui, Ostriker, Tremaine, Witten – 2016

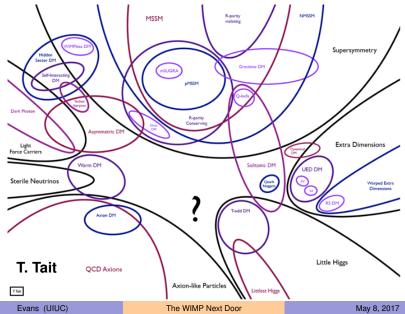
Fermion: Pauli exclusion principle \Rightarrow can't fit enough DM in dwarfs


 $m_{DM} \ge 410 \text{ eV}$

Tremaine, Gunn – 1979 Boyarsky, Ruchayskiy, lakubovsky – 2008


What we know (what elephant?)

- 1. It exists LOTS of evidence
- 2. There is a lot of it
- 3. It is dark
- 4. It isn't MACHOs (baryons)
- 5. Self-interactions aren't huge
- 6. It isn't too light


7. It isn't hot

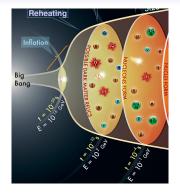
What we know

What it could be

5/31

- WIMP Freezeout
- Hidden Sector Freezeout
- Sommerfeld Enhancement
- Vector Simplified Model
- Scalar Simplified Model
- Future Direction & Conclusions

Everything is preliminary!

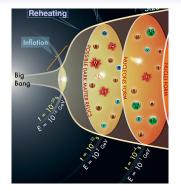

Evans (UIUC)

The WIMP Next Door

Thermal Freezeout in the Early Universe

• After reheating, universe expands and cools adiabatically,

Expansion rate:
$$H \propto \frac{T^2}{M_{ol}}$$

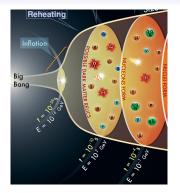


Thermal Freezeout in the Early Universe

• After reheating, universe expands and cools adiabatically,

Expansion rate: $H \propto \frac{T^2}{M_{pl}}$

- Rapid collisions keep SM in equilibrium
- Thermodynamics dictates properties, $n_{relativistic} \propto T^3, \ n_{massive} \propto (mT)^{\frac{3}{2}} e^{-\frac{m}{T}}$

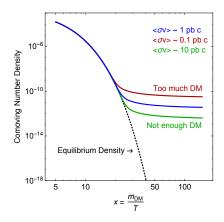


Thermal Freezeout in the Early Universe

• After reheating, universe expands and cools adiabatically,

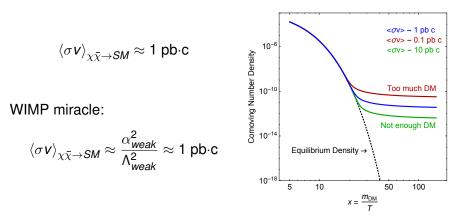
Expansion rate: $H \propto \frac{T^2}{M_{pl}}$

- Rapid collisions keep SM in equilibrium
- Thermodynamics dictates properties, $n_{relativistic} \propto T^3, \ n_{massive} \propto (mT)^{\frac{3}{2}} e^{-\frac{m}{T}}$


For Dark Matter, χ (any state with approximate **Z**₂):

- Falling $n_{\chi} \Rightarrow \Gamma_{\Delta \#} = n_{\chi} \langle \sigma v \rangle_{\chi \bar{\chi} \to SM} < H$
- Number changing ceases, and χ departs *chemical equilibrium*

WIMP Miracle


Dark matter freezeout gives observed relic dark matter abundance for

$$\langle \sigma v \rangle_{\chi \bar{\chi} \to SM} \approx 1 \text{ pb-c}$$

WIMP Miracle

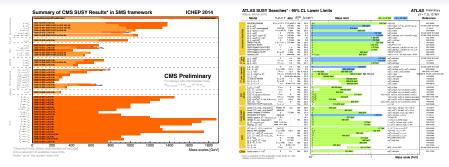
Dark matter freezeout gives observed relic dark matter abundance for

TeV scale mass and SU(2)_L interaction can provide our dark matter!

Evans	U	IUC)	

WIMP Miracle

Dark matter freezeout gives observed relic dark matter abundance for



TeV scale mass and $SU(2)_L$ interaction can provide our dark matter! Natural models like SUSY have perfect candidates (neutralino)!

Evans	ſŪ	III.	IC'
Evano i		10	0

The WIMP Next Door

WIMP Schmiracle

No evidence of SUSY (or top partners or anything else) SUSY WIMP parameter space remains, but outlook not great

WIMP Schmiracle

Dark Matter	$Z,{\rm Higgs}$ Coupling	Direct	Status	XENON1T	Indirect $(10^{-26} \text{ cm}^3/\text{s})$
Majorana Fermion	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi Z_{\mu}$	$\sigma_{\scriptscriptstyle SD} \sim 1$	$m_{\chi} \sim m_Z/2$	Yes	$\sigma v \simeq \text{small}$
			or $m_\chi \gtrsim 190 \text{ GeV}$	Up to 440 ${\rm GeV}$	$\sigma v \simeq 2.1 - 2.3$
Dirac Fermion	$\bar{\chi}\gamma^{\mu}\chi Z_{\mu}$	$\sigma_{\scriptscriptstyle SI} \sim 1$	$m_\chi \gtrsim 6 \text{ TeV}$	Yes	$\sigma v \simeq 2.1 - 2.3$
Dirac Fermion	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi Z_{\mu}$	$\sigma_{\scriptscriptstyle SD} \sim 1$	$m_{\chi} \sim m_Z/2$	Yes	$\sigma v \simeq \text{small}$
			or $m_\chi\gtrsim 240~{\rm GeV}$	Up to 570 ${\rm GeV}$	$\sigma v \simeq 2.1 - 2.3$
Complex Scalar	$\phi^{\dagger} \overleftrightarrow{\partial_{\mu}} \phi Z^{\mu}, \phi^2 Z^{\mu} Z_{\mu}$	$\sigma_{_{SI}}\sim 1$	Excluded	-	-
Complex Vector	$(X^{\dagger}_{\nu}\partial_{\mu}X^{\nu} + h.c.)Z^{\mu}$	$\sigma_{\scriptscriptstyle SI} \sim 1$	Excluded	-	-
Real Scalar	$\phi^2 H^2$	$\sigma_{_{SI}}\sim 1$	$m_{\chi} \sim m_H/2$	Maybe	$\sigma v \simeq 0.0012 - 0.019$
			or $m_{\chi} \gtrsim 400 \text{ GeV}$	Up to 5 TeV	$\sigma v \simeq 2.1 - 2.3$
Complex Scalar	$\phi^2 H^2$	$\sigma_{\scriptscriptstyle SI} \sim 1$	$m_{\chi} \sim m_H/2$	Maybe	$\sigma v \simeq 0.0019 - 0.017$
			or $m_\chi\gtrsim 840~{\rm GeV}$	Up to 10 TeV	$\sigma v \simeq 2.1 - 2.3$

Escudero, Berlin, Hooper, Lin - 2016

No evidence of SUSY (or top partners or anything else) SUSY WIMP parameter space remains, but outlook not great

Renormalizable minimal models are heavily constrained Some territory remains, but not much for long

WIMP Schmiracle

Dark Matter	Z, Higgs Coupling	Direct	Status	XENON1T	Indirect $(10^{-26} \text{ cm}^3/\text{s})$
Majorana Fermion	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi Z_{\mu}$	$\sigma_{\scriptscriptstyle SD} \sim 1$	$m_{\chi} \sim m_Z/2$	Yes	$\sigma v \simeq \text{small}$
			or $m_\chi\gtrsim 190~{\rm GeV}$	Up to 440 ${\rm GeV}$	$\sigma v \simeq 2.1 - 2.3$
Dirac Fermion	$\bar{\chi}\gamma^{\mu}\chi Z_{\mu}$	$\sigma_{_{SI}}\sim 1$	$m_\chi \gtrsim 6 \text{ TeV}$	Yes	$\sigma v \simeq 2.1 - 2.3$
Dirac Fermion	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi Z_{\mu}$	$\sigma_{\scriptscriptstyle SD} \sim 1$	$m_{\chi} \sim m_Z/2$	Yes	$\sigma v \simeq \text{small}$
			or $m_\chi\gtrsim 240~{\rm GeV}$	Up to 570 ${\rm GeV}$	$\sigma v \simeq 2.1 - 2.3$
Complex Scalar	$\phi^{\dagger} \overleftrightarrow{\partial_{\mu}} \phi Z^{\mu}, \ \phi^2 Z^{\mu} Z_{\mu}$	$\sigma_{_{SI}}\sim 1$	Excluded	-	-
Complex Vector	$(X^{\dagger}_{\nu}\partial_{\mu}X^{\nu} + h.c.)Z^{\mu}$	$\sigma_{_{SI}}\sim 1$	Excluded	-	-
Real Scalar	$\phi^2 H^2$	$\sigma_{_{SI}}\sim 1$	$m_{\chi} \sim m_H/2$	Maybe	$\sigma v \simeq 0.0012 - 0.019$
			or $m_{\chi} \gtrsim 400 \text{ GeV}$	Up to 5 TeV	$\sigma v \simeq 2.1 - 2.3$
Complex Scalar	$\phi^2 H^2$	$\sigma_{\scriptscriptstyle SI} \sim 1$	$m_{\chi} \sim m_H/2$	Maybe	$\sigma v \simeq 0.0019 - 0.017$
			or $m_\chi\gtrsim 840~{\rm GeV}$	Up to 10 TeV	$\sigma v \simeq 2.1 - 2.3$

Escudero, Berlin, Hooper, Lin - 2016

No evidence of SUSY (or top partners or anything else) SUSY WIMP parameter space remains, but outlook not great

Renormalizable minimal models are heavily constrained Some territory remains, but not much for long

Perhaps the WIMP miracle is a red herring?

Minimal idea - keep thermal freezeout, lose the weak scale

Minimal idea - keep thermal freezeout, lose the weak scale

Consider new, electrically neutral dark particle:

• Scalar, ϕ • Fermion, χ • Vector, V

Couple to standard model – allowable dim \leq 4 couplings:

$$\begin{array}{c} \chi HL \\ \phi H^{\dagger} H \\ B^{\mu\nu} V_{\mu\nu} \\ \phi |^{2} H^{\dagger} H \end{array}$$

Minimal idea – keep thermal freezeout, lose the weak scale

Consider new, electrically neutral dark particle:

• Scalar, ϕ • Fermion, χ • Vector, V

Couple to standard model – allowable dim \leq 4 couplings:

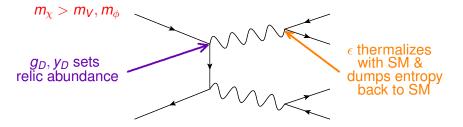
 $\chi HL \\ \phi H^{\dagger} H \\ B^{\mu\nu} V_{\mu\nu} \\ |\phi|^2 H^{\dagger} H$ Viable model, but constrained

Real Scalar	$\phi^2 H^2$	$\sigma_{_{SI}}\sim 1$	$m_{\chi} \sim m_H/2$	Maybe	$\sigma v \simeq 0.0012 - 0.019$
			or $m_\chi \gtrsim 400 \text{ GeV}$	Up to 5 TeV	$\sigma v \simeq 2.1-2.3$
Complex Scalar	$\phi^2 H^2$	$\sigma_{_{SI}}\sim 1$	$m_{\chi} \sim m_H/2$	Maybe	$\sigma v \simeq 0.0019 - 0.017$
			or $m_\chi \gtrsim 840 \text{ GeV}$	Up to 10 TeV	$\sigma v \simeq 2.1-2.3$

Escudero, Berlin, Hooper, Lin - 2016

Minimal idea - keep thermal freezeout, lose the weak scale

One-step more complicated than a standard WIMP:


Hidden sector freezeout $\chi \bar{\chi} \rightarrow VV/\phi \phi$

Minimal idea – keep thermal freezeout, lose the weak scale

One-step more complicated than a standard WIMP:

Hidden sector freezeout $\chi \bar{\chi} \rightarrow VV/\phi \phi$

Dark Matter	Mediator	Interaction	Portal
Dirac χ	Vector V	$g_D V_\mu \bar{\chi} \gamma_\mu \chi$	$\epsilon B^{\mu u} V_{\mu u}$
Majorana χ	Scalar ϕ	$y_D \phi \chi \chi$	$\epsilon \phi ^2 H^{\dagger} H$

Pospelov, Ritz, Voloshin - 07; Feng, Kumar - 08; Feng, Tu, Yu - 08; ...

The Models

Minimal Hidden Sector Vector Model ($\epsilon \ll 1$):

$$\mathcal{L}_{Z_D} = g_D Z_{D,\mu} \bar{\chi} \gamma^{\mu} \chi + \frac{1}{2} m_{Z_D}^2 Z_D^{\mu} Z_{D\mu} + m_{\chi} \bar{\chi} \chi + \frac{\epsilon}{2 \cos \theta} Z_{D\mu\nu} B^{\mu\nu}$$

Free parameters: $m_{\chi}, m_{Z_D}, \epsilon, g_D \leftarrow \text{fixed by relic abundance}$

The Models

Minimal Hidden Sector Vector Model ($\epsilon \ll 1$):

$$\mathcal{L}_{Z_D} = g_D Z_{D,\mu} \bar{\chi} \gamma^{\mu} \chi + \frac{1}{2} m_{Z_D}^2 Z_D^{\mu} Z_{D\mu} + m_{\chi} \bar{\chi} \chi + \frac{\epsilon}{2 \cos \theta} Z_{D\mu\nu} B^{\mu\nu}$$

Free parameters: $m_{\chi}, m_{Z_D}, \epsilon, g_D \leftarrow \text{fixed by relic abundance}$

Minimal Hidden Sector Scalar Model ($\epsilon \ll 1$):

$$\mathcal{L}_{S} = -\frac{1}{2} (y_{D}S) (\chi \chi + \text{h.c.}) + \frac{\mu_{s}^{2}}{2}S^{2} - \frac{\lambda_{s}}{4!}S^{4} - \frac{\epsilon}{2}S^{2}|H|^{2}$$

Free parameters: m_{χ} , m_s , $\sin \theta \propto \epsilon$, $y_D \leftarrow$ fixed by relic abundance

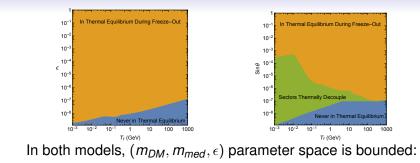
The Models

Minimal Hidden Sector Vector Model ($\epsilon \ll 1$):

$$\mathcal{L}_{Z_D} = g_D Z_{D,\mu} \bar{\chi} \gamma^{\mu} \chi + \frac{1}{2} m_{Z_D}^2 Z_D^{\mu} Z_{D\mu} + m_{\chi} \bar{\chi} \chi + \frac{\epsilon}{2 \cos \theta} Z_{D\mu\nu} B^{\mu\nu}$$

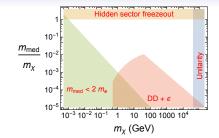
Free parameters: $m_{\chi}, m_{Z_D}, \epsilon, g_D \leftarrow \text{fixed by relic abundance}$

Minimal Hidden Sector Scalar Model ($\epsilon \ll 1$):


$$\mathcal{L}_{S} = -\frac{1}{2} \left(y_{D} S \right) \left(\chi \chi + \text{h.c.} \right) + \frac{\mu_{s}^{2}}{2} S^{2} - \frac{\lambda_{s}}{4!} S^{4} - \frac{\epsilon}{2} S^{2} |H|^{2}$$

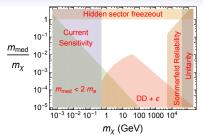
Free parameters: m_{χ} , m_s , $\sin \theta \propto \epsilon$, $y_D \leftarrow$ fixed by relic abundance

Probe	Constraints (examples)	Suppression
Relic abundance	Planck, Supernova, BAO	None
Indirect detection	Fermi, AMS-02, Planck	None
Direct detection	LUX, CDMSlite, CRESST-II	ϵ^2
Colliders	Atlas, CMS	ϵ^2
Precision	LHCb, Belle, CHARM, (SHiP)	ϵ^2 (mediator)


Evans (UIUC)

The Models

BoundReason $\epsilon \gtrsim 10^{-7} - 10^{-9}$ SM and hidden sector thermalize


The Models

In both models, $(m_{DM}, m_{med}, \epsilon)$ parameter space is bounded:

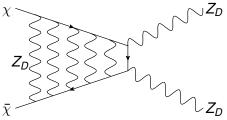
Bound	Reason	
$\epsilon \gtrsim 10^{-7} - 10^{-9}$	SM and hidden sector thermalize	
$m_{DM} > m_{med}$	hidden sector freezeout	
$m_{DM}\lesssim 50 TeV$	unitarity	
$m_{med} > 2m_e$	do not disrupt BBN (and other constraints)	
$m_{med}/m_{DM} > ?$	Direct Detection + ϵ bound	

The Models

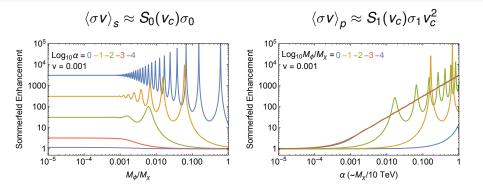
In both models, $(m_{DM}, m_{med}, \epsilon)$ parameter space is bounded:

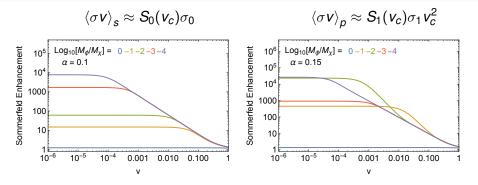
Reason		
SM and hidden sector thermalize		
hidden sector freezeout		
unitarity		
do not disrupt BBN (and other constraints)		
Direct Detection + ϵ bound		
Current experimental sensitivity		
Reliable freezeout with Sommerfeld Enhancement		

Evans (UIUC)


The WIMP Next Door

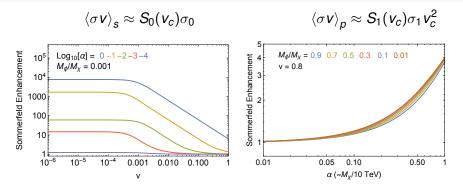
Light mediators & Low velocities $\Rightarrow \langle \sigma \mathbf{v} \rangle$ is Sommerfeld enhanced


SE: Non-relativistic QM effect from particles feeling each other's potential $^{\chi}$


Largest for:

- small velocity, v
- small mass ratio, $R = \frac{m_{med}}{m_{DM}}$
- large coupling strength, α

$$\begin{split} \sigma \mathbf{v}|_{\mathbf{s}-\mathbf{w}\mathbf{a}\mathbf{v}\mathbf{e}} &\approx \mathbf{S}_0(\alpha,\mathbf{R},\mathbf{v})\sigma_0 + \mathcal{O}\left(\mathbf{v}^2\right)\\ \sigma \mathbf{v}|_{\mathbf{p}-\mathbf{w}\mathbf{a}\mathbf{v}\mathbf{e}} &\approx \mathbf{S}_1(\alpha,\mathbf{R},\mathbf{v})\sigma_1\mathbf{v}^2 + \mathcal{O}\left(\mathbf{v}^4\right) \end{split}$$



Affects:

- Annihilation at CMB $v_c \lesssim 10^{-7}$
- The Milky Way $v_c \sim 1.7 imes 10^{-3}$
- Dwarfs $v_c \sim 10^{-4}$

• Freezeout –
$$v_c \sim \sqrt{\frac{6T}{m_\chi}}$$

Affects:

- Annihilation at CMB $v_c \lesssim 10^{-7}$
- The Milky Way $v_c \sim 1.7 imes 10^{-3}$
- Dwarfs $v_c \sim 10^{-4}$ • Freezeout $- v_c \sim \sqrt{\frac{6T}{m_\chi}}$

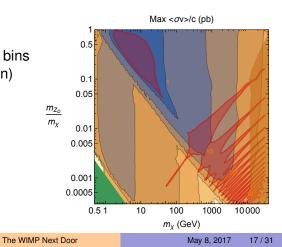
Freezeout is greatly perturbed, reliability condition: $\alpha|_{w/o SE}/\alpha|_{w/SE} > 2$

Vector Model

$$\mathcal{L}_{Z_{D}} = g_{D} Z_{D,\mu} \bar{\chi} \gamma^{\mu} \chi + \frac{1}{2} m_{Z_{D}}^{2} Z_{D}^{\mu} Z_{D\mu} + m_{\chi} \bar{\chi} \chi + \frac{\epsilon}{2 \cos \theta} Z_{D\mu\nu} B^{\mu\nu}$$

Free parameters: $m_{\chi}, m_{Z_D}, \epsilon \ll 1, g_D \leftarrow \text{fixed by relic abundance}$

Teaching us about pulsars since 1998


Several sources for indirect detection of annihilating dark matter:

Photons at Fermi-LAT (dwarfs most sensitive!)

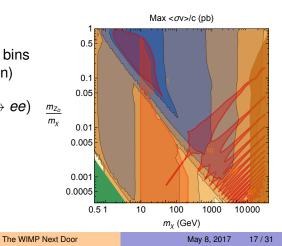
Fermi : use 41 dwarfs \times 24 *E* bins (dwarf $\langle \sigma v \rangle$ constraint shown)

 $m_{med} > 2m_e$

Sommerfeld Condition

Teaching us about pulsars since 1998

Several sources for indirect detection of annihilating dark matter:


- Photons at Fermi-LAT (dwarfs most sensitive!)
- Positrons at AMS-02 Elor, Rodd, Slatyer, Xue 2015

Fermi : use 41 dwarfs \times 24 *E* bins (dwarf $\langle \sigma v \rangle$ constraint shown)

AMS-02 : use
$$\langle \sigma v \rangle \times BR(Z_D \to ee)$$

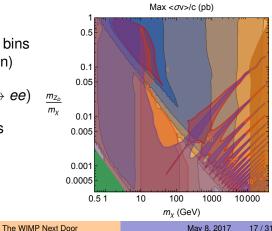
 $m_{med} > 2m_e$

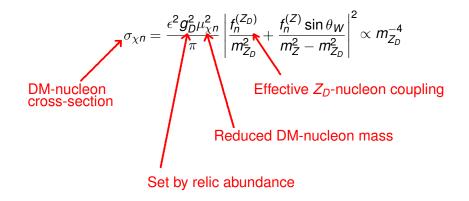
Sommerfeld Condition

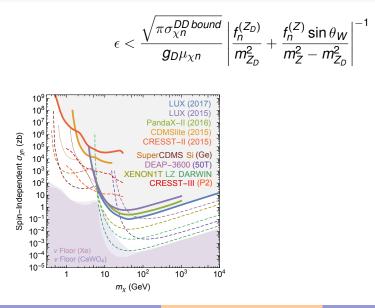
Teaching us about pulsars since 1998

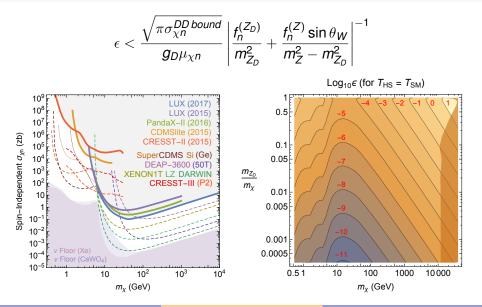
Several sources for indirect detection of annihilating dark matter:

- Photons at Fermi-LAT (dwarfs most sensitive!)
- Positrons at AMS-02 Elor, Rodd, Slatyer, Xue 2015
- CMB spectral distortions at PLANCK, SPT, etc Slatyer 2015

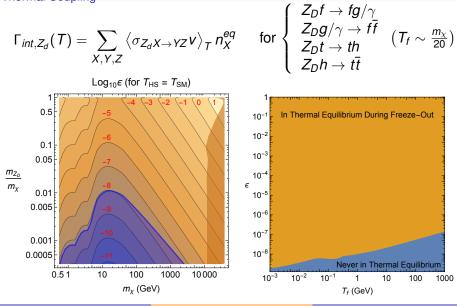

Fermi : use 41 dwarfs \times 24 *E* bins (dwarf $\langle \sigma v \rangle$ constraint shown)

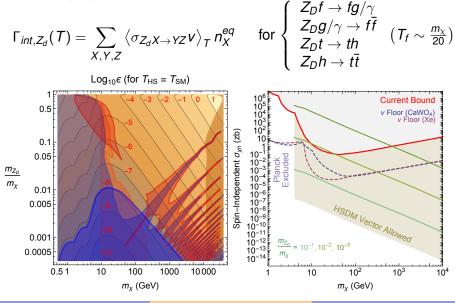

AMS-02 : use
$$\langle \sigma \mathbf{v} \rangle \times \mathsf{BR}(\mathbf{Z}_D \to \mathbf{ee})$$


CMB: combine all decay paths

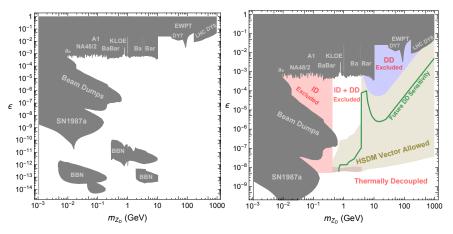

 $m_{med} > 2m_e$

Sommerfeld Condition

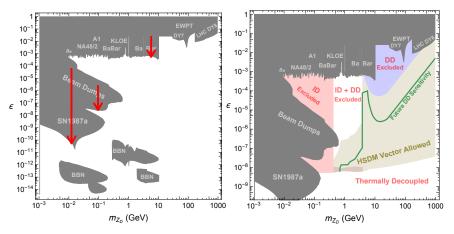


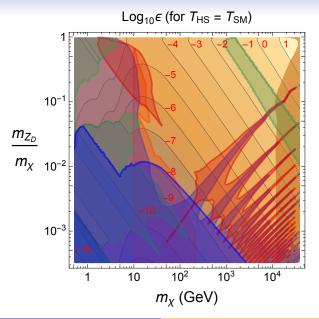


Thermal Coupling


Thermal Coupling

Mono-X production of $\chi\bar{\chi}$ at colliders is very suppressed...


Mono-X production of $\chi\bar{\chi}$ at colliders is very suppressed...


... but there are many constraints on the mediator!

Mono-X production of $\chi\bar{\chi}$ at colliders is very suppressed...

... but there are many constraints on the mediator!

EXCLUDED:
Fermi (
$$\gamma$$
)
AMS-02 (e^+)
Planck (CMB)

Other: Thermal Decoupling Constraint: $Z_D > DD$

Sommerfeld

How generic are the features of the simplified model?

A simplified model is only as interesting as it is general

Modification	Effect	Comments
Additional Heavy States	No effect	Can thermalize, if connected to SM
Additional DM (global sym)	Increased FO coupling	$g_D ightarrow g_D \sqrt{N} \Rightarrow$ stronger DD
Vector→V-A	$\mathcal{O}(1)$ corrections	Qualitatively identical
Dark Higgs	Can be irrelevant	Could also dominate the story
Pseudo-Dirac	Reduced DD	Inelastic dark matter
Majorana	Reduced DD	
New Z ₂ Light States	Additional DM or DR	Changes DM story, constraints
Other New Light States	Depends	Can change things a lot
$Z_D \rightarrow invisible$	Weaker ID bounds	Additional light states

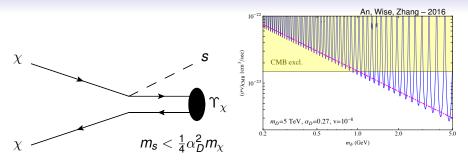
How generic are the features of the simplified model?

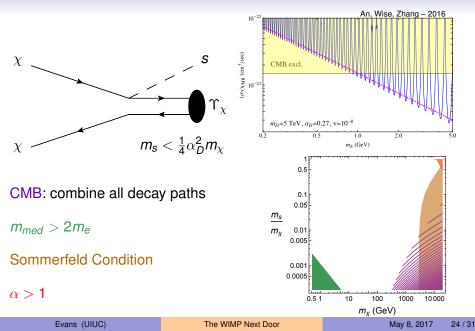
A simplified model is only as interesting as it is general

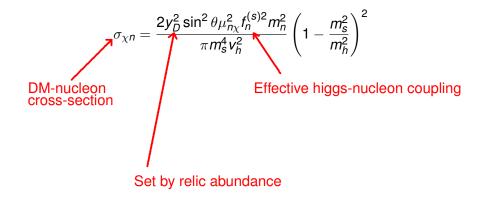
Modification	Effect	Comments
Additional Heavy States	No effect	Can thermalize, if connected to SM
Additional DM (global sym)	Increased FO coupling	$g_D o g_D \sqrt{N} \Rightarrow$ stronger DD
Vector→V-A	$\mathcal{O}(1)$ corrections	Qualitatively identical
Dark Higgs	Can be irrelevant	Could also dominate the story
Pseudo-Dirac	Reduced DD	Inelastic dark matter
Majorana	Reduced DD	
New Z ₂ Light States	Additional DM or DR	Changes DM story, constraints
Other New Light States	Depends	Can change things a lot
$Z_D \rightarrow invisible$	Weaker ID bounds	Additional light states

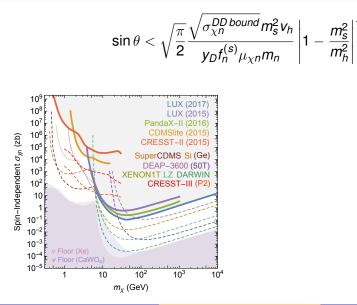
In short, the simplified model is for the freezeout story!

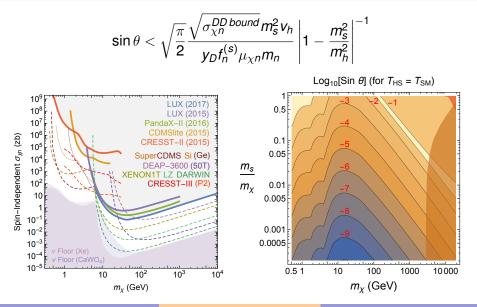
Changes that modify this minimally have less impact

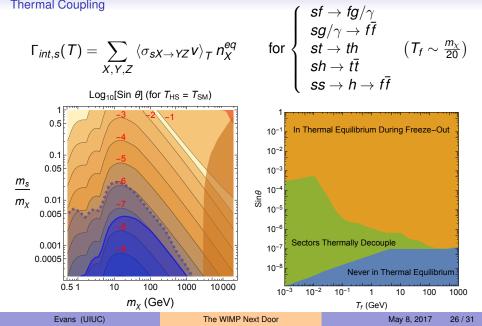

Need dark vector and dark matter as the lightest states of the sector

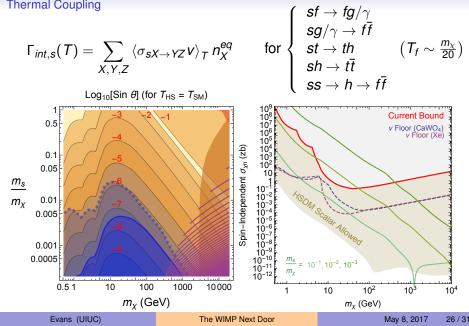

Scalar Model


$$\mathcal{L}_{S} = -\frac{1}{2} \left(y_{D} S \right) \left(\chi \chi + \text{h.c.} \right) + \frac{\mu_{s}^{2}}{2} S^{2} - \frac{\lambda_{s}}{4!} S^{4} - \frac{\epsilon}{2} S^{2} |H|^{2}$$

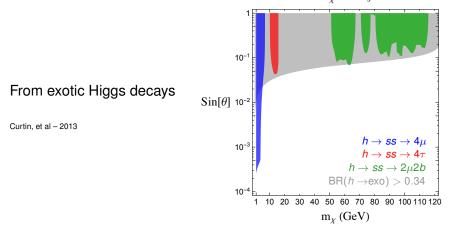

Free parameters: m_{χ} , m_s , $\sin \theta \propto \epsilon$, $y_D \leftarrow$ fixed by relic abundance


Fermionic dark matter annihilating to scalars is *p*-wave: $\langle \sigma v \rangle \propto v^2$





Thermal Coupling


Thermal Coupling

Mono-X production of $\chi\chi$ at colliders is very suppressed...

Mono-X production of $\chi\chi$ at colliders is very suppressed...

... but (again) there are many constraints on the mediator!

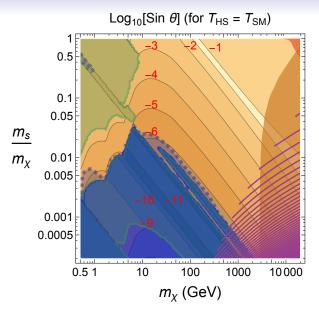
 $m_{\nu} = 2 m_{s}$

Mono-X production of $\chi\chi$ at colliders is very suppressed...

... but (again) there are many constraints on the mediator!

10⁻¹ I FP B→Ku⁺u 10-2 $B \rightarrow K^* S \rightarrow \mu^+ \mu^$ and direct searches for the 10-3 mediator! $K \rightarrow \pi v \overline{v}$ Sin θ SHiP (proi) 10-4 Krniaic - 2015 10⁻⁵ Flacke, Frugiuele, Fuchs, Gupta, Perez - 2016 10⁻⁶

 10^{-2}


 10^{-1}

10

 $m_{\rm s}$ (GeV)

1000

100


```
Evans (UIUC)
```

How generic are the features of the simplified model?

A simplified model is only as interesting as it is general

Modification	Effect	Comments
Additional Heavy States	No effect	Can thermalize, if connected to SM
Dirac DM	$\mathcal{O}(1)$ corrections	Qualitatively identical
DM mass indep of VEV	Small correction	Small effect for light scalars, TD larger
Additional DM (global sym)	Increased FO coupling	$y_D \rightarrow y_D \sqrt{N} \Rightarrow$ stronger DD
CPV Scalar	Turns on ID	May complicate SM
New Z ₂ Light States	Additional DM or DR	Changes DM story, constraints
Other New Light States	Depends	Can change things a lot
$s \rightarrow invisible$	Weaker collider bounds	Additional light states

How generic are the features of the simplified model?

A simplified model is only as interesting as it is general

Modification	Effect	Comments
Additional Heavy States	No effect	Can thermalize, if connected to SM
Dirac DM	$\mathcal{O}(1)$ corrections	Qualitatively identical
DM mass indep of VEV	Small correction	Small effect for light scalars, TD larger
Additional DM (global sym)	Increased FO coupling	$y_D \rightarrow y_D \sqrt{N} \Rightarrow \text{stronger DD}$
CPV Scalar	Turns on ID	May complicate SM
New Z ₂ Light States	Additional DM or DR	Changes DM story, constraints
Other New Light States	Depends	Can change things a lot
$s \rightarrow$ invisible	Weaker collider bounds	Additional light states

Again, the simplified model is for the freezeout story!

Changes that modify this minimally have less impact

Need dark scalar and dark matter as the lightest states of the sector

The Future

Tons of interesting future directions!

- Construct simplified models for HS scalar DM
- Phenomenology of thermally decoupled sectors
- Cosmology of light dark matter
- New bounds on light, Higgs-mixed scalars
- Proper thermal field theory treatment of thermal (de)coupling
- Direct detection under the influence of bound states
- And many more!

Summary

- The WIMP next door is a simple, plausible story for dark matter
- These simplified models are:
 - Minimal
 - Bounded
 - Constrained
 - General
 - Simple
 - Complete
- Thermal coupling mandates sufficient connection to the SM
- Direct detection can access cosmological lower bound on portal
- A lot of opportunities for future experiments to access this sector