Unusual Vacuum Decay Events in The Early Universe

1506.07100, 170x.xxxxx

James Scargill
UC Davis

March 6, 2017

Motivation

- The existence and consequences of a landscape or multiverse of possible universes, either in string theory or otherwise, is one of the key questions of theoretical physics today.
- Cosmology has reached a level of precision where it now makes sense to ask whether there exist observational signatures resulting from such scenarios.

Barnacles

Instantons and tunnelling rates
Barnacle actions
Bubble walls as nucleation sites
Summary

Inflation after false vacuum decay
Dimensionality changing transitions
CMB signatures
Summary

Bubble nucleation

- A potential with two minima may allow decay from the false vacuum.
- A bubble of true vacuum nucleates and grows.
- Bubble wall approaches speed of light.

Coleman (1977), Callan \& Coleman (1977), Coleman \& de Luccia (1980)

Decays involving more than two vacua

Usually one only considers two vacua involved in a decay, but what about three vacua?

- Two qualitatively new possibilities:
- interior of bubble undergoes further decay; or
- wall of bubble decays

Decays involving more than two vacua

Both of the above decays can be described by instantons, but with two negative modes

- Coleman (1988) showed that the instantons relevant for decays of empty space have exactly one negative mode of fluctuations.
- Are these instantons physically relevant? How should they be interpreted?

Instantons and tunnelling rates

Euclidean partition function:

$$
Z=\mathrm{e}^{-S_{A}}=\mathrm{e}^{-V_{A} \operatorname{Vol}_{A}}
$$

Include $A B$ instantons:

$$
Z \rightarrow \mathrm{e}^{-V_{A} \mathrm{Vol}_{A}} \sum_{n=0}^{\infty} \frac{\left(\left[\operatorname{det}^{\prime} S_{A B}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{-S_{A B}} \mathrm{Vol}_{A}\right)^{n}}{n!}=\mathrm{e}^{-\left(V_{A}+i \Gamma_{A B}\right) \mathrm{Vol}_{A}}
$$

where

$$
\Gamma_{A B}=\left[-\operatorname{det}^{\prime} S_{A B}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{-S_{A B}}
$$

Can interpret correction as decay rate when $\operatorname{det}^{\prime} S_{A B}^{\prime \prime}$ has one negative mode.

Instantons with multiple negative modes

Now imagine that B can decay to C :
$Z \rightarrow \mathrm{e}^{-V_{A} \operatorname{Vol}_{A}} \sum_{n=0}^{\infty} \frac{\left(i \Gamma_{A B} \sum_{m} \frac{\left(\left[\operatorname{det}^{\prime} S_{B C}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{-S_{B C} \mathrm{Vol}_{B}}\right)^{m}}{m!} \mathrm{Vol}_{A}\right)^{n}}{n!}$
In thin-wall limit $S_{A B}=-\left(V_{A}-V_{B}\right) \operatorname{Vol}_{B}+\sigma_{A B} \operatorname{Vol}_{A B}$, so

$$
\Gamma_{A B} \rightarrow\left[-\operatorname{det}^{\prime} S_{A B}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{\left(V_{A}-\left[V_{B}+i \Gamma_{B C}\right]\right) \operatorname{Vol}_{B}-\sigma_{A B} \operatorname{Vol}_{A B}}
$$

where

$$
\Gamma_{B C}=\left[-\operatorname{det}^{\prime} S_{B C}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{-S_{B C}}
$$

Instantons with multiple negative modes

Now include barnacles:
$Z \rightarrow \mathrm{e}^{-V_{A} \operatorname{Vol}_{A}} \sum_{n=0}^{\infty} \frac{\left(i \Gamma_{A B} \sum_{m} \frac{\left(\left[\operatorname{det}^{\prime} \tilde{S}_{b}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{\left.-\tilde{S}_{b}^{\prime \prime} \operatorname{Vol}_{A B}\right)^{m}}\right.}{m!} \mathrm{Vol}_{A}\right)^{n}}{n!}$
$\Gamma_{A B} \rightarrow\left[-\operatorname{det}^{\prime} S_{A B}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{\left(V_{A}-V_{B}\right) \operatorname{Vol}_{B}-\left[\sigma_{A B}-i \Gamma_{b}\right] \operatorname{Vol}_{A B}}$,
where

$$
\Gamma_{b}=\left[-\operatorname{det}^{\prime} \tilde{S}_{b}^{\prime \prime}\right]^{-\frac{1}{2}} \mathrm{e}^{-\tilde{S}_{b}^{\prime \prime}}
$$

and $\tilde{S}_{b}^{\prime \prime} \equiv S_{b}-S_{A B}$ is the difference in Euclidean action between an $A B$ bubble dressed with a barnacle and the $A B$ bubble alone.

Barnacles in flat space

The bubble radii take their usual thin wall values: $R_{X}=\frac{3 \sigma_{X}}{\Delta V_{X}}$ and the z 's are constrained to satisfy $z_{X}^{2}+r^{2}=R_{X}^{2}$

Barnacles in flat space

Balasubramanian, Czech, Larjo, \& Levi (2011)

$$
\begin{aligned}
& S_{b}=-\sum_{i \in\{A, B, C\}}\left(V_{A}-V_{i}\right) \mathrm{Vol}_{i}+\sum_{X \in\{A B, A C, B C\}} \sigma_{X} \mathrm{Vol}_{X} \\
&=S_{A B} k\left(-\frac{z_{A B}}{R_{A B}}\right)+S_{A C} k\left(\frac{z_{A C}}{R_{A C}}\right)+S_{B C} k\left(-\frac{z_{B C}}{R_{B C}}\right), \\
& k(x)
\end{aligned}
$$

Barnacles and gravity

$$
\begin{aligned}
S_{b}= & \sum_{i}\left[\int_{\mathrm{Vol}_{i}} \mathrm{~d}^{4} x \sqrt{|g|}\left(V_{i}-\frac{1}{2 \kappa} \mathcal{R}\right)-\frac{1}{\kappa} \int_{\partial \mathrm{Vol}_{i}} \mathrm{~d}^{3} y \sqrt{|h|} \mathcal{K}\right] \\
& +\sum_{X} \int_{\left(\partial \mathrm{Vol}_{X}\right.} \mathrm{d}^{3} y \sqrt{|h|} \sigma_{X} \\
& +\int_{J} \mathrm{~d}^{2} z \sqrt{|\tilde{h}|}\left(\mu-\frac{1}{\kappa}(\pi+\Delta)\right) \\
& -\left(-\frac{24 \pi^{2}}{\kappa^{2} V_{A}}\right)
\end{aligned}
$$

Euclidean de Sitter is a four sphere, so this becomes an exercise in gluing together spheres...

Barnacles Geometries

Barnacles Geometries

The χ 's satisfy a consistency condition ($c f . z_{X}^{2}+r^{2}=R_{X}^{2}$):

$$
1-\frac{\cos ^{2} R_{A B}}{\cos ^{2} \chi_{A B}}=1-\frac{\cos ^{2} R_{A C}}{\cos ^{2} \chi_{A C}}=\frac{V_{A}}{V_{B}}\left(1-\frac{\cos ^{2} R_{B C}}{\cos ^{2} \chi_{B C}}\right)=\sin ^{2} \delta,
$$

Barnacle Geometries

The deficit angle is related the misalignments of the planes which go through a bubble centre and junction point:

$$
\Delta=\theta_{A C}+\theta_{A B}+\theta_{B C}
$$

Barnacle Geometries

Junction conditions give

$$
\frac{3}{\kappa V_{i}} \sin ^{2} R_{i j}=\left(\frac{\kappa V_{i}}{3}+\left[\frac{V_{i}-V_{j}}{3 \sigma}-\frac{\kappa \sigma}{4}\right]^{2}\right)^{-1}
$$

and

$$
\Delta=\kappa \mu
$$

which one can (sometimes) solve to determine χ_{X}, θ_{X}, etc. in terms of V_{i}, σ_{X} and μ.

One can derive simple formulae for the volumes of the bubble segments and walls in terms of $R_{X}, \chi_{X}, \theta_{X}$, but solving the deficit angle junction condition must be done numerically.

Barnacle Actions-comparing gravity to flat space

Barnacle Actions-comparing to other decays

Approximating $\Gamma \sim \mathrm{e}^{-S}$, one can then compare the rate of production of barnacles versus other decay channels.

Throughout parameter space (and both with and without gravity), one finds:

- $S_{b}-S_{A B}<S_{B C}$
- The wall of a bubble is more likely to decay than its interior
- $S_{b}-S_{A B}<S_{A C}$ and $S_{b}-S_{A C}<S_{A B}$
- It is more likely for a wall of a bubble to decay than the parent vacuum to produce a bubble of the other vaccum

Barnacle Actions-comparing to other decays

Barnacle Actions-dependence on μ

- n.b. in flat space S_{b} is linear in μ

Barnacle Actions-dependence on μ

Black holes as nucleation sites

- In everyday bubble nucleation (e.g. Champagne) impurities act as seeds and enhance the rate.
- Gregory, Moss, \& Withers (2014) have studied this in the cosmological context, with black holes as the seeds.

Gregory, Moss, \& Withers (2014)

Bubble walls as nucleation sites

$$
\mathrm{V}_{\mathrm{A}}=1, \mathrm{~V}_{\mathrm{B}}=0.1, \mathrm{~V}_{\mathrm{C}}=0.01, \sigma_{\mathrm{BC}}=0.3, \mu=0
$$

Summary

- In theories with more than two vacua, sections of the wall of vacuum bubbles can decay.
- The rate of such events is competitive with regular vacuum decays, both inside and outside of the bubble.
- For certain parameters, gravity precludes such events, but when they are possible, gravity somewhat enhances the effect.
- The observational consequences of such events should be investigated.
- Czech (2011) has pointed out the similarity with bubble collisions.
- Could also be a source of primordial anisotropy in the power spectrum of perturbations.

A universe in a bubble

- Inside the bubble it is possible to construct an open FRW coordinate system. Coleman \& de Luccia (1980)
- Bubble wall is infinitely far away.

Sugimura, Yamauchi, \& Sasaki (2012)

Signatures of a previous universe

In general one has:

- $\Omega_{k 0}>0$ if inflation not too long.
- Primordial power spectrum is altered.
- Contribution to tensor modes from bubble wall fluctuations.

Is it possible to determine the nature of the parent vacuum?

Tunnelling from a smaller number of dimensions

What if the parent vacuum has a smaller number of large dimensions than ours?

- More ways to compactify more dimensions, so might expect more vacua with fewer large dimensions.
- Also possible within the standard model.
- Could tunnelling from these be favoured?
- Some studies have been done into the tunnelling process.

Blanco-Pillado \& Salem (2010), Adamek, Campo, \& Niemeyer (2010)

What are the consequences of such a process?

Tunnelling from a smaller number of dimensions

The nature of the resulting universe depends on how many dimensions decompactify.

If three: $0+1 \rightarrow 3+1$

- Isotropic FRW
- Curvature depends on how the spatial dimensions were compactified.
- Different signatures to usual inflation after false vacuum decay models

Tunnelling from a smaller number of dimensions

If one or two:

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(\frac{d r^{2}}{1+\kappa r^{2}}+r^{2} d \phi^{2}\right)+b(t)^{2} d z^{2}
$$

- Anisotropic
- $1+1 \rightarrow 3+1: \kappa$ depends on how the (r, ϕ) dimensions were compactified; $b(0)=0, a(0)=a_{0}$.
- $2+1 \rightarrow 3+1$: as for $4 D$ bubbles have $\kappa=-1$; $a(0)=0, b(0)=b_{0}$.

Will focus on the latter.

An anisotropic universe

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(\frac{d r^{2}}{1+\kappa r^{2}}+r^{2} d \phi^{2}\right)+b(t)^{2} d z^{2}
$$

Two types of anisotropy:

$$
\text { Shear: } H_{a}=\frac{\dot{a}}{a} \neq H_{b}=\frac{\dot{b}}{b}
$$

Curvature: $\Omega_{k}=\frac{-\kappa}{a^{2} H_{a}^{2}}$, only in (r, ϕ), not z.
These are related:

$$
\frac{H_{a}-H_{b}}{H_{a}} \propto \Omega_{k}
$$

An anisotropic universe

Relevant in two regimes.
Primordial anisotropy: $\Omega_{k}=1$ initially,
then damped away by inflation, until
Late-time anisotropy: Ω_{k} grows during the radiation and matter dominated epochs.

Can the former compete with the latter?

What is the value of Ω_{k} today?

- (As we will see) anisotropy leads leads to mixing of CMB modes with $\Delta \ell=2$
- Monopole feeds into Quadrupole:

$$
T_{0} \Omega_{k 0} \lesssim \Delta T \Longrightarrow \Omega_{k 0} \lesssim 10^{-4}
$$

- Much more constrained than isotropic curvature.

Late-time anisotropy

Masterfully studied by Graham, Harnik, \& Rajendran (2010), who found three effects:

1. Shape of LSS is warped.
2. Reception and emission angles are not the same.
3. Redshift is angle-dependent.

Graham, Harnik, \& Rajendran (2010)

Primordial anisotropy

Power spectrum is no longer isotropic:

$$
P(k) \rightarrow P(k, \hat{\mathbf{k}} \cdot \hat{\mathbf{z}})
$$

Need to deal with two things which change:

1. Cosmological perturbation theory to get $P(k, \hat{\mathbf{k}} \cdot \hat{\mathbf{z}})$.
2. Going from power spectrum to CMB .

Solving for the mode functions

Approximation: only vacuum energy and curvature driving background.

For scalar mode:

$$
\begin{gathered}
v^{\prime \prime}+\left(k^{2}\left(1-\mu^{2} \tanh ^{2} \eta\right)-2 \operatorname{cosech}^{2} \eta-\frac{1}{4} \operatorname{sech}^{2} \eta\right) v=0 \\
k^{2}=k_{2}^{2}+k_{3}^{2}, \quad \mu=\hat{\mathbf{k}} \cdot \hat{\mathbf{z}}=\cos \theta
\end{gathered}
$$

\rightarrow solution in terms of Hypergeometric functions.

Anisotropic primordial power spectrum

Anisotropic primordial power spectrum

For $k \gg 1$, there are two regimes, depending on the projection of the wavevector onto the old dimensions:

- $k \sin \theta \gtrsim \frac{1}{4}: P \propto 1+\frac{5}{4} k^{-2} \cos ^{2} \theta$
- $k \sin \theta \lesssim \frac{1}{4}: P \propto \frac{1}{k \sin \theta}$
- Due to adiabatic vacuum initial conditions.
$P_{+, \times}$show similar behaviour.
- h_{\times}can be solved in terms of Heun functions.

CMB due an anisotropic power spectrum

Usual formulae for C_{ℓ} must be updated, since $P(\mathbf{k}) \neq P(k)$.

- For scalar modes this is not too difficult:

$$
C_{l l^{\prime} m m^{\prime}}^{(S) X Y}=\frac{\delta_{m m^{\prime}}}{\pi} \int_{0}^{\infty} \frac{d k}{k} \Delta_{l}^{(S) X}(k) \Delta_{l^{\prime}}^{(S) Y}(k) \tilde{P}_{l l^{\prime} m}^{(S)}(k)
$$

where

$$
\tilde{P}_{l l^{\prime} m}^{(S)}(k)=f_{l l^{\prime} m} \int_{-1}^{1} d \mu P_{l}^{m}(\mu) P_{l^{\prime}}^{m}(\mu) P_{\mathcal{R}}(k, \mu)
$$

CMB due an anisotropic power spectrum

$$
\tilde{P}_{l l^{\prime} m}^{(S)}(k)=f_{l l^{\prime} m} \int_{-1}^{1} d \mu P_{l}^{m}(\mu) P_{l^{\prime}}^{m}(\mu) P_{\mathcal{R}}(k, \mu)
$$

Things to note:

- Reduces to isotropic expression for isotropic $P_{\mathcal{R}}$.
- Parity is not broken, so $C_{l l^{\prime} m m^{\prime}}^{(S)}=0$ for odd Δl.
- Diagonality in m results from coordinate system aligned with anisotropy direction
- In general would have to rotate.

Scalar mode

Scalar mode

Can the primordial effects ever dominate for the scalar modes?

- $\Delta l=2 n$
- Late-time effects $\sim \Omega_{k 0}^{n}$
- Primordial effects $\sim 10^{-3} \Omega_{k 0} n^{-4}$
- Signal is very small by this point.

What about the tensor modes?

CMB due an anisotropic power spectrum

- Tensor modes, being spin-2, are more complicated:

$$
C_{l l^{\prime} m m^{\prime}}^{(T) X Y}=\frac{\delta_{m m^{\prime}}}{\pi} \int_{0}^{\infty} \frac{d k}{k} \Delta_{l}^{(T) X}(k) \Delta_{l^{\prime}}^{(T) Y}(k) \tilde{P}_{l l^{\prime} m}^{(T)}(k)
$$

where

$$
\tilde{P}_{l l^{\prime} m}^{(T)}(k)=f_{l l^{\prime} m} \sum_{i, i^{\prime}} \beta_{i l m} \beta_{i^{\prime} l^{\prime} m} \int_{-1}^{1} d \mu P_{l-i}^{m-2}(\mu) P_{l^{\prime}-i^{\prime}}^{m-2}(\mu) \hat{P}^{(T)}(k, \mu)
$$

Tensor modes

$\frac{C^{B B}{ }_{l, l+2}}{\Omega_{k 0} C^{B B}{ }_{l, l}}$

Tensor modes

$T B$ and $E B$ correlations

$$
\tilde{P}_{l l^{\prime} m}^{(T)}(k)=f_{l l^{\prime} m} \sum_{i, i^{\prime}} \beta_{i l m} \beta_{i^{\prime} l^{\prime} m} \int_{-1}^{1} d \mu P_{l-i}^{m-2}(\mu) P_{l^{\prime}-i^{\prime}}^{m-2}(\mu) \hat{P}^{(T)}(k, \mu)
$$

where the following combination of $P_{+, \times}$sources:

$$
\begin{aligned}
\hat{P}^{(T)}(k, \mu)= & \left(1+\sigma_{X} \sigma_{Y}(-1)^{\Delta l}\right)\left(P_{+}+P_{\times}\right) \\
& +(-1)^{i}\left(\sigma_{X}+\sigma_{Y}(-1)^{\Delta l}\right)\left(P_{+}-P_{\times}\right)
\end{aligned}
$$

where $\sigma_{T, E}=1, \sigma_{B}=-1$.

- For even Δl : correlations as in isotropic case
- For odd $\Delta l: T B, E B$ correlations are possible!

$T B$ and $E B$ correlations

$\frac{C_{l, l+1}^{X Y}}{\Omega_{k 0} \sqrt{C_{l, l}^{T X X} C_{l, l}^{(T, Y Y}}}$

$T B$ and $E B$ correlations

Summary

- In inflation after false vacuum decay scenarios it is possible to probe some of the features of the parent vacuum.
- Transitions which increase the number of large dimensions are motivated especially from a landscape picture.
- Such transitions lead to an anisotropic universe (in the $2 / 1+1 \rightarrow 3+1$ case).
- Anisotropy makes itself known both at early and late times.
- Whilst primordial anisotropy can be neglected for scalar mode perturbations.
- For the tensor modes it can dominate over the late time effect.
- Such a signal is on the edge of observability.

