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Motivation

I The existence and consequences of a landscape or
multiverse of possible universes, either in string theory or
otherwise, is one of the key questions of theoretical
physics today.

I Cosmology has reached a level of precision where it now
makes sense to ask whether there exist observational
signatures resulting from such scenarios.
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Bubble nucleation
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I A potential with two minima may allow decay from the
false vacuum.

I A bubble of true vacuum nucleates and grows.

I Bubble wall approaches speed of light.

Coleman (1977), Callan & Coleman (1977), Coleman & de Luccia (1980)
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Decays involving more than two vacua

Usually one only considers two vacua involved in a decay, but
what about three vacua?

I Two qualitatively new possibilities:
I interior of bubble undergoes further decay; or
I wall of bubble decays
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Decays involving more than two vacua
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Both of the above decays can be described by instantons, but
with two negative modes

I Coleman (1988) showed that the instantons relevant for
decays of empty space have exactly one negative mode of
fluctuations.

I Are these instantons physically relevant? How should they
be interpreted?
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Instantons and tunnelling rates

Euclidean partition function:

Z = e−SA = e−VAVolA

Include AB instantons:

Z → e−VAVolA

∞∑
n=0

(
[det′ S ′′AB]

− 1
2 e−SABVolA

)n
n!

= e−(VA+iΓAB)VolA ,

where
ΓAB = [−det′S ′′AB]

− 1
2 e−SAB

Can interpret correction as decay rate when det′ S ′′AB has one
negative mode.
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Instantons with multiple negative modes

Now imagine that B can decay to C:

Z → e−VAVolA

∞∑
n=0

iΓAB∑m

(
[det′ S′′BC]

− 1
2 e−SBC VolB

)m

m!
VolA

n

n!

In thin-wall limit SAB = −(VA − VB)VolB + σABVolAB, so

ΓAB → [−det′S ′′AB]
− 1

2 e(VA−[VB+iΓBC ])VolB−σABVolAB ,

where
ΓBC = [−det′S ′′BC ]

− 1
2 e−SBC
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Instantons with multiple negative modes

Now include barnacles:

Z → e−VAVolA

∞∑
n=0

iΓAB∑m

(
[det′ S̃′′b ]

− 1
2 e−S̃′′b VolAB

)m

m!
VolA

n

n!

ΓAB → [−det′S ′′AB]
− 1

2 e(VA−VB)VolB−[σAB−iΓb]VolAB ,

where

Γb =
[
−det′S̃ ′′b

]− 1
2

e−S̃
′′
b ,

and S̃ ′′b ≡ Sb − SAB is the difference in Euclidean action
between an AB bubble dressed with a barnacle and the AB
bubble alone.
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Barnacles in flat space
Balasubramanian, Czech, Larjo, & Levi (2011)
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The bubble radii take their usual thin wall values: RX = 3σX
∆VX

and the z’s are constrained to satisfy z2
X + r2 = R2

X
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Barnacles in flat space

Balasubramanian, Czech, Larjo, & Levi (2011)

Sb = −
∑

i∈{A,B,C}

(VA − Vi)Voli +
∑

X∈{AB,AC,BC}

σXVolX

= SAB k

(
− zAB
RAB

)
+ SAC k

(
zAC
RAC

)
+ SBC k

(
− zBC
RBC

)
,
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Barnacles and gravity

Sb =
∑
i

[∫
Voli

d4x
√
|g|
(
Vi −

1

2κ
R
)
− 1

κ

∫
∂Voli

d3y
√
|h| K

]
+
∑
X

∫
(∂Vol)X

d3y
√
|h|σX

+

∫
J

d2z

√
|h̃|
(
µ− 1

κ
(π + ∆)

)
−
(
− 24π2

κ2VA

)
Euclidean de Sitter is a four sphere, so this becomes an
exercise in gluing together spheres. . .
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Barnacles Geometries
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Barnacles Geometries

χ��
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χ��
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The χ’s satisfy a consistency condition (cf. z2
X + r2 = R2

X):

1−cos2RAB

cos2 χAB
= 1−cos2RAC

cos2 χAC
=
VA
VB

(
1− cos2RBC

cos2 χBC

)
= sin2 δ,

14 / 48



Barnacle Geometries

θ��

θ��

θ��

Δ

The deficit angle is
related the
misalignments of the
planes which go through
a bubble centre and
junction point:

∆ = θAC + θAB + θBC
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Barnacle Geometries

Junction conditions give

3

κVi
sin2Rij =

(
κVi
3

+

[
Vi − Vj

3σ
− κσ

4

]2
)−1

,

and
∆ = κµ,

which one can (sometimes) solve to determine χX , θX , etc.
in terms of Vi, σX and µ.

One can derive simple formulae for the volumes of the bubble
segments and walls in terms of RX , χX , θX , but solving the
deficit angle junction condition must be done numerically.
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Barnacle Actions—comparing gravity to flat space
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Barnacle Actions—comparing to other decays

Approximating Γ ∼ e−S, one can then compare the rate of
production of barnacles versus other decay channels.

Throughout parameter space (and both with and without
gravity), one finds:

I Sb − SAB < SBC
I The wall of a bubble is more likely to decay than its

interior

I Sb − SAB < SAC and Sb − SAC < SAB
I It is more likely for a wall of a bubble to decay than the

parent vacuum to produce a bubble of the other vaccum
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Barnacle Actions—comparing to other decays
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Barnacle Actions—dependence on µ
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I n.b. in flat space Sb is linear in µ
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Barnacle Actions—dependence on µ
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Black holes as nucleation sites
I In everyday bubble nucleation (e.g. Champagne)

impurities act as seeds and enhance the rate.

I Gregory, Moss, & Withers (2014) have studied this in the
cosmological context, with black holes as the seeds.
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Gregory, Moss, & Withers (2014)
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Bubble walls as nucleation sites
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Summary

I In theories with more than two vacua, sections of the wall
of vacuum bubbles can decay.

I The rate of such events is competitive with regular
vacuum decays, both inside and outside of the bubble.

I For certain parameters, gravity precludes such events, but
when they are possible, gravity somewhat enhances the
effect.

I The observational consequences of such events should be
investigated.

I Czech (2011) has pointed out the similarity with bubble
collisions.

I Could also be a source of primordial anisotropy in the
power spectrum of perturbations.

24 / 48



A universe in a bubble

I Inside the bubble it is
possible to construct an
open FRW coordinate
system. Coleman & de Luccia

(1980)

I Bubble wall is infinitely far
away.

Sugimura, Yamauchi, & Sasaki (2012)
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Signatures of a previous universe

In general one has:

I Ωk0 > 0 if inflation not too long.

I Primordial power spectrum is altered.

I Contribution to tensor modes from bubble wall
fluctuations.

Is it possible to determine the nature of the parent vacuum?

26 / 48



Tunnelling from a smaller number of dimensions

What if the parent vacuum has a smaller number of large
dimensions than ours?

I More ways to compactify more dimensions, so might
expect more vacua with fewer large dimensions.

I Also possible within the standard model.

I Could tunnelling from these be favoured?

I Some studies have been done into the tunnelling process.
Blanco-Pillado & Salem (2010), Adamek, Campo, & Niemeyer (2010)

What are the consequences of such a process?
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Tunnelling from a smaller number of dimensions

The nature of the resulting universe depends on how many
dimensions decompactify.

If three: 0 + 1→ 3 + 1

I Isotropic FRW

I Curvature depends on how the spatial dimensions were
compactified.

I Different signatures to usual inflation after false vacuum
decay models
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Tunnelling from a smaller number of dimensions

If one or two:

ds2 = −dt2 + a(t)2

(
dr2

1 + κr2
+ r2dφ2

)
+ b(t)2dz2

I Anisotropic

I 1 + 1→ 3 + 1: κ depends on how the (r, φ) dimensions
were compactified; b(0) = 0, a(0) = a0.

I 2 + 1→ 3 + 1: as for 4D bubbles have κ = −1;
a(0) = 0, b(0) = b0.

Will focus on the latter.
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An anisotropic universe

ds2 = −dt2 + a(t)2

(
dr2

1 + κr2
+ r2dφ2

)
+ b(t)2dz2

Two types of anisotropy:

Shear: Ha = ȧ
a
6= Hb = ḃ

b

Curvature: Ωk = −κ
a2H2

a
, only in (r, φ), not z.

These are related:
Ha −Hb

Ha

∝ Ωk
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An anisotropic universe

Relevant in two regimes.

Primordial anisotropy: Ωk = 1 initially,

then damped away by inflation, until

Late-time anisotropy: Ωk grows during the radiation and
matter dominated epochs.

Can the former compete with the latter?
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What is the value of Ωk today?

I (As we will see) anisotropy leads leads to mixing of CMB
modes with ∆` = 2

I Monopole feeds into Quadrupole:

T0Ωk0 . ∆T =⇒ Ωk0 . 10−4

I Much more constrained than isotropic curvature.

32 / 48



Late-time anisotropy

Masterfully studied by Graham, Harnik, & Rajendran (2010),
who found three effects:

1. Shape of LSS is warped.

2. Reception and emission
angles are not the same.

3. Redshift is
angle-dependent.

r

z

0

P

!0

!P

"

Graham, Harnik, & Rajendran (2010)
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Primordial anisotropy

Power spectrum is no longer isotropic:

P (k)→ P (k, k̂ · ẑ)

Need to deal with two things which change:

1. Cosmological perturbation theory to get P (k, k̂ · ẑ).

2. Going from power spectrum to CMB.
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Solving for the mode functions

Approximation: only vacuum energy and curvature driving
background.

For scalar mode:

v′′ +

(
k2(1− µ2 tanh2 η)− 2 cosech2 η − 1

4
sech2 η

)
v = 0,

k2 = k2
2 + k2

3, µ = k̂ · ẑ = cos θ

→ solution in terms of Hypergeometric functions.
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Anisotropic primordial power spectrum
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Anisotropic primordial power spectrum

For k � 1, there are two regimes, depending on the projection
of the wavevector onto the old dimensions:

I k sin θ & 1
4

: P ∝ 1 + 5
4
k−2 cos2 θ

I k sin θ . 1
4

: P ∝ 1
k sin θ

I Due to adiabatic vacuum initial conditions.

P+,× show similar behaviour.

I h× can be solved in terms of Heun functions.
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CMB due an anisotropic power spectrum

Usual formulae for C` must be updated, since P (k) 6= P (k).

I For scalar modes this is not too difficult:

C
(S)XY
ll′mm′ =

δmm′

π

∫ ∞
0

dk

k
∆

(S)X
l (k)∆

(S)Y
l′ (k)P̃

(S)
ll′m(k),

where

P̃
(S)
ll′m(k) = fll′m

∫ 1

−1

dµPm
l (µ)Pm

l′ (µ)PR(k, µ).
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CMB due an anisotropic power spectrum

P̃
(S)
ll′m(k) = fll′m

∫ 1

−1

dµPm
l (µ)Pm

l′ (µ)PR(k, µ).

Things to note:

I Reduces to isotropic expression for isotropic PR.

I Parity is not broken, so C
(S)
ll′mm′ = 0 for odd ∆l.

I Diagonality in m results from coordinate system aligned
with anisotropy direction

I In general would have to rotate.
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Scalar mode
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Scalar mode

Can the primordial effects ever dominate for the scalar modes?

I ∆l = 2n

I Late-time effects ∼ Ωn
k0

I Primordial effects ∼ 10−3Ωk0n
−4

I Signal is very small by this point.

What about the tensor modes?
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CMB due an anisotropic power spectrum

I Tensor modes, being spin-2, are more complicated:

C
(T )XY
ll′mm′ =

δmm′

π

∫ ∞
0

dk

k
∆

(T )X
l (k)∆

(T )Y
l′ (k)P̃

(T )
ll′m(k),

where

P̃
(T )
ll′m(k) = fll′m

∑
i,i′

βilmβi′l′m

∫ 1

−1

dµPm−2
l−i (µ)Pm−2

l′−i′ (µ)P̂ (T )(k, µ).
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Tensor modes
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Tensor modes
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TB and EB correlations

P̃
(T )
ll′m(k) = fll′m

∑
i,i′

βilmβi′l′m

∫ 1

−1

dµPm−2
l−i (µ)Pm−2

l′−i′ (µ)P̂ (T )(k, µ),

where the following combination of P+,× sources:

P̂ (T )(k, µ) =(1 + σXσY (−1)∆l)(P+ + P×)

+ (−1)i(σX + σY (−1)∆l)(P+ − P×).

where σT,E = 1, σB = −1.

I For even ∆l: correlations as in isotropic case

I For odd ∆l: TB, EB correlations are possible!
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TB and EB correlations
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TB and EB correlations
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Summary
I In inflation after false vacuum decay scenarios it is

possible to probe some of the features of the parent
vacuum.

I Transitions which increase the number of large dimensions
are motivated especially from a landscape picture.

I Such transitions lead to an anisotropic universe (in the
2/1 + 1→ 3 + 1 case).

I Anisotropy makes itself known both at early and late
times.

I Whilst primordial anisotropy can be neglected for scalar
mode perturbations.

I For the tensor modes it can dominate over the late time
effect.

I Such a signal is on the edge of observability.
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