### Michael J. Baker

#### with

Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, Felix Yu, José Zurita

arXiv:1510.03434

### JGU Mainz

UC Davis - 29 February 2016



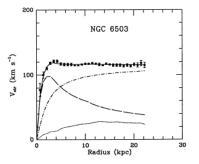






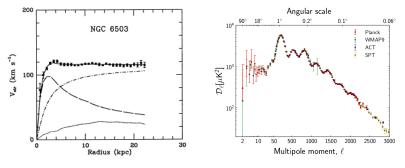










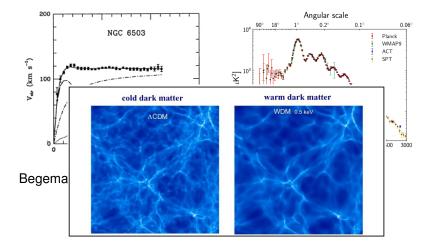


### Using the Codex

### **Dark Matter**



Begeman, Broeils & Sanders, 1991

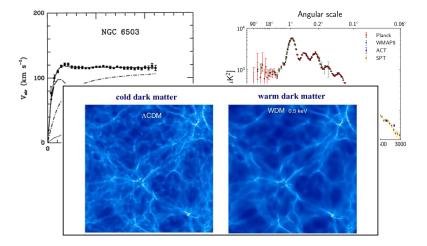
### **Dark Matter**




Begeman, Broeils & Sanders, 1991

Planck, 2013

Motivation •••••••


### **Dark Matter**



Viel, Becker, Bolton & Haehnelt, 2013

Motivation •••••••

### **Dark Matter**



$$\Omega_{\rm nbm} h^2 = 0.1198 \pm 0.0026$$

Motivation 00000000000

Using the Codex

### **Relic Density from Thermal Freeze-out**



## DM DM $\leftrightarrow$ SM SM H(T) vs. $\Gamma(T)$ $\Gamma(T) = n(T)\sigma(T)v(T)$

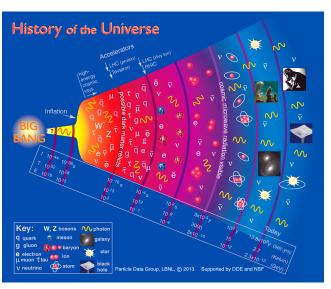
Motivation 00000000000

Using the Codex

### **Relic Density from Thermal Freeze-out**



### $\mathsf{DM} \ \mathsf{DM} \leftrightarrow \mathsf{SM} \ \mathsf{SM}$


H(T) vs.  $\Gamma(T)$ 

 $\Gamma(T) = n(T)\sigma(T)v(T)$ 

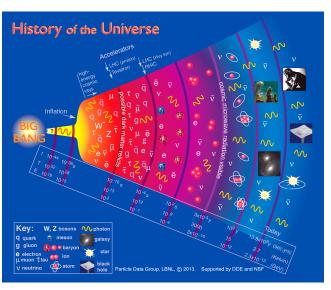
Motivation 00000000000

Using the Codex

### **Relic Density from Thermal Freeze-out**



### $\mathsf{DM} \: \mathsf{DM} \leftrightarrow \mathsf{SM} \: \mathsf{SM}$


### H(T) vs. $\Gamma(T)$

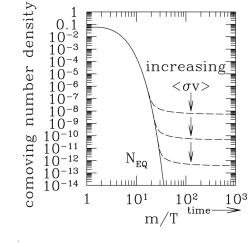
 $\Gamma(T) = n(T)\sigma(T)v(T)$ 

Motivation 00000000000

Using the Codex

### **Relic Density from Thermal Freeze-out**

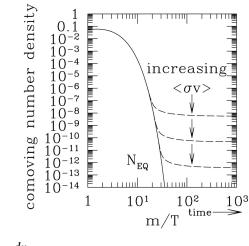



### $\mathsf{DM} \; \mathsf{DM} \leftrightarrow \mathsf{SM} \; \mathsf{SM}$

H(T) vs.  $\Gamma(T)$ 

$$\Gamma(T) = n(T)\sigma(T)v(T)$$

Using the Codex


### **Relic Density from Thermal Freeze-out**



 $\frac{dn}{dt} = -\langle \sigma v \rangle (n(t)^2 - n_{\rm eq}(t)^2) - 3H(t)n(t)$ 

Using the Codex

### Relic Density from Thermal Freeze-out



 $\frac{dn}{dt} = -\langle \sigma v \rangle (n(t)^2 - n_{\rm eq}(t)^2) - 3H(t)n(t)$ 

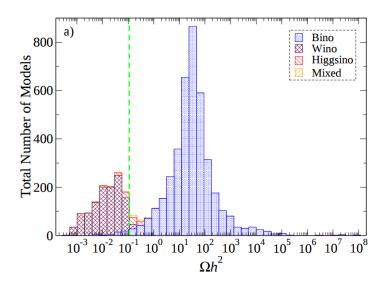
 Coannihilation Codex

Using the Codex

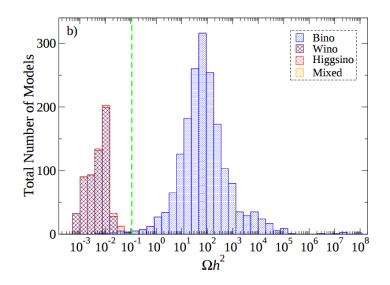
### The WIMP Miracle

$$rac{\Omega_{
m DM}h^2}{0.12} \sim \mathcal{O}(1) rac{T_0^3}{M_{
m Pl}^3 H_0^2 \langle \sigma_{
m ann} v 
angle} \sim rac{1}{\langle rac{\sigma_{
m ann} v/c}{1 
m pb \ 0.1} 
angle}$$

$$\sigma_{
m ann} \propto rac{g^2}{m_{
m DM}^2}$$


 Coannihilation Codex

Using the Codex


### The WIMP Miracle

$$rac{\Omega_{
m DM}h^2}{0.12} \sim \mathcal{O}(1) rac{T_0^3}{M_{
m Pl}^3 H_0^2 \langle \sigma_{
m ann} v 
angle} \sim rac{1}{\langle rac{\sigma_{
m ann}}{1 
m pb} rac{v/c}{0.1} 
angle}$$
 $\sigma_{
m ann} \propto rac{g^4}{m_{
m DM}^2}$ 

### The WIMP Miracle in SUGRA



### The WIMP Miracle in SUGRA



PHYSICAL REVIEW D

#### VOLUME 43, NUMBER 10

15 MAY 1991

#### Three exceptions in the calculation of relic abundances

Kim Griest Center for Particle Astrophysics and Astronomy Department, University of California, Berkeley, California 94720

> David Seckel Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (Received 15 November 1990)

> > Forbidden annihilation Resonant annihilation Coannihilation

PHYSICAL REVIEW D

#### VOLUME 43, NUMBER 10

15 MAY 1991

#### Three exceptions in the calculation of relic abundances

Kim Griest Center for Particle Astrophysics and Astronomy Department, University of California, Berkeley, California 94720

> David Seckel Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (Received 15 November 1990)

### Forbidden annihilation

Resonant annihilation Coannihilation

PHYSICAL REVIEW D

#### VOLUME 43, NUMBER 10

15 MAY 1991

#### Three exceptions in the calculation of relic abundances

Kim Griest Center for Particle Astrophysics and Astronomy Department, University of California, Berkeley, California 94720

> David Seckel Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (Received 15 November 1990)

> > Forbidden annihilation Resonant annihilation Coannihilation

PHYSICAL REVIEW D

#### VOLUME 43, NUMBER 10

15 MAY 1991

#### Three exceptions in the calculation of relic abundances

Kim Griest Center for Particle Astrophysics and Astronomy Department, University of California, Berkeley, California 94720

> David Seckel Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (Received 15 November 1990)

> > Forbidden annihilation Resonant annihilation Coannihilation

| DM | DM              | $\leftrightarrow$ | $SM_1$          | $SM_2$ |
|----|-----------------|-------------------|-----------------|--------|
| DM | X               | $\leftrightarrow$ | $\mathbf{SM}_1$ | $SM_2$ |
| X  | X               | $\leftrightarrow$ | $\mathbf{SM}_1$ | $SM_2$ |
| DM | $\mathbf{SM}_1$ | $\leftrightarrow$ | X               | $SM_2$ |

$$\frac{dn}{dt} = -\langle \sigma_{\rm eff} v \rangle (n(t)^2 - n_{\rm eq}(t)^2) - 3Hn$$

 $\sigma_{\rm eff} \sim \sigma_{\rm DMDM} + 2\sigma_{\rm DMX} (1+\Delta)^{3/2} e^{-x_f \Delta} + \sigma_{XX} (1+\Delta) e^{-2x_f \Delta}$ 

$$\Delta = \frac{m_{\rm DM} - m_X}{m_{\rm DM}}, \qquad x_f = \frac{m_{\rm DM}}{T_f}$$

| DM | DM              | $\leftrightarrow$ | $SM_1$ | $SM_2$ |
|----|-----------------|-------------------|--------|--------|
| DM | X               | $\leftrightarrow$ | $SM_1$ | $SM_2$ |
| X  | X               | $\leftrightarrow$ | $SM_1$ | $SM_2$ |
| DM | $\mathbf{SM}_1$ | $\leftrightarrow$ | X      | $SM_2$ |

$$\frac{dn}{dt} = -\langle \sigma_{\rm eff} v \rangle (n(t)^2 - n_{\rm eq}(t)^2) - 3Hn$$

 $\sigma_{\rm eff} \sim \sigma_{\rm DMDM} + 2\sigma_{\rm DMX} (1+\Delta)^{3/2} e^{-x_f \Delta} + \sigma_{XX} (1+\Delta) e^{-2x_f \Delta}$ 

$$\Delta = \frac{m_{\rm DM} - m_X}{m_{\rm DM}}, \qquad x_f = \frac{m_{\rm DM}}{T_f}$$

| DM | DM              | $\leftrightarrow$ | $\mathbf{SM}_1$ | $SM_2$ |
|----|-----------------|-------------------|-----------------|--------|
| DM | X               | $\leftrightarrow$ | $SM_1$          | $SM_2$ |
| X  | X               | $\leftrightarrow$ | $SM_1$          | $SM_2$ |
| DM | $\mathbf{SM}_1$ | $\leftrightarrow$ | X               | $SM_2$ |

$$\frac{dn}{dt} = -\langle \sigma_{\rm eff} v \rangle (n(t)^2 - n_{\rm eq}(t)^2) - 3Hn$$

 $\sigma_{\rm eff} \sim \sigma_{\rm DMDM} + 2\sigma_{\rm DMX} (1+\Delta)^{3/2} e^{-x_f \Delta} + \sigma_{XX} (1+\Delta) e^{-2x_f \Delta}$ 

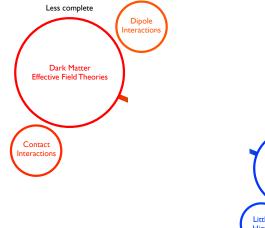
$$\Delta = \frac{m_{\rm DM} - m_X}{m_{\rm DM}}, \qquad x_f = \frac{m_{\rm DM}}{T_f}$$

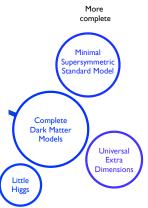
| DM | DM     | $\leftrightarrow$ | $\mathbf{SM}_1$ | $SM_2$ |
|----|--------|-------------------|-----------------|--------|
| DM | X      | $\leftrightarrow$ | $SM_1$          | $SM_2$ |
| X  | X      | $\leftrightarrow$ | $SM_1$          | $SM_2$ |
| DM | $SM_1$ | $\leftrightarrow$ | X               | $SM_2$ |

$$\frac{dn}{dt} = -\langle \sigma_{\rm eff} v \rangle (n(t)^2 - n_{\rm eq}(t)^2) - 3Hn$$

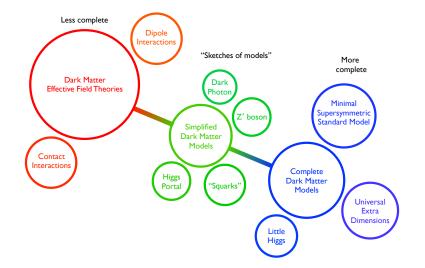
$$\sigma_{\rm eff} \sim \sigma_{\rm DMDM} + 2\sigma_{\rm DMX}(1+\Delta)^{3/2} e^{-x_f \Delta} + \sigma_{XX}(1+\Delta) e^{-2x_f \Delta}$$

$$\Delta = \frac{m_{\rm DM} - m_X}{m_{\rm DM}}, \qquad x_f = \frac{m_{\rm DM}}{T_f}$$


### Coannihilation in the literature


Bino-Higgsino: 1601.01569, 1510.06151, 1510.02760, 1509.08838 Bino-aluino: 1509.03613, 1508.04811 Bino-wino: 1509.03613, 1506.08206 Bino-stau: 1509.08838, 1509.07152 Bino-sleptons: 1506.08202 Bino-stop: 1509.08838 Neutralino-chargino: 1509.08485, 1507.02288, 1506.08202 Neutralino-sbottom: 1507.01001 Neutralino-gluino: 1510.03498 Radiative Neutrino Mass Models: 1512.07961, 1509.04068, 1507.067 Scalar DM & vector-like guark mediator: 1511.04452 Triplet-Quadruplet DM: 1601.01354 Lepton-flavored DM: 1510.00100 Kaluza-Klein DM: 1601.00081 Inert Zee model: 1511.01873 Elavourad DM: 1510 0/60/

### **Theoretical Framework**




### **Theoretical Framework**





### **Theoretical Framework**



### Simplified Models of DM at the LHC

### Simplified Models for Dark Matter Searches at the LHC Abdallah *et al.* 1506.03116

## $\ldots$ outlines a set of simplified models of DM for searches at the LHC

Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum Abercrombie et al. 1507.00966

... a minimal basis of dark matter models that should influence the design of the early Run-2 searches. At the same time, a thorough survey of realistic collider signals of Dark Matter **Our Goal** 

A complete classification of simplified coannihilation models

**Our Goal** 

A complete classification of simplified coannihilation models

The Coannihilation Codex

A complete classification of simplified coannihilation models

### The Coannihilation Codex

- A bottom-up framework for discovering dark matter at the LHC
- LHC phenomenology testing DM freeze-out
- Identify lesser studied models & searches
- In the event of a signal, gives a framework for the inverse problem









Assumptions

# To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in  $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1

### Assumptions

# To complete a classification we need to make some assumptions

### DM is a thermal relic

- DM is a colourless, electrically neutral particle in  $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1

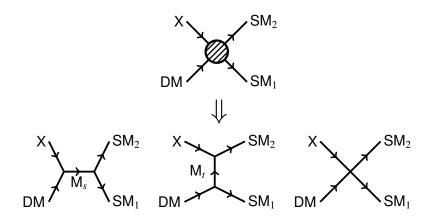


To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in  $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1



To complete a classification we need to make some assumptions


- DM is a thermal relic
- DM is a colourless, electrically neutral particle in  $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1



To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in  $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1

# **Coannihilation Diagrams**



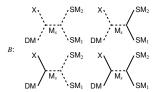
# **Classification Procedure**

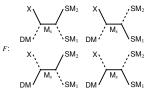
## • Work in unbroken $SU(2)_L \times U(1)_Y$

- Given SM field content, iterate over SM<sub>1</sub> and SM<sub>2</sub> to find all possible X using
  - Gauge invariance
  - Lorentz invariance
  - $\mathbb{Z}_2$  parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
  - Dimension four, tree-level couplings
  - Gauge bosons only couple through kinetic terms

# **Classification Procedure**

- Work in unbroken  $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM<sub>1</sub> and SM<sub>2</sub> to find all possible X using
  - Gauge invariance
  - Lorentz invariance
  - $\mathbb{Z}_2$  parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
  - Dimension four, tree-level couplings
  - Gauge bosons only couple through kinetic terms


# **Classification Procedure**


- Work in unbroken  $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM<sub>1</sub> and SM<sub>2</sub> to find all possible X using
  - Gauge invariance
  - Lorentz invariance
  - ℤ<sub>2</sub> parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
  - Dimension four, tree-level couplings
  - Gauge bosons only couple through kinetic terms

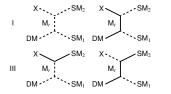
## s-channel classification - sample

|      | (=,=:,/~)               |                  |                        |      |                                                                 |                 |                                    |
|------|-------------------------|------------------|------------------------|------|-----------------------------------------------------------------|-----------------|------------------------------------|
| ID   | х                       | $\alpha + \beta$ | $\mathbf{M}_{s}$       | Spin | $(SM_1 SM_2)$                                                   | $\mathrm{SM}_3$ | M-X-X                              |
| ST11 |                         | $\frac{7}{3}$    | $(3, 2, \frac{7}{3})$  | В    | $(Q_L \overline{\ell_R}), (u_R \overline{L_L})$                 |                 |                                    |
| ST12 |                         | 3                | $(3, 2, \frac{1}{3})$  | F    | $(u_R H)$                                                       |                 |                                    |
| ST13 | $(3, N \pm 1, \alpha)$  | $\frac{1}{3}$    | $(3, 2, \frac{1}{3})$  | В    | $(d_R\overline{L_L}), (\overline{Q_L}\overline{d_R}), (u_RL_L)$ |                 |                                    |
| ST14 | $(3, 10 \pm 1, \alpha)$ | 3                | (0, 2, 3)              | F    | $(u_R H^{\dagger}), (d_R H)$                                    | $Q_L$           |                                    |
| ST15 |                         | $-\frac{5}{3}$   | $(3, 2, -\frac{5}{3})$ | В    | $(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$         |                 |                                    |
| ST16 |                         | 3                | (0, 2, 3)              | F    | $(d_R H^{\dagger})$                                             |                 |                                    |
| ST17 |                         | $\frac{4}{3}$    | $(3, 3, \frac{4}{3})$  | В    | $(Q_L \overline{L_R})$                                          |                 | $\checkmark \alpha = -\frac{2}{3}$ |
| ST18 | $(3, N \pm 2, \alpha)$  | 3                | $(3, 3, \frac{3}{3})$  | F    | $(Q_L H)$                                                       |                 |                                    |
| ST19 | $(3, N \pm 2, \alpha)$  | $-\frac{2}{3}$   | $(3, 3, -\frac{2}{3})$ | В    | $(\overline{Q_L Q_L}), (Q_L L_L)$                               |                 | $\checkmark \alpha = \frac{1}{3}$  |
| ST20 |                         | - 3              | $(3, 3, -\frac{1}{3})$ | F    | $(Q_L H^{\dagger})$                                             |                 |                                    |

## DM in $(1, N, \beta)$






## t-channel classification - sample

DM in  $(1, N, \beta)$ 

| ID   | х                      | $\alpha + \beta$ | $M_t$                                     | Spin | $(\mathrm{SM}_1 \ \mathrm{SM}_2)$ | $\mathrm{SM}_3$ |
|------|------------------------|------------------|-------------------------------------------|------|-----------------------------------|-----------------|
| TU26 |                        |                  | $(1, N \pm 1, \beta - 1)$                 | Ι    | $(HH^{\dagger})$                  |                 |
| TU27 |                        |                  | $(1,N\pm 1,\beta+1)$                      | II   | $(L_L H)$                         |                 |
| TU28 |                        | 0                | $(1, N \pm 1, \beta - 1)$                 | III  | $(HL_L)$                          |                 |
| TU29 | $(1, N \pm 2, \alpha)$ |                  | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$            |                 |
| TU30 | (1,11 ± 2, 0)          |                  | $(1,N\pm 1,\beta+1)$                      | IV   | $(L_L \overline{L_L})$            |                 |
| TU31 |                        |                  | $(1,N\pm 1,\beta+1)$                      | Ι    | $(H^{\dagger}H^{\dagger})$        |                 |
| TU32 |                        | $^{-2}$          | $(1,N\pm 1,\beta+1)$                      | II   | $(L_L H^{\dagger})$               |                 |
| TU33 |                        |                  | $(1,N\pm 1,\beta+1)$                      | III  | $(H^{\dagger}L_L)$                |                 |

Ш

IV



SM<sub>2</sub> SM<sub>2</sub> M, M, DM SM<sub>1</sub> DM -SM. SM<sub>2</sub> Χ, X٠ SM<sub>2</sub> Χ٠, SM<sub>2</sub> Μ, M<sub>t</sub> M<sub>r</sub> DM SM<sub>1</sub> DM SM<sub>1</sub> DM SM

# Classification: hybrid models

| ID | х                      | $\alpha + \beta$ | SM partner         | Extensions             |
|----|------------------------|------------------|--------------------|------------------------|
| H1 | $(1, N, \alpha)$       | 0                | $B, W_i^{N \ge 2}$ | SU1, SU3, TU1, TU4–TU8 |
| H2 | $(1, N, \alpha)$       | -2               | $\ell_R$           | SU6, SU8, TU10, TU11   |
| H3 | $(1, N \pm 1, \alpha)$ | -1               | $H^{\dagger}$      | SU10, TU18–TU23        |
| H4 | $(1, N \pm 1, \alpha)$ | -1               | $L_L$              | SU11, TU16, TU17       |
| H5 | $(3, N, \alpha)$       | $\frac{4}{3}$    | $u_R$              | ST3, ST5, TT3, TT4     |
| H6 | $(3, N, \alpha)$       | $-\frac{2}{3}$   | $d_R$              | ST7, ST9, TT10, TT11   |
| H7 | $(3, N \pm 1, \alpha)$ | $\frac{1}{3}$    | $Q_L$              | ST14, TT28–TT31        |

7 models

ID

 $\alpha + \beta$ 

## Classification: s-channel

| ID   | х                      | $\alpha + \beta$ | $M_s$                  | Spin | $(SM_1 SM_2)$                                                                                                                            | SM3                   | M-X-X                         |
|------|------------------------|------------------|------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|
| SU1  |                        |                  | (1, 1, 0)              | в    | $(u_R \overline{u_R}), (d_R \overline{d_R}), (Q_L \overline{Q_L})$<br>$(\ell_R \overline{\ell_R}), (L_L \overline{L_L}), (HH^{\dagger})$ | $_{B,W_{i}^{N\geq2}}$ | ~                             |
| SU2  |                        | 0                |                        | F    | $(L_L H)$                                                                                                                                |                       |                               |
| SU3  | ]                      |                  | $(1, 3, 0)^{N \ge 2}$  | В    | $(Q_L \overline{Q_L}), (L_L \overline{L_L}), (HH^{\dagger})$                                                                             | $B, W_i$              | ~                             |
| SU4  | $(1, N, \alpha)$       |                  | (1,3,0) -              | F    | $(L_L H)$                                                                                                                                |                       |                               |
| SU5  | (-,,,                  |                  | (1, 1, -2)             | В    | $(d_R \overline{u_R}), (H^{\dagger} H^{\dagger})$                                                                                        |                       | ~                             |
| SU6  |                        | -2               | (1,1,-2)               | F    | $(L_L H^{\dagger})$                                                                                                                      | $\ell_R$              |                               |
| SU7  |                        | -                | $(1, 3, -2)^{N \ge 2}$ | в    | $(H^{\dagger}H^{\dagger}), (L_L L_L)$                                                                                                    |                       | $\checkmark (\alpha = \pm 1)$ |
| SU8  |                        |                  | (1, 3, -1) -           | F    | $(L_L H^{\dagger})$                                                                                                                      | $\ell_R$              |                               |
| SU9  |                        | -4               | (1, 1, -4)             | В    | $(\ell_R \ell_R)$                                                                                                                        |                       | $\checkmark (\alpha = \pm 2)$ |
| SU10 |                        | -1               | (1, 2, -1)             | в    | $(d_R \overline{Q_L}), (\overline{u_R} Q_L), (\overline{L_L} \ell_R)$                                                                    | $H^{\dagger}$         |                               |
| SU11 | $(1, N \pm 1, \alpha)$ |                  | (1,1,1,1)              | F    | $(\ell_R H)$                                                                                                                             | $L_L$                 |                               |
| SU12 | (1, 11 ± 1, 11)        | -3               | (1, 2, -3)             | В    | $(L_L \ell_R)$                                                                                                                           |                       |                               |
| SU13 |                        |                  | (1,1,1,1,0)            | F    | $(\ell_R H^{\dagger})$                                                                                                                   |                       |                               |
| SU14 |                        | 0                | (1, 3, 0)              | в    | $(L_L \overline{L_L}), (Q_L \overline{Q_L}), (HH^{\dagger})$                                                                             |                       | $\checkmark (\alpha = 0)$     |
| SU15 | $(1, N \pm 2, \alpha)$ | 5                | (1, 3, 0)              | F    | $(L_L H)$                                                                                                                                |                       |                               |
| SU16 | (1, 11 ± 2, 11)        | -2               | (1, 3, -2)             | В    | $(H^{\dagger}H^{\dagger}), (L_L L_L)$                                                                                                    |                       | $\checkmark (\alpha = \pm 1)$ |
| SU17 |                        |                  | (-, -, -=)             | F    | $(L_L H^{\dagger})$                                                                                                                      |                       |                               |

| ID   | х                      | $\alpha + \beta$ | Ms                               | Spin | (SM <sub>1</sub> SM <sub>2</sub> )                                                | $SM_3$ | M-X-X                          |
|------|------------------------|------------------|----------------------------------|------|-----------------------------------------------------------------------------------|--------|--------------------------------|
| ST1  |                        | 10<br>3          | $(3, 1, \frac{10}{3})$           | в    | $(u_R \overline{l_R})$                                                            |        | $\sqrt{\alpha} = -\frac{5}{3}$ |
| ST2  |                        |                  | $(3, 1, \frac{4}{2})$            | в    | $(d_R \overline{\ell_R}), (Q_L \overline{L_L}), (\overline{d_R d_R})$             |        | $\sqrt{\alpha} = -\frac{2}{3}$ |
| ST3  |                        | 4                | (3, 1, 3)                        | F    | $(Q_L H)$                                                                         | $u_R$  |                                |
| ST4  |                        | 3                | $(3, 3, \frac{4}{3})^{N \ge 2}$  | в    | $(Q_L \overline{L_L})$                                                            |        | $\sqrt{\alpha} = -\frac{2}{3}$ |
| ST5  | $(3, N, \alpha)$       |                  | (0, 0, 3) -                      | F    | $(Q_L H)$                                                                         | $u_R$  |                                |
| ST6  | (0, 11, 11)            |                  | $(3, 1, -\frac{2}{3})$           | в    | $(\overline{Q_L Q_L}), (\overline{u_R} \overline{d_R}), (u_R, \ell_R), (Q_L L_L)$ |        | $\sqrt{\alpha} = \frac{1}{3}$  |
| ST7  |                        | $-\frac{2}{3}$   | (0,1, 1)                         | F    | $(Q_L H^{\dagger})$                                                               | $d_R$  |                                |
| ST8  |                        | 3                | $(3, 3, -\frac{2}{3})^{N \ge 2}$ | в    | $(\overline{Q_L Q_L}), (Q_L L_L)$                                                 |        | $\sqrt{\alpha} = \frac{1}{3}$  |
| ST9  |                        |                  |                                  | F    | $(Q_L H^{\dagger})$                                                               | $d_R$  |                                |
| ST10 |                        | - 5              | $(3, 1, -\frac{5}{3})$           | в    | $(\overline{u_R u_R}), (d_R \ell_R)$                                              |        | $\sqrt{\alpha} = \frac{4}{3}$  |
| ST11 |                        | 7                | $(3, 2, \frac{7}{4})$            | в    | $(Q_L \overline{t_R}), (u_R \overline{L_L})$                                      |        |                                |
| ST12 |                        | 3                | (0,2,3)                          | F    | $(u_R H)$                                                                         |        |                                |
| ST13 | $(3, N \pm 1, \alpha)$ | 1                | $(3, 2, \frac{1}{4})$            | в    | $(d_R \overline{L_L}), (\overline{Q_L d_R}), (u_R L_L)$                           |        |                                |
| ST14 | (0,11 2 1,11)          | з                | (0,2,3)                          | F    | $(u_R H^{\dagger}), (d_R H)$                                                      | $Q_L$  |                                |
| ST15 |                        | - <del>6</del>   | $(3, 2, -\frac{5}{7})$           | в    | $(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$                           |        |                                |
| ST16 |                        | 3                | (0, 1, 3)                        | F    | $(d_R H^{\dagger})$                                                               |        |                                |
| ST17 |                        | 4                | (3, 3, 4)                        | в    | $(Q_L \overline{L_R})$                                                            |        | $\sqrt{\alpha} = -\frac{2}{3}$ |
| ST18 | $(3, N \pm 2, \alpha)$ | з                | (0,0,3)                          | F    | $(Q_L H)$                                                                         |        |                                |
| ST19 | (0, 1 2, 0)            | - 6              | $(3, 3, -\frac{2}{3})$           | в    | $(\overline{Q_L Q_L}), (Q_L L_L)$                                                 |        | $\sqrt{\alpha} = \frac{1}{3}$  |
| ST20 |                        | 2                | (0, 0, -3)                       | F    | $(Q_L H^{\dagger})$                                                               |        |                                |

## SU type - 17 models

## ST type - 20 models

SM<sub>2</sub> M-X-X

(SM, SM<sub>2</sub>)

- U: X uncoloured
- T: X SU(3) triplet
- O: X SU(3) octet
- E: X SU(3) exotic

| SO1 |                        | 0              | $(8, 1, 0)^{\neq g[s2]}$        | в | $(d_R\overline{d_R}),(u_R\overline{u_R}),(Q_L\overline{Q_L})$ | $\sqrt{\alpha} = 0$                  |
|-----|------------------------|----------------|---------------------------------|---|---------------------------------------------------------------|--------------------------------------|
| SO2 | $(8, N, \alpha)$       |                | $(8, 3, 0)^{N \ge 2}$           | В | $(Q_L \overline{Q_L})$                                        | $\checkmark \alpha = 0$              |
| SO3 |                        | -2             | (8, 1, -2)                      | В | $(d_R \overline{u_R})$                                        | $\checkmark \alpha = \pm 1$          |
| SO4 | $(8, N \pm 1, \alpha)$ | -1             | (8, 2, -1)                      | в | $(d_R \overline{Q_L}), (Q_L \overline{u_R})$                  |                                      |
| SO5 | $(8, N \pm 2, \alpha)$ | 0              | (8, 3, 0)                       | В | $(Q_L \overline{Q_L})$                                        | $\sqrt{\alpha} = 0$                  |
| SE1 |                        | nta            | $(6, 1, \frac{8}{3})$           | В | $(u_R u_R)$                                                   | $\sqrt{\alpha} = -\frac{4}{3}$       |
| SE2 | (6, N, a)              | 2              | $(6, 1, \frac{2}{3})$           | В | $(Q_L Q_L), (u_R d_R)$                                        | $\checkmark (\alpha = -\frac{1}{3})$ |
| SE3 | (0, 11, 11)            | 2              | $(6, 3, \frac{2}{3})^{N \ge 2}$ | В | $(Q_L Q_L)$                                                   | $\sqrt{\alpha} = -\frac{1}{3}$       |
| SE4 |                        | - \$           | $(6, 1, -\frac{4}{3})$          | в | $(d_R d_R)$                                                   | $\sqrt{\alpha} = \frac{2}{3}$        |
| SE5 | $(6, N \pm 1, \alpha)$ | 33             | $(6, 2, \frac{5}{3})$           | В | $(Q_L u_R)$                                                   |                                      |
| SE6 | (0, 11 ± 1, 11)        | $-\frac{1}{3}$ | $(6, 2, -\frac{1}{3})$          | В | $(Q_L d_R)$                                                   |                                      |
| SE7 | $(6, N \pm 2, \alpha)$ | 245            | $(6, 3, \frac{2}{3})$           | В | $(Q_L Q_L)$                                                   | $\sqrt{\alpha} = -\frac{1}{3}$       |

Spin

SO and SE type - 5 and 7 models

# Classification: t-channel

| ID   | х                       | $\alpha + \beta$ | Mt                                        | Spin | $(SM_1 SM_2)$                | SM3                |
|------|-------------------------|------------------|-------------------------------------------|------|------------------------------|--------------------|
| TU1  |                         |                  | $(1, N \pm 1, \beta - 1)$                 | I    | $(HH^{\dagger})$             | $B, W_i^{N \ge 2}$ |
| TU2  |                         |                  | $(1, N \pm 1, \beta + 1)$                 | п    | $(L_L H)$                    |                    |
| TU3  |                         |                  | $(1, N \pm 1, \beta - 1)$                 | Ш    | $(HL_L)$                     |                    |
| TU4  | 1                       | 0                | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$       | $B, W_i^{N \ge 2}$ |
| TU5  | 1                       | 0                | $(\bar{3}, N, \beta - \frac{4}{3})$       | IV   | $(u_R \overline{u_R})$       | $B, W_i^{N \ge 2}$ |
| TU6  | 1                       |                  | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{d_R})$       | $B, W_i^{N \ge 2}$ |
| TU7  |                         |                  | $(1, N \pm 1, \beta + 1)$                 | IV   | $(L_L \overline{L_L})$       | $B, W_i^{N \ge 2}$ |
| TU8  | $(1, N, \alpha)$        |                  | $(1, N, \beta + 2)$                       | IV   | $(\ell_R \overline{\ell_R})$ | $B, W_i^{N \ge 2}$ |
| TU9  |                         |                  | $(1, N \pm 1, \beta + 1)$                 | I    | $(H^{\dagger}H^{\dagger})$   |                    |
| TU10 | 1                       |                  | $(1, N \pm 1, \beta + 1)$                 | п    | $(L_L H^{\dagger})$          | $\ell_R$           |
| TU11 |                         | -2               | $(1, N \pm 1, \beta + 1)$                 | Ш    | $(H^{\dagger}L_L)$           | $\ell_R$           |
| TU12 |                         | -2               | $(1, N \pm 1, \beta + 1)$                 | IV   | $(L_L L_L)$                  |                    |
| TU13 |                         |                  | $(3, N, \beta + \frac{4}{3})$             | IV   | $(\overline{u_R}d_R)$        |                    |
| TU14 |                         |                  | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{u_R})$       |                    |
| TU15 |                         | - 4              | $(1, N, \beta + 2)$                       | IV   | $(\ell_R \ell_R)$            |                    |
| TU16 |                         |                  | $(1, N, \beta + 2)$                       | п    | $(\ell_R H)$                 | $L_L$              |
| TU17 |                         |                  | $(1, N \pm 1, \beta - 1)$                 | ш    | $(H\ell_R)$                  | $L_L$              |
| TU18 |                         |                  | $(1, N, \beta + 2)$                       | IV   | $(\ell_R \overline{L_L})$    | $H^{\dagger}$      |
| TU19 |                         | -1               | $(1, N \pm 1, \beta - 1)$                 | IV   | $(\overline{L_L}\ell_R)$     | $H^{\dagger}$      |
| TU20 | $(1, N \pm 1, \alpha)$  | -1               | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{Q_L})$       | $H^{\dagger}$      |
| TU21 | (1, 11 ± 1, 11)         |                  | $(3, N \pm 1, \beta + \frac{1}{3})$       | IV   | $(\overline{Q_L}d_R)$        | $H^{\uparrow}$     |
| TU22 |                         |                  | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{u_R})$       | $H^{\dagger}$      |
| TU23 | 1                       |                  | $(3, N, \beta + \frac{4}{3})$             | IV   | $(\overline{u_R}Q_L)$        | $H^{\dagger}$      |
| TU24 |                         | -3               | $(1, N \pm 1, \beta + 1)$                 | IV   | $(L_L \ell_R)$               |                    |
| TU25 |                         | -3               | $(1, N, \beta + 2)$                       | IV   | $(\ell_R L_L)$               |                    |
| TU26 |                         |                  | $(1, N \pm 1, \beta - 1)$                 | I    | $(HH^{\dagger})$             |                    |
| TU27 |                         |                  | $(1, N \pm 1, \beta + 1)$                 | п    | $(L_L H)$                    |                    |
| TU28 |                         | 0                | $(1, N \pm 1, \beta - 1)$                 | ш    | $(HL_L)$                     |                    |
| TU29 | $(1, N \pm 2, \alpha)$  |                  | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$       |                    |
| TU30 | $(1, 10 \pm 2, \alpha)$ |                  | $(1, N \pm 1, \beta + 1)$                 | IV   | $(L_L \overline{L_L})$       |                    |
| TU31 |                         |                  | $(1, N \pm 1, \beta + 1)$                 | I    | $(H^{\dagger}H^{\dagger})$   |                    |
| TU32 |                         | -2               | $(1, N \pm 1, \beta + 1)$                 | п    | $(L_L H^{\dagger})$          |                    |
| TU33 |                         |                  | $(1, N \pm 1, \beta + 1)$                 | Ш    | $(H^{\dagger}L_L)$           |                    |

#### TU type - 33 models

TT type - 52 models

| ID   | x                      | $\alpha + \beta$ | $M_t$                                     | Spin | $(SM_1 SM_2)$          | $SM_3$ |
|------|------------------------|------------------|-------------------------------------------|------|------------------------|--------|
| TO1  |                        |                  | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$ |        |
| TO2  | ]                      | 0                | $(\bar{3}, N, \beta - \frac{4}{3})$       | IV   | $(u_R \overline{u_R})$ |        |
| TO3  | $(8, N, \alpha)$       |                  | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{d_R})$ |        |
| TO4  | 1                      | -2               | $(3, N, \beta + \frac{2}{3})$             | IV   | $(d_R \overline{u_R})$ |        |
| TO5  |                        |                  | $(3, N, \beta + \frac{4}{3})$             | IV   | $(\overline{uR}dR)$    |        |
| TO6  |                        |                  | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{Q_L})$ |        |
| TO7  | $(8, N \pm 1, \alpha)$ | _1               | $(3, N \pm 1, \beta + \frac{1}{3})$       | IV   | $(\overline{Q_L}d_R)$  |        |
| TO8  | (0, 11 ± 1, 0)         |                  | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{u_R})$ |        |
| TO9  |                        |                  | $(3, N, \beta + \frac{4}{3})$             | IV   | $(\overline{u_R}Q_L)$  |        |
| TO10 | $(8, N \pm 2, \alpha)$ | 0                | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$ |        |
| TE1  |                        | NP N             | $(\bar{3}, N, \beta - \frac{4}{3})$       | IV   | $(u_R u_R)$            |        |
| TE2  | 1                      |                  | $(3, N \pm 1, \beta - \frac{1}{3})$       | IV   | $(Q_L Q_L)$            |        |
| TE3  | $(6, N, \alpha)$       | 8                | $(\bar{3}, N, \beta - \frac{4}{3})$       | IV   | $(u_R d_R)$            |        |
| TE4  |                        |                  | $(3, N, \beta + \frac{2}{3})$             | IV   | $(d_R u_R)$            |        |
| TE5  | ]                      | $-\frac{4}{3}$   | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R d_R)$            |        |
| TE6  |                        | 4                | $(\bar{3}, N, \beta - \frac{4}{3})$       | IV   | $(u_R Q_L)$            |        |
| TE7  | $(6, N \pm 1, \alpha)$ | 3                | $(3, N \pm 1, \beta - \frac{1}{3})$       | IV   | $(Q_L u_R)$            |        |
| TE8  | (0, 11 ± 1, 11)        | - 13             | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R Q_L)$            |        |
| TE9  |                        | - 3              | $(3, N \pm 1, \beta - \frac{1}{3})$       | IV   | $(Q_L d_R)$            |        |
| TE10 | $(6, N \pm 2, \alpha)$ | 3                | $(3, N \pm 1, \beta - \frac{1}{3})$       | IV   | $(Q_L Q_L)$            |        |

#### TO and TE type - 10 and 10 models

| SMg              |            |        | U.A.                                | N.F.                      |                           |                                     |                           |                           |                               | $g_R$                               | ąβ                          |                                            |                                      |                               |                     |                                     |                           |                                                      |                                         |                               |                     |                                         |                           |                                   |                                 |                                     |                     | 5                                 | 35                                      | 9 E                               | 9.L                       |                               |                           |                             |             |                               |             |               |             |        |                           |        | Ι                |                      |                     |                        |                      |                                     |                      |                          |           |                                     |
|------------------|------------|--------|-------------------------------------|---------------------------|---------------------------|-------------------------------------|---------------------------|---------------------------|-------------------------------|-------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------|-------------------------------|---------------------|-------------------------------------|---------------------------|------------------------------------------------------|-----------------------------------------|-------------------------------|---------------------|-----------------------------------------|---------------------------|-----------------------------------|---------------------------------|-------------------------------------|---------------------|-----------------------------------|-----------------------------------------|-----------------------------------|---------------------------|-------------------------------|---------------------------|-----------------------------|-------------|-------------------------------|-------------|---------------|-------------|--------|---------------------------|--------|------------------|----------------------|---------------------|------------------------|----------------------|-------------------------------------|----------------------|--------------------------|-----------|-------------------------------------|
| (8341 8342)      |            | (TRVR) | (471)                               | (11QL)                    | $(\overline{n} \delta_R)$ | $(q_L \overline{L_L})$              | $(\overline{L}_{L}Q_{L})$ | (4RTR)                    | $\langle d_H d_H \rangle$     | $(Q_L H^{\dagger})$                 | $(H^{\dagger}Q_{L})$        | $\langle \underline{w}_R \delta_R \rangle$ | $(\overline{Q}_{L}\overline{Q}_{L})$ | $\langle u_R I_R \rangle$     | (INN II)            | (0,1,0)                             | (1027)                    | $\langle \overline{\delta_R} \overline{w_R} \rangle$ | (21 m 22 m)                             | (4144)                        | (RedR)              | $\langle u_R H \rangle$                 | $(Hw_R)$                  | (w RLL)                           | $(\overline{L}_{L} \times_{R})$ | (QL <sup>7</sup> R)                 | ( <u>7</u> 47)      | (w <sub>R</sub> H <sup>†</sup> )  | $\langle t_R H \rangle$                 | $\langle H^{\dagger} u_R \rangle$ | $(H\delta_R)$             | $\langle u_R L_L \rangle$     | $(L_L \times_R)$          | $(\pi_RQ_L)$                | $(Q_L d_R)$ | (dR H <sup>1</sup> )          | $(H^{(R)})$ | $(d_R L_L)$   | $(L_L d_R)$ | (QLIR) | $\langle I_R Q_L \rangle$ | (WRQL) | (dr.×n)          | $(d_L H)$            | $(HQ_L)$            | $(Q_L \overline{L_L})$ | $(\overline{L}LQ_L)$ | (QL H <sup>†</sup> )                | $(H^{\dagger}Q_{L})$ | $(q_L L_L)$              | (LLQL)    | (3535)                              |
| Spin             | 1          | N      | =                                   | 111                       | N                         | N                                   | IV                        | IV                        | N                             | =                                   | 111                         | ≥                                          | 2                                    | N                             | 2                   | N                                   | N                         | N                                                    | N                                       | N                             | N                   | п                                       | 111                       | 2                                 | ≥                               | 2                                   | 2                   | =                                 | =                                       | ш                                 | 111                       | IV                            | IV                        | N                           | ž           | =                             | =           | 2             | 2           | 2      | 2                         | 2      | ₹                | =                    | Ξ                   | N                      | 2                    | =                                   |                      | N                        | N.        | 2                                   |
| м                | 1 N 0 - 41 | N.8-2  | $(3, N \pm 1, \beta - \frac{1}{2})$ | $(1, N \pm 1, \beta - 1)$ | $(1, N, \beta = 2)$       | $(3, N \pm 1, \beta - \frac{1}{2})$ | $(1,N\pm 1,\beta-1)$      | $(3, N, B + \frac{2}{3})$ | $(1, N, \beta - \frac{2}{3})$ | $(3, N \pm 1, \beta - \frac{1}{2})$ | $(1, N \pm 1, \beta \pm 1)$ | $(\frac{1}{2}, N, \beta + \frac{1}{2})$    | $(3, N \pm 1, \beta + \frac{1}{2})$  | $(3, N, \beta - \frac{2}{3})$ | $(1, N, \beta + 2)$ | $(3, N \pm 1, \beta - \frac{1}{2})$ | $(1, N \pm 1, \beta + 1)$ | $(3, N, \beta = \frac{2}{3})$                        | $(\frac{1}{2}, N, \beta + \frac{1}{2})$ | $(3, N, \beta + \frac{2}{3})$ | $(1, N, \beta + 2)$ | $(\frac{2}{3}, N, \beta - \frac{2}{3})$ | $(1, N \pm 1, \beta - 1)$ | $(\beta, N, \beta - \frac{2}{3})$ | $(1, N \pm 1, \beta - 1)$       | $(3, N \pm 1, \beta - \frac{1}{2})$ | $(1, N, \beta - 2)$ | $(\beta, N, \beta - \frac{2}{3})$ | $(\frac{1}{2}, N, \beta + \frac{2}{2})$ | $(1, N \pm 1, \beta \pm 1)$       | $(1, N \pm 1, \beta - 1)$ | $(3, N, \beta - \frac{3}{2})$ | $(1, N \pm 1, \beta + 1)$ | $3, N, \beta = \frac{2}{3}$ |             | $(3, N, \beta + \frac{2}{3})$ | +           | (* + 8' · N') | -<br>+      | 土1,月   |                           | ź.     | $N \pm 1, B \pm$ | $N \pm 1, \beta = .$ | $N \pm 1, \beta = $ |                        | $N \pm 1, \beta = 1$ | $(3, N \pm 1, \beta - \frac{1}{2})$ | $N \pm 1, \beta +$   | $N \pm 1, \beta = \cdot$ | N ± 1, 8+ | $(3, N \pm 1, \beta + \frac{1}{2})$ |
| $\alpha + \beta$ |            | 3h     |                                     |                           |                           | eto                                 |                           |                           |                               |                                     |                             |                                            |                                      |                               | oin<br>1            |                                     |                           |                                                      |                                         | atri<br>1                     |                     |                                         |                           | Þ                                 | 40                              |                                     |                     |                                   |                                         |                                   | -                         | in i                          |                           |                             |             |                               |             |               | đ           |        |                           |        | T                |                      | -                   |                        |                      |                                     | o <b>n</b> o<br>I    |                          |           | ]                                   |
| ×                | Ι          |        |                                     |                           |                           |                                     |                           |                           |                               |                                     |                             | (3, N, a)                                  |                                      |                               |                     |                                     |                           |                                                      |                                         |                               |                     |                                         |                           |                                   |                                 |                                     |                     |                                   |                                         |                                   |                           | (* 1 × N 1/                   | factor of a light         |                             |             |                               |             |               |             |        |                           |        | T                |                      |                     |                        |                      | $(3, N \pm 2, \alpha)$              |                      |                          |           |                                     |
| Ĥ                | 1.1.1.1    | TT2    | ELL                                 | P.L.L.                    | STT5                      | MLL N                               | ALL                       | SLL.                      | 6LL                           | TT10                                | TTUL                        | TT12                                       | TT13                                 | TT14                          | TT15                | 31.L.I.                             | LLL                       | TT18                                                 | TT19                                    | TT20                          | TT21                | TT22                                    | TT23                      | TT24                              | TT25                            | TT26                                | TT27                | TT28                              | TT729                                   | TT30                              | TT31                      | TT32                          | TT33                      | TTD4                        | 2011L       | TT36                          | 11137       | 1.138         | TT39        | TTF40  | TTAL                      | THE .  | RF-1             | TT44                 | TTM5                | TT-16                  | APJLL.               | TTT48                               | TTM9                 | TT50                     | TTTAL     | 20D                                 |

Coannihilation Codex

Using the Codex

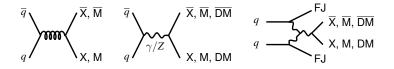
## **Complete Classification**

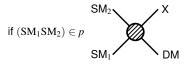
# We have written down all possible simplified models of 2-to-2 coannihilating dark matter!

LHC Phenomenology

Coannihilation Codex

Using the Codex


## **Complete Classification**


# We have written down all possible simplified models of 2-to-2 coannihilating dark matter!

LHC Phenomenology

Using the Codex

## LHC Production: Common

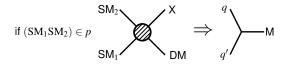




## Decays: Common



# Signature Table: Common

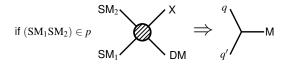

|        | $pp \rightarrow \ldots$                                                                                                  | Prod. via                                         | Signatures                                   | Search                 |
|--------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|------------------------|
|        |                                                                                                                          | gauge int.                                        |                                              |                        |
|        | DM + DM + ISR                                                                                                            | or $SM_1 \in p$                                   | mono-Y + $\not\!\!E_T$                       | [55,56,62,63,104]      |
|        |                                                                                                                          | for t-channel                                     |                                              |                        |
| common | $(X (\rightarrow SM^{soft} SM^{soft} DM))$                                                                               | gauge int.                                        | mono-Y + $\not\!\!E_T$                       | [55,56,62,63,104]      |
| Com    | $\begin{cases} X (\rightarrow SM_1^{soft}  SM_2^{soft}  DM) \\ X (\rightarrow SM_1^{soft}  SM_2^{soft}  DM) \end{cases}$ | or $SM_2 \in p$                                   | mono-Y + $\not\!\!\!E_T + \leq 4$ SM         | Partial coverage [105] |
|        | (ISR                                                                                                                     | for t-channel                                     |                                              |                        |
|        | $DM + X (\rightarrow SM_1^{soft} SM_2^{soft} DM) + ISR$                                                                  | $(SM_1 SM_2) \in p$                               | mono-Y + $\not\!\!E_T$                       | [55,56,62,63,104]      |
|        | $DWI + X (\rightarrow DWI_1  DWI_2  DWI) + IOI ($                                                                        | $(\operatorname{OW}_1 \operatorname{OW}_2) \in p$ | mono-Y + $\not\!\!\!E_T + \leq 2 \text{ SM}$ | Partial coverage [105] |

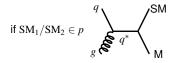
Coannihilation Codex

Using the Codex

## LHC Production: s-channel

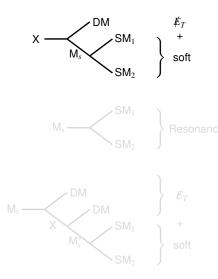
#### Gauge boson production +



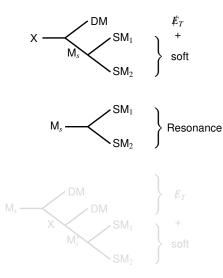

Using the Codex

## LHC Production: s-channel


#### Gauge boson production +

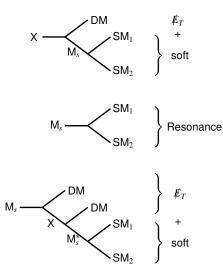





Using the Codex

## Decays: s-channel




Using the Codex

## Decays: s-channel



Using the Codex

## Decays: s-channel



## Signature Table: s-channel

|           | $pp \rightarrow \dots$                                                                                                                                                             | Prod. via           | Signatures                              | Search                     |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|----------------------------|--|--|
|           | $\begin{cases} M_s \ (\rightarrow [SM_1 \ SM_2]^{res}) \\ M_s \ (\rightarrow [SM_1 \ SM_2]^{res}) \end{cases}$                                                                     |                     | 2 resonances                            | [106-112]                  |  |  |
|           | $\int M_s \ (\rightarrow [SM_1 \ SM_2]^{res})$                                                                                                                                     | gauge int.          | resonance + $\not E_T$                  | No search                  |  |  |
|           | $\left\{M_{s}\left(\rightarrowDM+X\left(\rightarrowSM_{1}^{soft}\:SM_{2}^{soft}\:DM\right)\right)\right.$                                                                          | gauge m.            | resonance + $\not\!\!\!E_T + \leq$ 2 SM | No search                  |  |  |
| s-channel | $\begin{cases} M_s \ (\rightarrow DM + X \ (\rightarrow SM_1^{soft} \ SM_2^{soft} \ DM)) \\ M_s \ (\rightarrow DM + X \ (\rightarrow SM_1^{soft} \ SM_2^{soft} \ DM)) \end{cases}$ |                     | $E_T + \le 4 \text{ SM}$                | [113-124]                  |  |  |
| -cha      | $M_s \ (\rightarrow [SM_1 \ SM_2]^{res})$                                                                                                                                          |                     | 1 resonance                             | [125-146]                  |  |  |
| 5         | $M_s (\rightarrow DM + X (\rightarrow SM_1^{soft} SM_2^{soft} DM))$                                                                                                                | $(SM_1 SM_2) \in p$ | $E_{r+} \leq 2$ SM                      | [120-122,124]              |  |  |
|           | $NN_{s} (\to DNN + X (\to SNN_{1}  SNN_{2}  DNN))$                                                                                                                                 |                     | $p_T + \ge 2$ GW                        | [104,147-153]              |  |  |
|           | $SM_{1,2} + M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                                   |                     | 1 resonance + 1 SM                      | Partial coverage [154,155] |  |  |
|           | ∫SM <sub>1,2</sub>                                                                                                                                                                 | $SM_{2,1} \in p$    | $E_T + 1 \le 3 \text{ SM}$              | [114,120-124]              |  |  |
|           | $\left\{M_{s} (\rightarrow DM + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM)\right\}$                                                                                            |                     | PT T S COM                              | [147-153,156-158]          |  |  |

Coannihilation Codex

Using the Codex

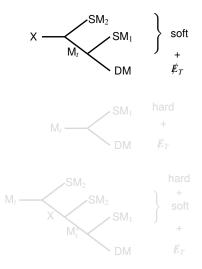
## LHC Production: t-channel

## Gauge boson production + Coannihilation diagram +

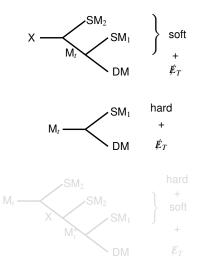




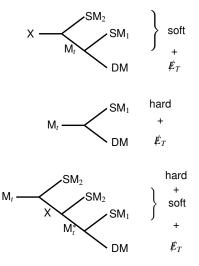
Coannihilation Codex


Using the Codex

## LHC Production: t-channel


## Gauge boson production + Coannihilation diagram +




## Decays: t-channel



## Decays: t-channel



## Decays: t-channel



# Signature Table: t-channel

|           | $pp \rightarrow \dots$                                                                                | Prod. via    | Signatures                                                                      | Search            |
|-----------|-------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------|-------------------|
|           | $\int M_r (\rightarrow SM_1 DM)$                                                                      |              | $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$  | [120-122,124]     |
|           | $M_t (\rightarrow SM_1 DM)$                                                                           |              | $p_T + \geq 2$ OW                                                               | [104,147-153]     |
|           | $\int M_r (\rightarrow SM_1 DM)$                                                                      |              | $\not\!\!\!E_T + \leq 4 \; \text{SM}$                                           | [106-112]         |
|           | $\left\{M_{t} (\rightarrow SM_{2} + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM)\right\}$           | gauge int.   | $p_T + \geq 4$ OW                                                               | [114,119-124]     |
|           | $\int M_{t} (\rightarrow SM_{2} + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM))$                    |              | $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$  | [113,114,120-124] |
| _         | $\left\{M_{t}^{r}\left(\toSM_{2}^{s}+X\left(\toSM_{1}^{soft}\;SM_{2}^{soft}\;DM\right)\right)\right.$ |              | $E_T + \ge 0.000$                                                               | [116-118,159-163] |
| r-channel | $DM + M_t (\rightarrow SM_1 DM)$                                                                      |              | $E_T + \leq 1 \text{ SM}$                                                       | [55,56,62,63]     |
| -che      |                                                                                                       | $SM_1 \in p$ | $PT + \leq 1000$                                                                | [104,149]         |
| <b>–</b>  | ∫DM                                                                                                   |              | $\not\!\!\!E_T + \leq 3 \text{ SM}$                                             | [114,120-124]     |
|           | $\left\{M_{t} (\rightarrow SM_{2} + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM)\right)$            |              | $PT + \leq 0.000$                                                               | [152,153,156-158] |
|           | $\int M_t (\rightarrow SM_1 DM)$                                                                      |              | $E_T + \leq 3 \text{ SM}$                                                       | [114,120-124]     |
|           | $X (\rightarrow SM_1^{soft} SM_2^{soft} DM)$                                                          | $SM_2 \in p$ | $E_T + \ge 0.000$                                                               | [152,153,156-158] |
|           | $\int M_t (\to SM_2 + X (\to SM_1^{soft} SM_2^{soft} DM))$                                            | $Ow_2 \in p$ | $\not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [113,114,116-124] |
|           | $X \rightarrow SM_1^{soft} SM_2^{soft} DM$                                                            |              | $p_T + \ge 0.000$                                                               | [159-161,164]     |

Coannihilation Codex

Using the Codex

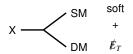
# LHC Production: hybrid models

## Gauge boson production +



Coannihilation Codex

Using the Codex


# LHC Production: hybrid models

## Gauge boson production +



Using the Codex

## Decays: hybrid models



Coannihilation Codex

Using the Codex

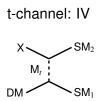
## Signature Table: hybrid models

|        | $pp \rightarrow \ldots$                                                                              | Prod. via       | Signatures                                                                      | Search            |
|--------|------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|-------------------|
| hybrid | $\begin{cases} X \ (\rightarrow DM + SM^{soft}_3) \\ X \ (\rightarrow DM + SM^{soft}_3) \end{cases}$ | gauge int.      | $ \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [120-122,124]     |
|        |                                                                                                      | or $SM_3 \in p$ |                                                                                 | [104,147-153]     |
|        | $DM + X (\rightarrow DM + SM^{soft}_3)$                                                              | $SM_3 \in p$    | $E_T + \leq 1 \text{ SM}$                                                       | [128,129,149]     |
|        |                                                                                                      |                 |                                                                                 | [55,56,62,63,104] |

# Signature Table

| _         |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     |                                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|------------------------------------|
|           | $pp \rightarrow \dots$                                                                                                                                                                                                                                                                                                                                                                 | Prod. via                       | Signatures                                          | Search                             |
|           | DM + DM + ISR                                                                                                                                                                                                                                                                                                                                                                          | gauge int.                      |                                                     |                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                        | or $SM_1 \in p$                 | mono-Y + $E_T$                                      | [55,56,62,63,104]                  |
|           |                                                                                                                                                                                                                                                                                                                                                                                        | for <i>i</i> -channel           |                                                     |                                    |
| nommoc    | $\begin{cases} X (\rightarrow SM_1^{nott} SM_2^{nott} DM) \\ X (\rightarrow SM_1^{nott} SM_2^{nott} DM) \\ ISR \end{cases}$                                                                                                                                                                                                                                                            | gauge int.                      | mono-Y + É <sub>T</sub>                             | [55,56,62,63,104]                  |
| l iii     |                                                                                                                                                                                                                                                                                                                                                                                        | or $SM_2 \in p$                 | $\text{mono-Y} + \not\!\!\!E_T + \leq 4 \text{ SM}$ | Partial coverage [105]             |
| 1         |                                                                                                                                                                                                                                                                                                                                                                                        | for <i>i</i> -channel           |                                                     |                                    |
|           | $DM + X (\rightarrow SM^{noft}_1  SM^{noft}_2  DM) + ISR$                                                                                                                                                                                                                                                                                                                              | $(SM_1 SM_2) \in p$             | mono-Y + $\dot{E}_T$                                | [55,56,62,63,104]                  |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |                                 | mono-Y + $\dot{E}_T + \leq 2$ SM                    | Partial coverage [105]             |
|           | $\begin{cases} M_{\epsilon} \ (\rightarrow [SM_1 \ SM_2]^{rm}) \\ M_{\epsilon} \ (\rightarrow [SM_1 \ SM_2]^{rm}) \end{cases}$                                                                                                                                                                                                                                                         |                                 | 2 resonances                                        | [106-112]                          |
|           | $\begin{cases} M_{\epsilon} (\rightarrow [SM_1 \; SM_2]^{res}) \\ M_{\epsilon} (\rightarrow DM + X (\rightarrow SM_1^{soft} \; SM_2^{soft} \; DM)) \end{cases}$                                                                                                                                                                                                                        | gauge int.                      | resonance + É <sub>7</sub>                          | No search                          |
| s-channel |                                                                                                                                                                                                                                                                                                                                                                                        | gauge mi.                       | resonance + $\not{E}_T + \leq 2 \text{ SM}$         | No search                          |
|           | $\begin{cases} M_{\epsilon} (\rightarrow DM + X (\rightarrow SM_1^{soft} \; SM_2^{soft} \; DM)) \\ M_{\epsilon} (\rightarrow DM + X (\rightarrow SM_1^{soft} \; SM_2^{soft} \; DM)) \end{cases}$                                                                                                                                                                                       |                                 | $\not E_T + \le 4 \text{ SM}$                       | [113-124]                          |
|           | $M_{\epsilon} (\rightarrow [SM_1 \; SM_2]^{res})$                                                                                                                                                                                                                                                                                                                                      |                                 | 1 resonance                                         | [125-146]                          |
|           | M <sub>s</sub> (→ DM + X (→ SM <sup>soft</sup> SM <sup>soft</sup> DM))                                                                                                                                                                                                                                                                                                                 | $(SM_1 SM_2) \in p$             | $\dot{E}_{T}+\leq 2~{ m SM}$                        | [120-122,124]                      |
|           | m <sub>2</sub> ( Dm + x ( Dm) - Dm))                                                                                                                                                                                                                                                                                                                                                   |                                 |                                                     | [104,147-153]                      |
|           | $SM_{1,2} + M_{\ell} (\rightarrow [SM_1 \ SM_2]^{res})$                                                                                                                                                                                                                                                                                                                                | $SM_{2,1} \in p$                | 1 resonance + 1 SM                                  | Partial coverage [154,155]         |
|           | $\begin{cases} SM_{1,2} \\ M_{\epsilon} (\rightarrow DM + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM)) \end{cases}$                                                                                                                                                                                                                                                                 |                                 | $E_T + 1 \leq 3 \text{ SM}$                         | [114,120-124]                      |
|           | $(M_{\alpha} (\rightarrow DM + X (\rightarrow SM_{1}^{herr} SM_{2}^{herr} DM))$                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [147-153,156-158]                  |
|           | $M_r (\rightarrow SM_1 DM)$                                                                                                                                                                                                                                                                                                                                                            | gauge int.                      | $E_T + \leq 2 \text{ SM}$                           | [120-122,124]                      |
|           | $M_r (\rightarrow SM_1 DM)$                                                                                                                                                                                                                                                                                                                                                            |                                 |                                                     | [104,147-153]                      |
|           | $ \begin{cases} M_r \left( \rightarrow SM_1 \ DM \right) \\ M_r \left( \rightarrow SM_2 + X \ ( \rightarrow SM_1^{seft} \ SM_2^{seft} \ DM ) \right) \\ \end{cases} \\ \begin{cases} M_r \left( \rightarrow SM_2 + X \ ( \rightarrow SM_1^{seft} \ SM_2^{seft} \ DM ) \right) \\ M_r \left( \rightarrow SM_2 + X \ ( \rightarrow SM_1^{seft} \ SM_2^{seft} \ DM ) \right) \end{cases}$ |                                 | $\dot{E}_{T}+\leq 4~{ m SM}$                        | [106-112]                          |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [114,119-124]                      |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |                                 | $E_T + \leq 6 \text{ SM}$                           | [113,114,120-124]                  |
| -         |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [116-118,159-163]                  |
| channel   | $\begin{array}{l} DM + M_r (\rightarrow SM_1 \; DM) \\ \\ \left\{ \begin{array}{l} DM \\ M_r (\rightarrow SM_2 + X (\rightarrow SM_r^{soft} \; SM_r^{soft} \; DM)) \end{array} \right. \end{array} \end{array}$                                                                                                                                                                        | $SM_1 \in p$                    | $E_{T} + \leq 1 \text{ SM}$                         | [55,56,62,63]                      |
| é         |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [104,149]                          |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |                                 | $\dot{E}_{T}+\leq 3~{ m SM}$                        | 114,120-124]                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [152,153,156-158]                  |
|           | $M_r (\rightarrow SM_1 DM)$<br>X ( $\rightarrow SM_{1}^{soft} SM_{1}^{soft} DM$ )                                                                                                                                                                                                                                                                                                      | $SM_2 \in p$                    | $E_T + \leq 3 \text{ SM}$                           | [114,120-124]<br>[152,153,156-158] |
|           | $(X (\rightarrow SM_1 + SM_2 + X) (\rightarrow SM_1^{soft} + SM_2^{soft} + X))$<br>$X (\rightarrow SM_2^{soft} + X (\rightarrow SM_1^{soft} + SM_2^{soft} + DM))$                                                                                                                                                                                                                      |                                 | $\dot{E}_{T}+ \leq 5 \text{ SM}$                    | [113,114,116-124]                  |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [159-161,164]                      |
| hybrid    | $X \rightarrow DM + SM_{2}^{oth}$<br>$X \rightarrow DM + SM_{2}^{oth}$<br>$X \rightarrow DM + SM_{2}^{oth}$                                                                                                                                                                                                                                                                            | gauge int.                      |                                                     | [120-122.124]                      |
|           |                                                                                                                                                                                                                                                                                                                                                                                        | gauge int.<br>or $SM_3 \in p$   | $E_T + \leq 2 \text{ SM}$                           | [120-122,124]                      |
|           | $DM + X (\rightarrow DM + SM_3^{soft})$                                                                                                                                                                                                                                                                                                                                                | or $SM_3 \in p$<br>$SM_3 \in p$ | $E_T + \leq 1 \text{ SM}$                           | [128,129,149]                      |
| 1         |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     | [55,56,62,63,104]                  |
| 1         |                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                     |                                    |








# **Bino-gluino Coannihilation**

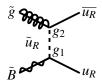
| Label | Field  | Rep.      | Spin assignment |
|-------|--------|-----------|-----------------|
| DM    | Bino   | (1,1,0)   | Fermion         |
| Х     | Gluino | (8,1,0)   | Fermion         |
| М     | Squark | (3,1,4/3) | Scalar          |

$$\begin{split} \mathsf{D}\mathsf{M} &\sim (1,N,\beta) \\ X &\sim (8,N,\alpha) \\ \alpha &+ \beta = 0 \\ \mathsf{M} &\sim (3,N,\beta + 4/3) \end{split}$$



# **Bino-gluino Coannihilation**

$$X \sim (8, N, \alpha)$$
  $\alpha + \beta = 0$ 


 $M \sim (3, N, \beta + 4/3)$  Spin: IV

| ID   | Х                        | $\alpha + \beta$ | $M_t$                                     | Spin | $(\mathrm{SM}_1~\mathrm{SM}_2)$ | $\mathrm{SM}_3$ |
|------|--------------------------|------------------|-------------------------------------------|------|---------------------------------|-----------------|
| TO1  |                          |                  | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$          |                 |
| TO2  |                          | 0                | $(\bar{3},N,\beta-\frac{4}{3})$           | IV   | $(u_R \overline{u_R})$          |                 |
| TO3  | (8, N, lpha)             |                  | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{d_R})$          |                 |
| TO4  |                          | -2               | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{u_R})$          |                 |
| TO5  |                          | -2               | $(3, N, \beta + \frac{4}{3})$             | IV   | $(\overline{u_R}d_R)$           |                 |
| TO6  |                          |                  | $(\bar{3}, N, \beta + \frac{2}{3})$       | IV   | $(d_R \overline{Q_L})$          |                 |
| TO7  | $(8, N \pm 1, \alpha)$   | -1               | $(3, N \pm 1, \beta + \frac{1}{3})$       | IV   | $(\overline{Q_L}d_R)$           |                 |
| TO8  | $(8, N \perp 1, \alpha)$ | -1               | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{u_R})$          |                 |
| TO9  |                          |                  | $(3, N, \beta + \frac{4}{3})$             | IV   | $(\overline{u_R}Q_L)$           |                 |
| TO10 | $(8, N \pm 2, \alpha)$   | 0                | $(\bar{3}, N \pm 1, \beta - \frac{1}{3})$ | IV   | $(Q_L \overline{Q_L})$          |                 |

Using the Codex

# **Bino-gluino Coannihilation**

DM ~  $(1, 1, 0)_F$  X ~  $(8, 1, 0)_F$ M ~  $(3, 1, 4/3)_B$  (SM<sub>1</sub>SM<sub>2</sub>) =  $(u_R \overline{u_R})$ 



Using the Codex

# **Bino-gluino Coannihilation**

DM ~  $(1, 1, 0)_F$  X ~  $(8, 1, 0)_F$ M ~  $(3, 1, 4/3)_B$  (SM<sub>1</sub>SM<sub>2</sub>) =  $(u_R \overline{u_R})$ 

|        | $pp \rightarrow \dots$                                   | Prod. via                                         | Signatures                                                                           | Search                 | Strength                              |
|--------|----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|------------------------|---------------------------------------|
|        |                                                          | gauge int.                                        |                                                                                      |                        |                                       |
|        | DM + DM + ISR                                            | or $SM_1 \in p$                                   | mono-Y + $\not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [55,56,62,63,104]      | $g_1^4 \alpha_i$                      |
|        |                                                          | for <i>t</i> -channel                             |                                                                                      |                        |                                       |
| common | $(X (\rightarrow SM_1^{soft} SM_2^{soft} DM))$           | gauge int.                                        | mono-Y + $\not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [55,56,62,63,104]      |                                       |
| com    | $X (\rightarrow SM_1^{\hat{s}oft} SM_2^{\hat{s}oft} DM)$ | or $SM_2 \in p$                                   | mono-Y + $\not \!\!\! E_T + \leq 4$ SM                                               | Partial coverage [105] | $\alpha_s^2 \alpha_i, g_2^4 \alpha_i$ |
|        | (ISR                                                     | for t-channel                                     |                                                                                      |                        |                                       |
|        | $DM + X (\rightarrow SM_1^{soft} SM_2^{soft} DM) + ISR$  | $(SM_1 SM_2) \in p$                               | mono-Y + $\not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [55,56,62,63,104]      |                                       |
|        | $DW + X (\rightarrow SW_1 - SW_2 - DW) + 13H$            | $(\operatorname{OW}_1 \operatorname{OW}_2) \in p$ | mono-Y + $\not\!\!\!E_T + \leq 2$ SM                                                 | Partial coverage [105] | $g_1^2 g_2^2 \alpha_i$                |

Using the Codex

# **Bino-gluino Coannihilation**

DM ~  $(1, 1, 0)_F$  X ~  $(8, 1, 0)_F$ M ~  $(3, 1, 4/3)_B$  (SM<sub>1</sub>SM<sub>2</sub>) =  $(u_R \overline{u_R})$ 

|           | $pp \rightarrow \dots$                                                                     | Prod. via    | Signatures                                                                     | Search            | Strength                             |
|-----------|--------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|-------------------|--------------------------------------|
|           | $\int M_r (\rightarrow SM_1 DM)$                                                           |              | $E_T + \leq 2 \text{ SM}$                                                      | [120-122,124]     | $\alpha_s^2$                         |
|           | $M_t (\rightarrow SM_1 DM)$                                                                |              |                                                                                | [104,147-153]     | u <sub>s</sub>                       |
|           | $\int M_r (\rightarrow SM_1 DM)$                                                           |              | $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [106-112]         | $\alpha_s^2$                         |
|           | $\left\{M_{r} (\rightarrow SM_2 + X (\rightarrow SM_1^{soft} SM_2^{soft} DM)\right)$       | gauge int.   | $p_T + \leq 4$ OW                                                              | [114,119-124]     | α <sub>s</sub>                       |
|           | $\int M_{t} (\rightarrow SM_{2} + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM))$         |              | $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [113,114,120-124] | $\alpha_s^2$                         |
| _         | $M_r (\rightarrow SM_2 + X (\rightarrow SM_1^{soft} SM_2^{soft} DM))$                      |              | $p_T + \ge 0.000$                                                              | [116-118,159-163] | u <sub>s</sub>                       |
| r-channel | $DM + M_t (\rightarrow SM_1 DM)$                                                           |              |                                                                                | [55,56,62,63]     | $\alpha_s g_1^2$<br>$\alpha_s g_1^2$ |
| che       |                                                                                            | SM. C.n.     |                                                                                | [104,149]         |                                      |
|           | ∫DM                                                                                        |              |                                                                                | [114,120-124]     |                                      |
|           | $\left\{M_{t} (\rightarrow SM_{2} + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM)\right)$ |              |                                                                                | [152,153,156-158] |                                      |
|           | $\int M_r (\rightarrow SM_1 DM)$                                                           |              | $E_T + \leq 3 \text{ SM}$                                                      | [114,120-124]     | $\alpha_s g_2^2$                     |
|           | $X (\rightarrow SM_1^{soft} SM_2^{soft} DM)$                                               | $SM_2 \in p$ |                                                                                | [152,153,156-158] | ass2                                 |
|           | $\int M_{t} (\rightarrow SM_{2} + X (\rightarrow SM_{1}^{soft} SM_{2}^{soft} DM))$         |              | $E_T + \leq 5 \text{ SM}$                                                      | [113,114,116-124] | $\alpha_s g_2^2$                     |
|           | $X (\rightarrow SM_1^{soft} SM_2^{soft} DM)$                                               |              | $p_T + \leq 0.000$                                                             | [159-161,164]     | ass2                                 |

Motivation 000000000000 Coannihilation Codex

Using the Codex

# Using the Codex II

#### Underexplored DM Models

# Leptoquark Mediated DM - ST11

| ID   | х                      | $\alpha + \beta$ | $M_s$                 | Spin | $(SM_1 SM_2)$                                   | $\mathrm{SM}_3$ | M-X-X |
|------|------------------------|------------------|-----------------------|------|-------------------------------------------------|-----------------|-------|
| ST11 | $(3, N \pm 1, \alpha)$ | $\frac{7}{3}$    | $(3, 2, \frac{7}{3})$ | В    | $(Q_L \overline{\ell_R}), (u_R \overline{L_L})$ |                 |       |

DM in  $(1, N, \beta)$ 

| Field        | Rep.      | Spin and mass assignment |
|--------------|-----------|--------------------------|
| DM           | (1,1,0)   | Majorana fermion         |
| Х            | (3,2,7/3) | Dirac fermion            |
| $\mathbb{M}$ | (3,2,7/3) | Scalar                   |

# Leptoquark Mediated DM - ST11

| ID   | х                      | $\alpha + \beta$ | $M_s$                 | Spin | $(SM_1 SM_2)$                                   | $\mathrm{SM}_3$ | M-X-X |
|------|------------------------|------------------|-----------------------|------|-------------------------------------------------|-----------------|-------|
| ST11 | $(3, N \pm 1, \alpha)$ | $\frac{7}{3}$    | $(3, 2, \frac{7}{3})$ | В    | $(Q_L \overline{\ell_R}), (u_R \overline{L_L})$ |                 |       |

DM in  $(1, N, \beta)$ 

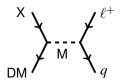
| Field | Rep.      | Spin and mass assignment |
|-------|-----------|--------------------------|
| DM    | (1,1,0)   | Majorana fermion         |
| Х     | (3,2,7/3) | Dirac fermion            |
| М     | (3,2,7/3) | Scalar                   |

Using the Codex

### Leptoquark Mediated DM - ST11

| Field | Rep.      | Spin and mass assignment |
|-------|-----------|--------------------------|
| DM    | (1,1,0)   | Majorana fermion         |
| Х     | (3,2,7/3) | Dirac fermion            |
| М     | (3,2,7/3) | Scalar                   |




 $\mathcal{L} \supset \mathcal{L}_{kin} + y_D \overline{X} \mathsf{M} \mathsf{DM} + y_{Q\ell} \overline{Q_L} \mathsf{M} \ell_R + y_{Lu} \overline{L_L} \mathsf{M}^c u_R + h.c.$ 

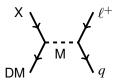
$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{\mathcal{Q}\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{\mathcal{Q}}^1$$

Using the Codex

### Leptoquark Mediated DM - ST11

| Field | Rep.      | Spin and mass assignment |
|-------|-----------|--------------------------|
| DM    | (1,1,0)   | Majorana fermion         |
| Х     | (3,2,7/3) | Dirac fermion            |
| М     | (3,2,7/3) | Scalar                   |




 $\mathcal{L} \supset \mathcal{L}_{kin} + y_D \overline{X} M DM + y_{Q\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c.$ 

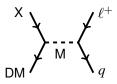
$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{\mathcal{Q}\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{\mathcal{Q}}^{11}$$

Using the Codex

#### Leptoquark Mediated DM - ST11

| Field | Rep.      | Spin and mass assignment |
|-------|-----------|--------------------------|
| DM    | (1,1,0)   | Majorana fermion         |
| Х     | (3,2,7/3) | Dirac fermion            |
| М     | (3,2,7/3) | Scalar                   |

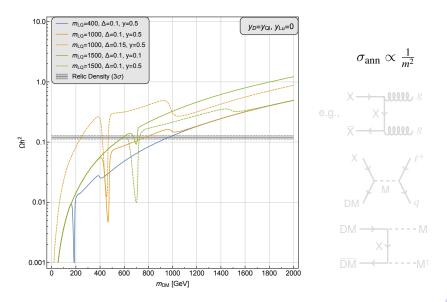



 $\mathcal{L} \supset \mathcal{L}_{\mathsf{kin}} + y_D \overline{\mathsf{X}} \mathsf{M} \mathsf{D} \mathsf{M} + y_{Q\ell} \overline{Q_L} \mathsf{M} \ell_R + y_{Lu} \overline{L_L} \mathsf{M}^c u_R + h.c.$ 

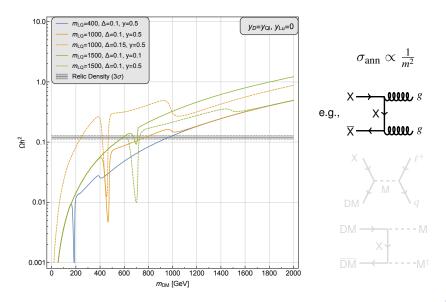
$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{Q\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{Q\ell}^{11}$$

Using the Codex

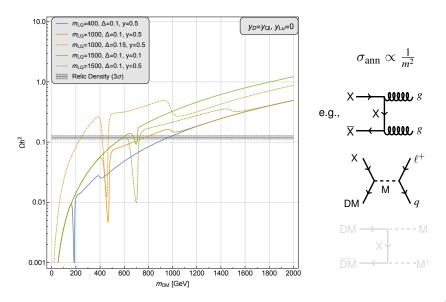
### Leptoquark Mediated DM - ST11


| Field | Rep.      | Spin and mass assignment |
|-------|-----------|--------------------------|
| DM    | (1,1,0)   | Majorana fermion         |
| Х     | (3,2,7/3) | Dirac fermion            |
| М     | (3,2,7/3) | Scalar                   |

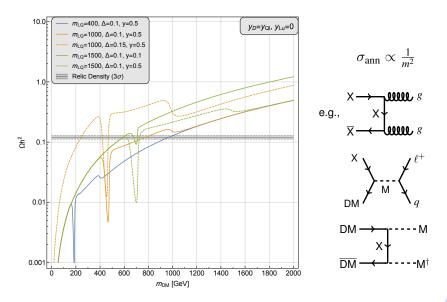



 $\mathcal{L} \supset \mathcal{L}_{\mathsf{kin}} + y_D \overline{\mathsf{X}} \mathsf{M} \mathsf{D} \mathsf{M} + y_{Q\ell} \overline{Q_L} \mathsf{M} \ell_R + y_{Lu} \overline{L_L} \mathsf{M}^c u_R + h.c.$ 

$$\Delta = \frac{m_{\mathsf{X}} - m_{\mathsf{DM}}}{m_{\mathsf{DM}}} \quad y_{Q\ell}^{ij} = y_{Lu} = 0 \quad y_D = y_{Q\ell}^{11}$$


Using the Codex




Using the Codex



Using the Codex



Using the Codex



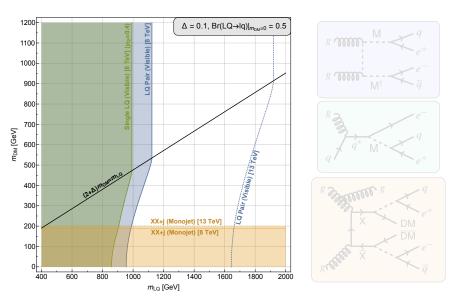
 $\mathrm{DM} \sim (1, 1, 0)_F \qquad X \sim (3, 2, 7/3)_F \qquad \mathrm{M} \sim (3, 2, 7/3)_B \qquad (\mathrm{SM}_1 \mathrm{SM}_2) = (Q_L \overline{e_R})$ 

|        | $pp \rightarrow \dots$                                                                                                      | Prod. via                                              | Signatures                                                              | Search                                      | Strength              |
|--------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|-----------------------|
|        | DM + DM + ISR                                                                                                               | gauge int.<br>or $SM_1 \in p$<br>for <i>t</i> -channel | mono-Y + $\not \!\! E_T$                                                | [55,56,62,63,104]                           | _                     |
| common | $\begin{cases} X (\rightarrow SM_1^{soft} SM_2^{soft} DM) \\ X (\rightarrow SM_1^{soft} SM_2^{soft} DM) \\ ISR \end{cases}$ | gauge int.<br>or $SM_2 \in p$<br>for <i>t</i> -channel | $mono-Y + \not\!\!\! E_T$ $mono-Y + \not\!\!\! E_T + \leq 4 \text{ SM}$ | [55,56,62,63,104]<br>Partial coverage [105] | $\alpha_s^2 \alpha_i$ |
|        | $DM + X (\to SM_1^{\text{soft}} \; SM_2^{\text{soft}} \; DM) + ISR$                                                         | $(SM_1 \ SM_2) \in p$                                  | mono-Y + $\not \!\!\! E_T$<br>mono-Y + $\not \!\!\! E_T + \leq 2$ SM    | [55,56,62,63,104]<br>Partial coverage [105] | -                     |

 $DM \sim (1, 1, 0)_F$   $X \sim (3, 2, 7/3)_F$   $M \sim (3, 2, 7/3)_B$   $(SM_1SM_2) = (Q_L \overline{e_R})$ 

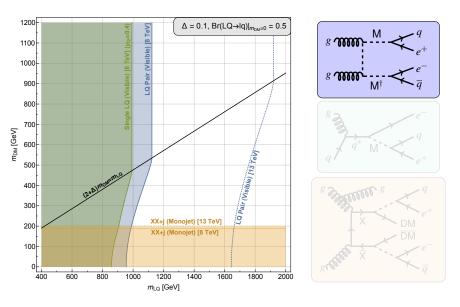
|           | $pp \rightarrow \dots$                                                                                                                                                                       | Prod. via           | Signatures                                                       | Search                     | Strength                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------|----------------------------|------------------------------|
| s-channel | $\begin{cases} M_s \ (\rightarrow [SM_1 \ SM_2]^{res}) \\ M_s \ (\rightarrow [SM_1 \ SM_2]^{res}) \end{cases}$                                                                               |                     | 2 resonances                                                     | [106-112]                  | $\alpha_s^2$                 |
|           | $\begin{cases} M_s (\rightarrow [SM_1 \ SM_2]^{res}) \\ M_s (\rightarrow DM + X (\rightarrow SM_1^{soft} \ SM_2^{soft} \ DM)) \end{cases}$                                                   | gauge int.          | resonance + $\not{E}_T$<br>resonance + $\not{E}_T$ + $\leq 2$ SM | No search<br>No search     | $\alpha_s^2$                 |
|           | $ \begin{cases} M_s \; (\rightarrow DM + X \; (\rightarrow SM_1^{soft} \; SM_2^{soft} \; DM)) \\ M_s \; (\rightarrow DM + X \; (\rightarrow SM_1^{soft} \; SM_2^{soft} \; DM)) \end{cases} $ |                     | $\not{E}_T + \leq 4 \text{ SM}$                                  | [113-124]                  | $\alpha_s^2$                 |
|           | $M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                                                        |                     | 1 resonance                                                      | [125-146]                  | -                            |
|           | $M_{s} \ (\rightarrow DM + X \ (\rightarrow SM^{soft}_{1} \ SM^{soft}_{2} \ DM))$                                                                                                            | $(SM_1 SM_2) \in p$ | <i>É</i> <sub>7</sub> + < 2 SM                                   | [120-122,124]              | _                            |
|           |                                                                                                                                                                                              |                     | <i>₽T</i> <sup>+</sup> ≤ 2 310                                   | [104,147-153]              |                              |
|           | $SM_{1,2} + M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                                             |                     | 1 resonance + 1 SM                                               | Partial coverage [154,155] | $\alpha_s(y_{Q\ell}^{11})^2$ |
|           | ∫SM <sub>1,2</sub>                                                                                                                                                                           | $SM_{2,1} \in p$    | <i>É</i> <sub>7</sub> + 1 ≤ 3 SM                                 | [114,120-124]              | $\alpha_s(y_{O\ell}^{11})^2$ |
|           | $\left\{M_{s} \left( \rightarrow DM + X \left( \rightarrow SM_{1}^{soft} SM_{2}^{soft} DM \right) \right\}$                                                                                  |                     | PT T I SOOM                                                      | [147-153,156-158]          | $\alpha_s(y_{Q\ell})$        |

 $\mathrm{DM} \sim (1,1,0)_F \qquad X \sim (3,2,7/3)_F \qquad \mathrm{M} \sim (3,2,7/3)_B \qquad (\mathrm{SM}_1 \mathrm{SM}_2) = (Q_L \overline{e_R})$ 


|          | $pp \rightarrow \ldots$                                                                                                                                                                        | Signatures                                                           | Existing Searches                                    | Strength                     | Search                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| nommoo   | DM + DM + ISR                                                                                                                                                                                  | mono-Y + ¢ <sub>T</sub>                                              | [ 55,56,62,63,104]                                   | -                            | -                                                                  |
|          | $ \begin{cases} X (\rightarrow SM_1^{soft} SM_2^{soft} DM) \\ X (\rightarrow SM_1^{soft} SM_2^{soft} DM) \end{cases} $                                                                         | mono-Y + $\not{\!\! E}_T$<br>mono-Y + $\not{\!\! E}_T$ + $\leq$ 4 SM | [ <u>55,56</u> ,62,63,104]<br>Partial coverage [105] | $\alpha_s^2 \alpha_i$        | (I) monojet + $\not{E}_T$<br>(II) monojet + $\not{E}_T$ + soft $e$ |
| ľ        | lisr                                                                                                                                                                                           |                                                                      |                                                      |                              |                                                                    |
|          | $DM + X \ (\rightarrow SM^{soft}_1 \ SM^{soft}_2 \ DM) + ISR$                                                                                                                                  | mono-Y + $\not{E}_T$                                                 | [55,56,62,63,104]                                    | _                            | _                                                                  |
|          |                                                                                                                                                                                                | mono-Y + $\not \!\! E_T + \leq 2 \text{ SM}$                         | Partial coverage [105]                               |                              |                                                                    |
|          | $\begin{cases} M_{s} \ (\rightarrow [SM_1 \ SM_2]^{res}) \\ M_{s} \ (\rightarrow [SM_1 \ SM_2]^{res}) \end{cases}$                                                                             | 2 resonances                                                         | [106- <u>111,112]</u>                                | $\alpha_s^2$                 | (III) Leptoquark pair                                              |
|          | $\begin{cases} M_{s} \; (\rightarrow [SM_1 \; SM_2]^{res}) \\ M_{s} \; (\rightarrow DM + X \; (\rightarrow SM_1^{soft} \; SM_2^{soft} \; DM)) \end{cases}$                                     | resonance + $E_T$                                                    | No search                                            | $\alpha_r^2$                 | (IV) Leptoquark + € <sub>T</sub>                                   |
|          |                                                                                                                                                                                                | resonance + $\not\!\!\!E_T + \leq 2 \text{ SM}$                      | No search                                            | $\alpha_s$                   | (V) Leptoquark + $\not\!\!\!E_T + j + e$                           |
| _        | $\begin{cases} M_{s} \ (\rightarrow DM + X \ (\rightarrow SM_{1}^{soft} \ SM_{2}^{soft} \ DM)) \\ M_{s} \ (\rightarrow DM + X \ (\rightarrow SM_{1}^{soft} \ SM_{2}^{soft} \ DM)) \end{cases}$ | $E_{T+} < 4 \text{ SM}$                                              | [113, <u>114</u> -124]                               | $\alpha_r^2$                 | (VI) $2e+2j + \not E_T$                                            |
| -channel |                                                                                                                                                                                                | <i>₽T</i> + ≤ <b>4</b> OW                                            |                                                      | α <sub>s</sub>               | (I) monojet + $E_T$                                                |
| ç        | $M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                                                          | 1 resonance                                                          | [125-146]                                            | -                            | -                                                                  |
| 1        | $M_{s} \ (\rightarrow DM + X \ (\rightarrow SM^{soft}_{1} \ SM^{soft}_{2} \ DM))$                                                                                                              | <i>É</i> <sub>7</sub> + < 2 SM                                       | [120-122,124]                                        |                              |                                                                    |
|          |                                                                                                                                                                                                | <i>₽1</i> + ≤ 2 0m                                                   | [104,147-153]                                        |                              |                                                                    |
|          | $SM_{1,2} + M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                                               | 1 resonance + 1 SM                                                   | Partial coverage [154,155]                           | $\alpha_s(y_{Q\ell}^{11})^2$ | (VII) Leptoquark + e                                               |
|          | ∫SM <sub>1,2</sub>                                                                                                                                                                             | É <sub>7</sub> + 1 < 3 SM                                            | [ <u>114</u> ,120-124]                               | $\alpha_s(y_{O\ell}^{11})^2$ | (VI) $2e + j + \not E_T$                                           |
|          | $M_s (\rightarrow DM + X (\rightarrow SM_1^{soft} SM_2^{soft} DM))$                                                                                                                            |                                                                      | [ <u>128,129</u> ,147-153,156-158]                   | $\alpha_s(y_{Q\ell})$        | (VIII) $e + \not E_T$                                              |

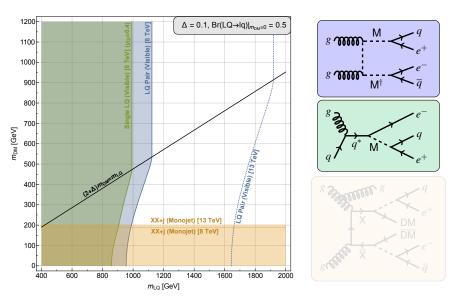
 $DM \sim (1, 1, 0)_F$   $X \sim (3, 2, 7/3)_F$   $M \sim (3, 2, 7/3)_B$   $(SM_1SM_2) = (Q_L \overline{e_R})$ 

|         | $pp \rightarrow \ldots$                                                                                                                                                    | Signatures                                                                                            | Existing Searches                                            | Strength                         | Search                                                                | ]                |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|------------------|
| common  | DM + DM + ISR                                                                                                                                                              | mono-Y + ∉ <sub>T</sub>                                                                               | [ 55,56,62,63,104]                                           | -                                | -                                                                     |                  |
|         | $\begin{cases} X (\rightarrow SM_1^{soft} SM_2^{soft} DM) \\ X (\rightarrow SM_1^{soft} SM_2^{soft} DM) \\ ISR \end{cases}$                                                | $\begin{array}{l} mono-Y + \not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | [ <u>55,56</u> ,62,63,104]<br>Partial coverage [105]         | $\alpha_s^2 \alpha_i$            | (I) monojet + $\not{E}_T$<br>(II) monojet + $\not{E}_T$ + soft $e$    | ←<br>  ←         |
|         | $\text{DM} + \text{X} (\rightarrow \text{SM}_1^{\text{soft}} \text{ SM}_2^{\text{soft}} \text{ DM}) + \text{ISR}$                                                          | mono-Y + $\not{E}_T$<br>mono-Y + $\not{E}_T$ + $\leq$ 2 SM                                            | [55,56,62,63,104]<br>Partial coverage [105]                  | -                                | -                                                                     |                  |
| channel | $\begin{cases} M_{s} \ (\rightarrow [SM_1 \ SM_2]^{res}) \\ M_{s} \ (\rightarrow [SM_1 \ SM_2]^{res}) \end{cases}$                                                         | 2 resonances                                                                                          | [106- <u>111,112]</u>                                        | $\alpha_s^2$                     | (III) Leptoquark pair                                                 | $ $ $\leftarrow$ |
|         | $\begin{cases} M_{s} \ (\rightarrow [SM_1 \ SM_2]^{res}) \\ M_{s} \ (\rightarrow DM + X \ (\rightarrow SM_1^{soft} \ SM_2^{soft} \ DM)) \end{cases}$                       | resonance + $\not{E}_T$<br>resonance + $\not{E}_T$ + $\leq 2$ SM                                      | No search<br>No search                                       | $\alpha_s^2$                     | (IV) Leptoquark + $\not{E}_T$<br>(V) Leptoquark + $\not{E}_T + j + e$ |                  |
|         | $\begin{cases} M_{s} (\rightarrow DM + X (\rightarrow SM_1^{soft}  SM_2^{soft}  DM)) \\ M_{s} (\rightarrow DM + X (\rightarrow SM_1^{soft}  SM_2^{soft}  DM)) \end{cases}$ | $\not \! E_T + \leq 4 \; \mathrm{SM}$                                                                 | [113, <u>114</u> -124]                                       | $\alpha_s^2$                     | (VI) $2e+2j + \not{E}_T$<br>(I) monojet + $\not{E}_T$                 |                  |
| ç       | $M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                                      | 1 resonance                                                                                           | [125-146]                                                    | -                                | -                                                                     |                  |
| 5       | $M_{s} \ (\rightarrow DM + X \ (\rightarrow SM_{1}^{soft} \ SM_{2}^{soft} \ DM))$                                                                                          | $\not \! E_T + \le 2 \text{ SM}$                                                                      | [120-122,124]<br>[104,147-153]                               | -                                | -                                                                     |                  |
|         | $SM_{1,2} + M_s (\rightarrow [SM_1 SM_2]^{res})$                                                                                                                           | 1 resonance + 1 SM                                                                                    | Partial coverage [154,155]                                   | $\alpha_s(y_{Q\ell}^{11})^2$     | (VII) Leptoquark + e                                                  | $  \leftarrow$   |
|         | $\begin{cases} SM_{1,2} \\ M_{s} \ (\rightarrow DM + X \ (\rightarrow SM^{soft}_1 \ SM^{soft}_2 \ DM)) \end{cases}$                                                        | $\not \! E_T$ + 1 $\leq$ 3 SM                                                                         | [ <u>114</u> ,120-124]<br>[ <u>128,129</u> ,147-153,156-158] | $\alpha_{s}(y_{Q\ell}^{11})^{2}$ | (VI) $2e + j + \not{E}_T$<br>(VIII) $e + \not{E}_T$                   |                  |


Motivation 000000000000

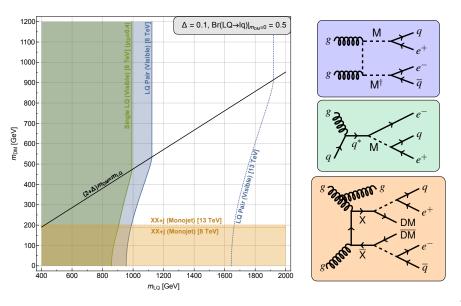
Using the Codex




Motivation 000000000000

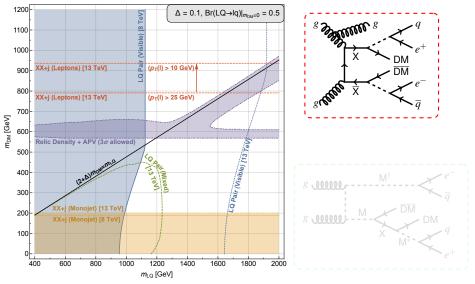
Using the Codex




Motivation 000000000000

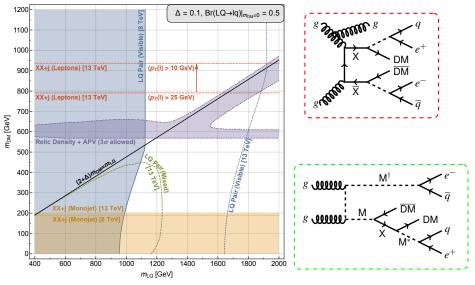
Using the Codex




Motivation 000000000000

Using the Codex




Using the Codex

#### ST11 - Constraints from New Searches



Using the Codex

#### ST11 - Constraints from New Searches





- Coannihilation Codex gives a complete list of simplified models of coannihilation
- Guaranteed kinetic & coannihilation vertices  $\rightarrow$  signatures
- Classify signatures of a wide range of models
  - Identify new signatures
  - Identify interesting models, e.g., leptoquarks and DM
- Huge number of coannihilating models of DM
  - with interesting collider signatures to study
  - at the LHC and future colliders



- Coannihilation Codex gives a complete list of simplified models of coannihilation
- $\bullet\,$  Guaranteed kinetic & coannihilation vertices  $\rightarrow\,$  signatures
- Classify signatures of a wide range of models
  - Identify new signatures
  - Identify interesting models, e.g., leptoquarks and DM
- Huge number of coannihilating models of DM
  - with interesting collider signatures to study
  - at the LHC and future colliders

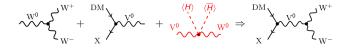


- Coannihilation Codex gives a complete list of simplified models of coannihilation
- Guaranteed kinetic & coannihilation vertices  $\rightarrow$  signatures
- Classify signatures of a wide range of models
  - Identify new signatures
  - Identify interesting models, e.g., leptoquarks and DM
- Huge number of coannihilating models of DM
  - with interesting collider signatures to study
  - at the LHC and future colliders



- Coannihilation Codex gives a complete list of simplified models of coannihilation
- Guaranteed kinetic & coannihilation vertices  $\rightarrow$  signatures
- Classify signatures of a wide range of models
  - Identify new signatures
  - Identify interesting models, e.g., leptoquarks and DM
- Huge number of coannihilating models of DM
  - with interesting collider signatures to study
  - at the LHC and future colliders




- Coannihilation Codex gives a complete list of simplified models of coannihilation
- Guaranteed kinetic & coannihilation vertices  $\rightarrow$  signatures
- Classify signatures of a wide range of models
  - Identify new signatures
  - Identify interesting models, e.g., leptoquarks and DM
- Huge number of coannihilating models of DM
  - with interesting collider signatures to study
  - at the LHC and future colliders

The main effect of EWSB on our models is from mixing:

- Due to Z<sub>2</sub> symmetry, in t-channel models the effects of the mixing will be entirely in the dark sector
- Mediators in s-channel models may mix with SM particles, giving hybrid model like signatures

It is also possible to construct new 2-to-2 diagrams exist thanks to EWSB

E.g.: mixing between  $W_i(1,3,0)$  and  $V_i(1,5,0)$  in the 3–3–1 model



However, all diagrams are built from verticies present in our tables and LHC signatures (almost always) differ only by mixing angles and group theory factors

# Cut-flow table - Mixed decay

|                                                                                | QCD                    | W+1, 2j             | tī                  | $Z_{\nu\nu} + j$    | $Z_{\tau\tau} + j$  | $W^+W^-$            | $WZ_{\nu\nu} + j$   | WZ <sub>jj</sub>    | signal |
|--------------------------------------------------------------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------|
| $p_T(j_1) > 50 \text{ GeV}$                                                    | $2.1\!\times\!10^{12}$ | $4.4\!\times\!10^8$ | $1.3 	imes 10^8$    | $7.0 	imes 10^7$    | $1.3 	imes 10^7$    | $1.2\!\times\!10^6$ | $1.3\!\times\!10^5$ | $3.1\!\times\!10^5$ | 600    |
| $N_e^{ m h}=1, N_e\leq 2$                                                      | $4.8 	imes 10^9$       | $8.8\!\times\!10^7$ | $1.2\!\times\!10^7$ | $8.6 	imes 10^4$    | $4.8\!\times\!10^5$ | $2.4\!\times\!10^5$ | $1.9\!\times\!10^4$ | $6.1\!\times\!10^4$ | 415    |
| b-jet veto                                                                     | $4.0 	imes 10^9$       | $8.2\!\times\!10^7$ | $5.0\!\times\!10^6$ | $8.2 	imes 10^4$    | $4.6\!\times\!10^5$ | $2.2\!\times\!10^5$ | $1.9\!\times\!10^4$ | $5.4\!\times\!10^4$ | 395    |
| $N_{\rm hard\ jets} \leq 3$                                                    | $3.9 	imes 10^9$       | $8.2\!\times\!10^7$ | $4.3\!\times\!10^6$ | $8.2\!\times\!10^4$ | $4.6\!\times\!10^5$ | $2.2\!\times\!10^5$ | $1.9\!\times\!10^4$ | $5.4\!\times\!10^4$ | 335    |
| Z veto                                                                         | $3.9 	imes 10^9$       | $8.2\!\times\!10^7$ | $1.7\!\times\!10^6$ | $8.2\!\times\!10^4$ | $4.6\!\times\!10^5$ | $2.2\!\times\!10^5$ | $1.9\!\times\!10^4$ | $5.4\!\times\!10^4$ | 326    |
| $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 133                    | 1738                | 15                  | 19                  | 9                   | 10                  | 27                  | 2                   | 75     |
| $m_T > 150 \text{ GeV}$                                                        | 132                    | 16                  | $10^{-3}$           | 18                  | 0.005               | 0.01                | 10                  | 0.001               | 67     |
| mass window                                                                    | 3                      | 0.2                 | 0                   | 0.3                 | $10^{-5}$           | $10^{-5}$           | 0.1                 | $10^{-5}$           | 24     |

|                                                                                 | tī                | $Z_{\ell\ell} + j$ | Diboson          | $W_{\ell\nu} + j$ | t+j              | Signal           |
|---------------------------------------------------------------------------------|-------------------|--------------------|------------------|-------------------|------------------|------------------|
| $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$  | $1.9\times10^7$   | $7.9\times10^{6}$  | $1.1 	imes 10^6$ | $1.9\times 10^8$  | $5.6\times10^5$  | $8.5	imes10^4$   |
| $p_T^{\rm lead} > 50~{ m GeV}$                                                  | $1.8 	imes 10^7$  | $6.1\times10^{6}$  | $5.9\times10^5$  | $1.5\times 10^8$  | $4.6\times 10^5$ | $7.1 	imes 10^4$ |
| $\Delta \phi_{j_1 j_2} < 2.5$                                                   | $1.2 	imes 10^7$  | $4.2\times10^{6}$  | $5.0\times 10^5$ | $1.1\times 10^8$  | $2.9\times10^5$  | $5.4\times10^4$  |
| Z and $\mu$ veto                                                                | $8.5\times10^{6}$ | $2.7\times10^{6}$  | $4.0\times 10^5$ | $8.6\times10^7$   | $1.9\times10^5$  | $5.2\times 10^4$ |
| b veto                                                                          | $3.6	imes10^6$    | $2.6\times 10^6$   | $3.7\times10^5$  | $8.2\times10^7$   | $1.1\times10^5$  | $2.0 	imes 10^4$ |
| $N_l \ge 2$                                                                     | $2.5\times10^4$   | 4371               | 1076             | $9.8\times10^4$   | 382              | 1748             |
| $   \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 12                | 11                 | 0.07             | 780               | 2                | 118              |
| $\left  \frac{p_{Tj_1}}{\not\!\!E_T} - 1 \right  < 0.2$                         | 1                 | 11                 | 0.07             | 148               | 0.2              | 85               |