Baryogenesis via mesino oscillations

AKSHAY GHALSASI, DAVE MCKEEN, ANN NELSON UC DAVIS NOV 16 2015

arxiv:1508.05392

The one minute summary

- ► Mesino a bound state of colored scalar and quark
- Model analogous to Kaon system
- ► Mesinos form after the QCD hadronization temp
- Oscillations analogous to Kaon system give CP violation
- ► Baryon violating decays give baryogenesis

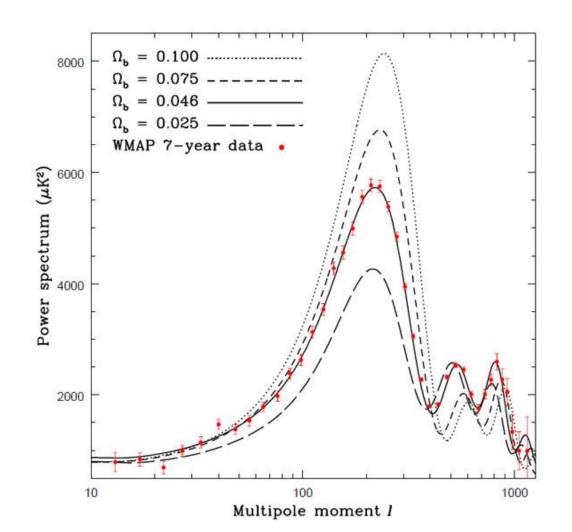
Outline

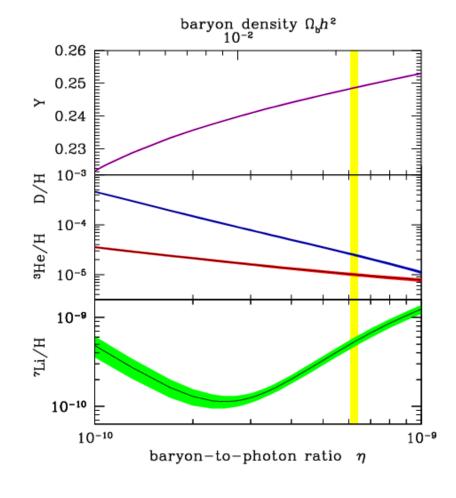
- ▶ Introduction and Motivation
- ▶ The Model
- ▶ Oscillations and CP Asymmetry
- ► Experimental Constraints
- ▶ Cosmology
- **▶** Conclusion

Introduction and Motivation

Evidence for baryogenesis

▶ Universe is made up of baryons $\eta_B = 8.6 \times 10^{-11}$





No baryogenesis in SM

- ► Sakharov conditions
 - Baryon number violation ✓ (sphalerons)
 - C and CP Violation × (CKM phase not enough)
 - Departure from thermal equilibrium * (no first order PT)

Models of baryogenesis require high reheating temperature

Reheating temperature can be low

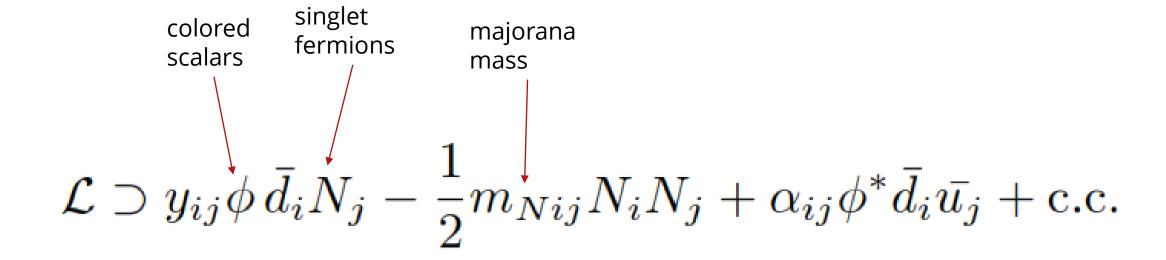
► No evidence of high reheating temperature

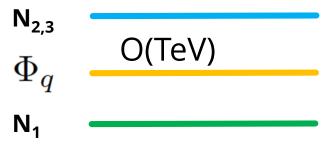
- ► Many reasonable theories favor a low reheating scale
- Gravitino production in SUSY extensions of SM(Moroi et al '83)
- Isocurvature perturbations(Fox et al '04)

► There do exist low scale baryogenesis models(Claudson et al '84, Dimopolous et al '87)

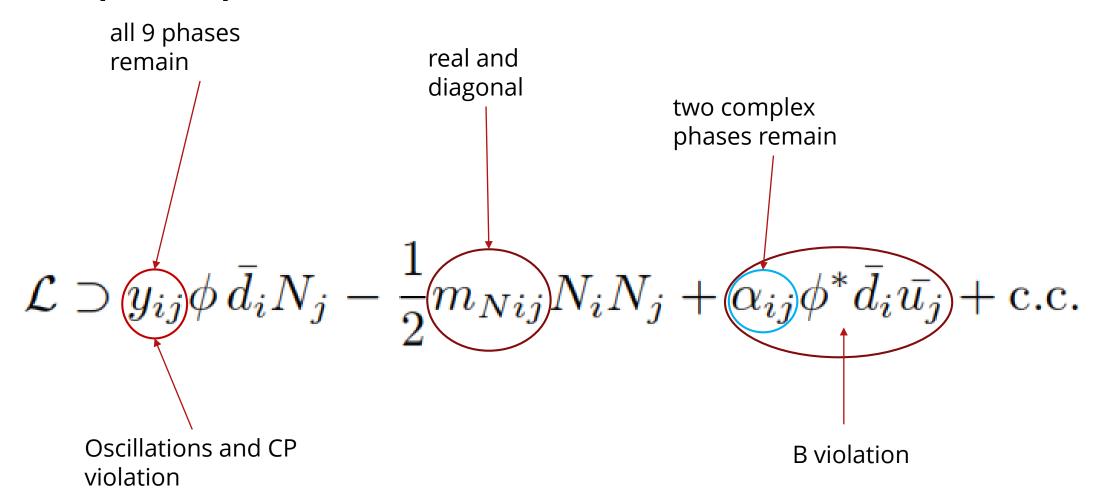
The Model

Particle content

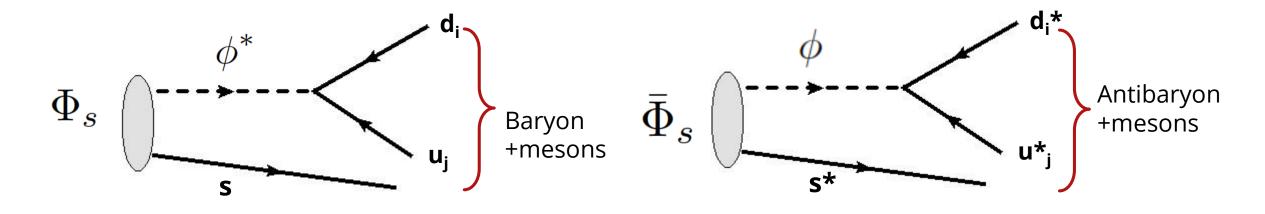


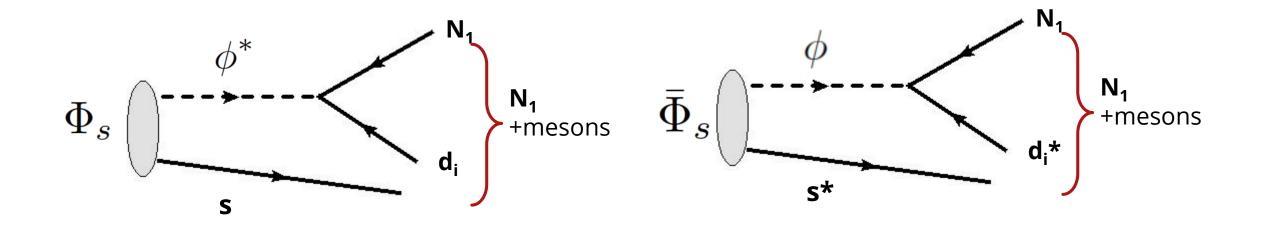


Complex phases



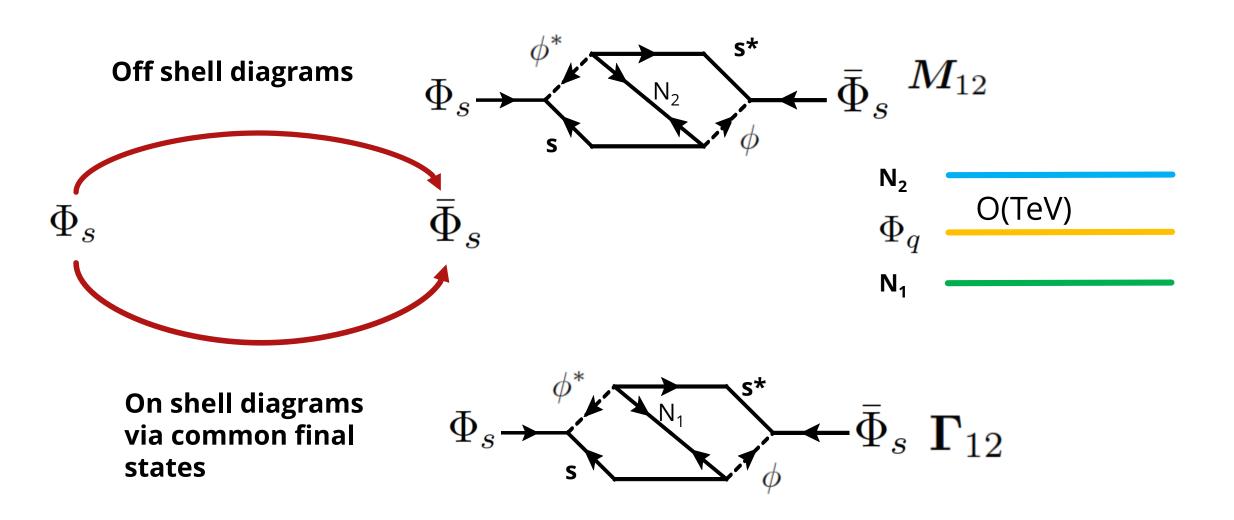
Decay Modes





Oscillations and CP Asymmetry

On-shell and off-shell oscillations



Off-shell contribution

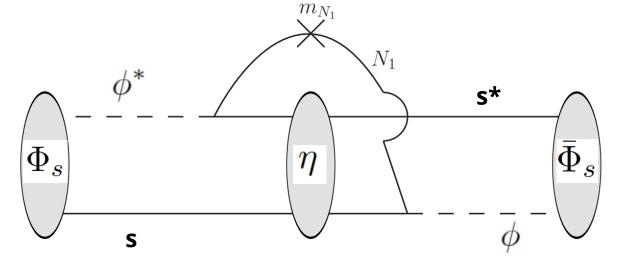
▶ Off shell oscillations M_{12} : Φ_s

 N_1

$$|\mathbf{M}_{12}(N_i)| \simeq 2.4 \times 10^{-4} \text{ GeV} |y_{si}|^2 \times \left(\frac{1 \text{ TeV}}{m_{\phi}}\right) \left(\frac{1 \text{ GeV}}{\Delta m_{\Phi N_i}}\right)$$

On-shell contribution

▶ Contributions to Γ_{12} :



- ▶ We want to be in the squeezed limit $\Delta m_{\Phi N_1} = 1~{
 m GeV}$
- ► In squeezed limit one can show

$$\Gamma_{12} = \Gamma_{\Phi \to N_1 \eta} \approx 9 \times 10^{-6} \text{ GeV} |y_{s1}|^2 \times \left(\frac{1 \text{ TeV}}{m_{\phi}}\right) \left(\frac{1 \text{ GeV}}{\Delta m_{\Phi N_i}}\right)$$

$$|\mathbf{M}_{12}(N_i)| \simeq 2.4 \times 10^{-4} \text{ GeV } |y_{si}|^2 \times \left(\frac{1 \text{ TeV}}{m_{\phi}}\right) \left(\frac{1 \text{ GeV}}{\Delta m_{\phi N_i}}\right)$$

Hamiltonian is not diagonal

► Hamiltonian without oscillations

$$H = \left(\begin{array}{cc} M - i\frac{\Gamma}{2} & 0\\ 0 & M - i\frac{\Gamma}{2} \end{array}\right)$$

With oscillations we get off diagonal terms

$$H = \begin{pmatrix} M - i\frac{\Gamma}{2} & M_{12} - i\frac{\Gamma_{12}}{2} \\ M_{12}^* - i\frac{\Gamma_{12}^*}{2} & M - i\frac{\Gamma}{2} \end{pmatrix}$$

Diagonalizing the Hamiltonian

Hamiltonian has off diagonal terms, new eigenstates are

$$|\Phi_{L,H}\rangle = p|\Phi_s\rangle \pm q|\bar{\Phi}_s\rangle$$

$$\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}$$

▶ Assuming a state starts as $\Phi_q(\bar{\Phi}_q)$ at t = 0 then

$$\langle \bar{\Phi}_s | \Phi_s (t) \rangle = \frac{q}{p} f(t)$$
 $\langle \Phi_s | \bar{\Phi}_s (t) \rangle = \frac{p}{q} f(t)$

► CP violation gives $\left|\frac{p}{q}\right| \neq 1$ favoring one state over another

CP asymmetry

Can show asymmetry per mesino-antimesino pair is given by

$$\epsilon_B = \frac{2 \mathrm{Im} \boldsymbol{M}_{12}^* \boldsymbol{\Gamma}_{12}}{\Gamma^2 + 4 \left| \boldsymbol{M}_{12} \right|^2}$$
 branching ratio into baryons

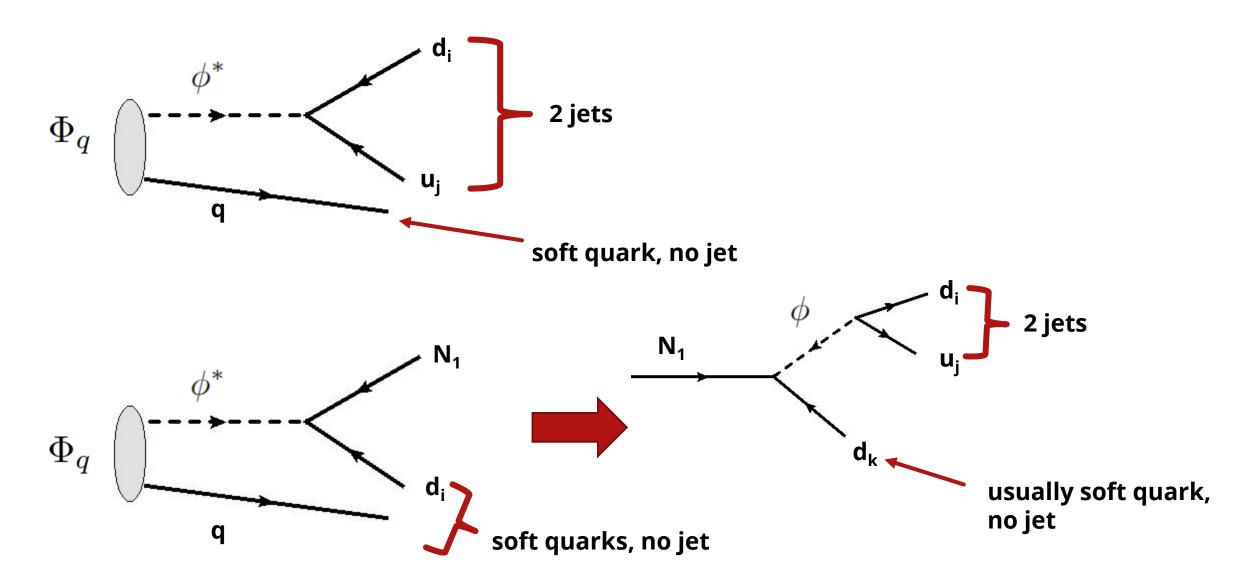
▶ Lets define $x = \frac{2M_{12}}{\Gamma}$ and $r \equiv \left|1 - \frac{M_{12}(N_1)}{M_{12}}\right|$ then we have

$$\epsilon_B \simeq \frac{x r \sin \beta}{1 + x^2} Br_{\Phi_q \to B} Br_{\Phi_q \to N_1}$$

- ▶ We expect generally $\epsilon_B = O(10^{-3} 10^{-4})$
- ► Can show $\max(\epsilon_B) = \frac{1}{8}$

Experimental Constraints

Experimental Signatures



Couplings

$$\mathcal{L} \supset y_{ij}\phi \,\bar{d}_i N_j - \frac{1}{2} m_{Nij} N_i N_j + \alpha_{ij} \phi^* \bar{d}_i \bar{u}_j + \text{c.c.}$$

upper bounds from Kaon oscillations, $n\bar{n}$ oscillations and diinucleon decays, lower bounds from displaced vertices

 $\begin{pmatrix} y_{d1} & y_{d2} & y_{d3} \\ y_{s1} & y_{s2} & y_{s3} \\ y_{b1} & y_{b2} & y_{b3} \end{pmatrix}$ upper bound from cosmology

upper bounds from $n\bar{n}$ oscillations and dinucleon decays

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

$$\alpha_B^2 \equiv \sum_{i,j} |\alpha_{ij}|^2$$

Constraints on mass

- \blacktriangleright Constraints from squarks decaying into b and light quark: $m_\phi > 385~{
 m GeV}$ (CMS)
- ▶ Effective constraints from squark decaying to light quarks: $m_{\phi} > 275~{
 m GeV}$ (CMS)
- ► Constraints from 3 jet events: $m_{\phi} > 600 \text{ GeV}$
- ightharpoonup We take $m_\phi=650~{
 m GeV}$ as our benchmark value

Constraints on couplings from displaced vertices

- ▶ Displaced vertices search give us $c\tau < 1 mm$
- $\blacktriangleright \Phi \rightarrow \text{quarks} : \alpha_B \gtrsim 10^{-7} \sqrt{650 \text{ GeV}/m_{\phi}}$
- $ightharpoonup \Phi
 ightharpoonup N_1
 ightharpoonup quarks: <math>(\sum_{i=d,s} |y_{i1}|^2)^{1/2} \gtrsim 10^{-4}$

$$\alpha_B \gtrsim (\sum_i |y_{i1}|^2)^{-1/2} 10^{-6} \sqrt{650 \text{ GeV}/m_\phi}$$

- ▶ These constraints don't apply if $m_{\phi} > 1 \text{ TeV}$
- ► Mass independent constraints from BBN are $O(10^6)$ weaker

Constraints from Rare Processes

► $\Delta B = 2$, neutron-antineutron oscillation: $\sum_{k} y_{dk}^2 \frac{\alpha_{11}^2}{m_{\phi}^5} < 2.9 \times 10^{-28} \text{ GeV}^{-5}$ For $m_{\phi} = 650 \text{ GeV}$ we get $\left(y_{d1}^2 + y_{d2}^2\right) \alpha_{11}^2 < \mathcal{O}(10^{-14})$

▶ Dinucleon to Kaon decay constraints for $m_{\phi} = 650 \; \mathrm{GeV}$

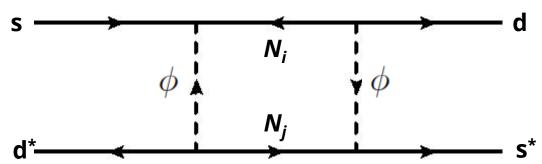
$$(y_{s1}^2 + y_{s2}^2) \alpha_{11}^2 < \mathcal{O}(10^{-14})$$

$$(y_{d1}^2 + y_{d2}^2) \alpha_{12}^2 < \mathcal{O}(10^{-14})$$

$$(y_{d1}y_{s1} + y_{d2}y_{s2}) \alpha_{12}\alpha_{11} < \mathcal{O}(10^{-14})$$

► Easily satisfied if $\alpha_{11}, \alpha_{12} \leq 10^{-7}$

Kaon oscillation constraints



► Constraints from K_L and K_S mass difference

$$\left(\text{Re} \sum_{i,j} y_{di}^* y_{dj} y_{si} y_{sj}^* \right)^{1/4} < 0.40 \sqrt{\frac{m_{\phi}}{650 \text{ GeV}}}$$

► Constraints from CP violation in Kaon system

$$\left(\operatorname{Im} \sum_{i,j} y_{di}^* y_{dj} y_{si} y_{sj}^* \right)^{1/4} < 0.11 \sqrt{\frac{m_{\phi}}{650 \text{ GeV}}}$$

B meson oscillations aren't as constraining

Constraints summary

▶ Totally fine set of couplings for $m_{\phi} < 1 \text{ TeV}$:

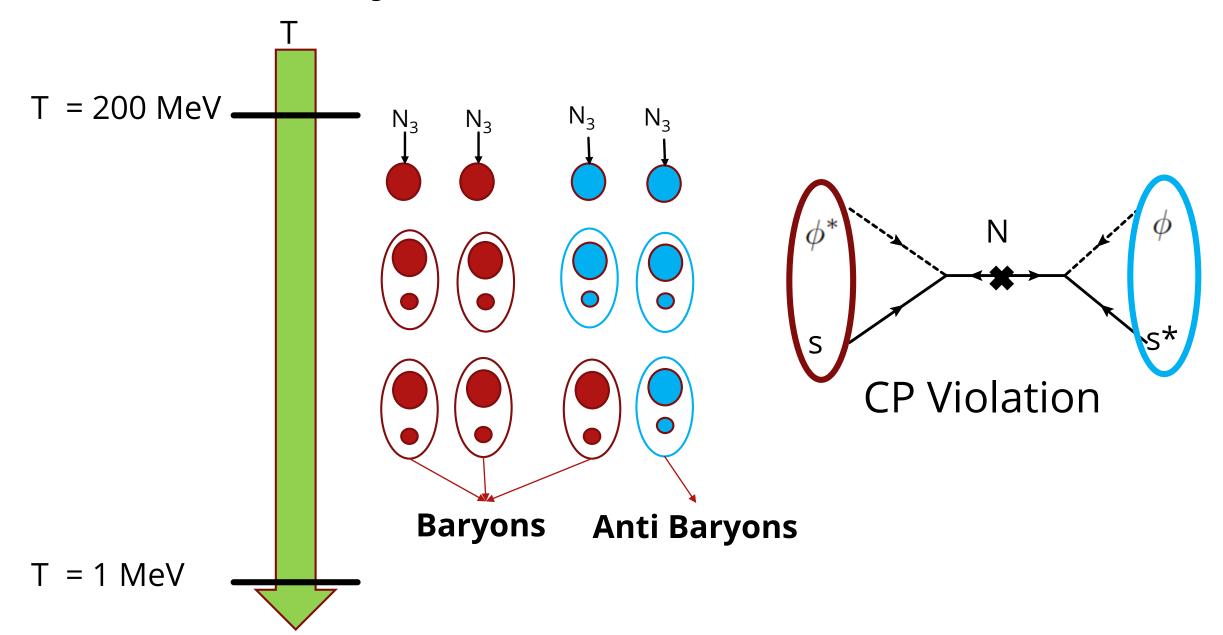
$$y_{s1}, y_{s2} = 1$$
 $y_{d1}, y_{d2} = 10^{-2}$ $\alpha_B = 10^{-4}$

$$\epsilon_B \approx 10^{-3}$$

▶ Constraints only get weaker with increasing mass

Cosmology

Cosmic Story



N₃ does not annihilate

► Number density of N₃ at hadronization temp T_c

$$n_{N_3}(t) = n_{N_3}^{\text{relic}} e^{-\Gamma_{N_3} t} \left(\frac{a_{\text{relic}}}{a_t}\right)^3$$

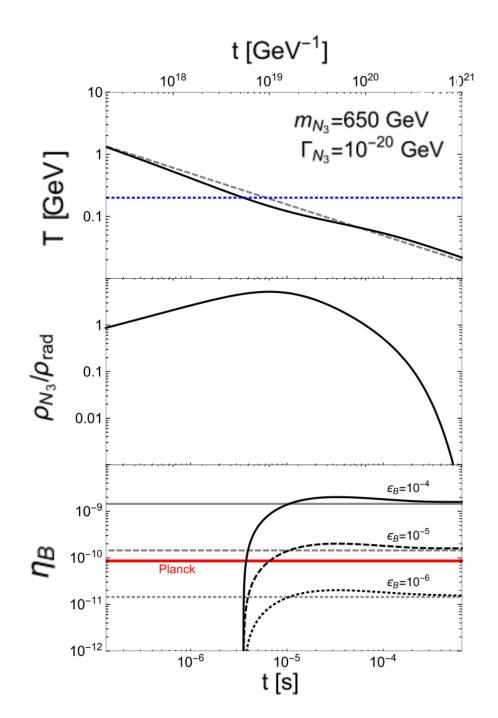
- ► For N_3 to last until T_c we need $y_{q3}^2 \lesssim 10^{-15} (m_{N_3}/\text{TeV})$
- ➤ Small Yukawa imply N₃ annihilations are slower than expansion rate.
- ► So most of the N₃ survives till T_c

$$n_{N_3}(t_c) = \left(\frac{3}{4}\right) n_{\gamma} \times e^{-\Gamma t_c} \times \text{(ent dilution)}$$

Exact Solution

▶ We can coevolve the radiation, N₃ and baryons produced from their decay to get the exact solution

$$\begin{split} \frac{d\rho_{\rm rad}}{dt} &= -4H\rho_{\rm rad} + \Gamma_{N_3} m_{N_3} n_{N_3} \\ \frac{d\rho_{N_3}}{dt} &= -3H\rho_{N_3} - \Gamma_{N_3} m_{N_3} n_{N_3} \\ \frac{dn_B}{dt} &= -3Hn_B + \frac{1}{2} A \Gamma_{N_3} \epsilon_B n_{N_3} \end{split}$$



Sudden Decay Approximation

Baryon to entropy ratio in sudden decay approximation

$$\eta_B = \frac{n_{N_3} (t_{dec}^-)}{s_{rad} (t_{dec}^-)} \times \frac{\epsilon_B A}{2} \times (\text{ent dilution})$$

▶ Ratio of matter and radiation energy densities for ent. dil.

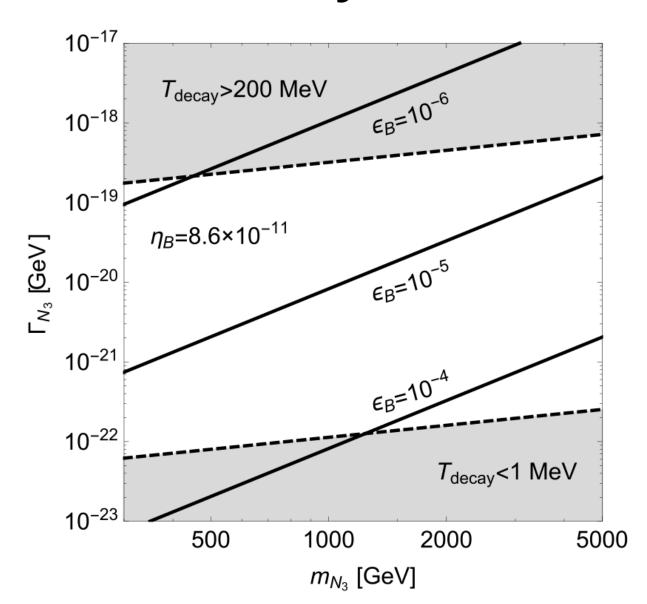
$$\xi = \frac{\rho_{N_3} \left(t_{dec}^{-} \right)}{\rho_{rad} \left(t_{dec}^{-} \right)} \approx 10^{-2} \left(\frac{m_{N_3}^2}{M_{pl} \Gamma_{N_3}} \right)^{2/3}$$

► However $\max(\Gamma_{N_3}) \approx 10^{-19} GeV$ and $\min(m_{N_3}) \approx 650 GeV$ so

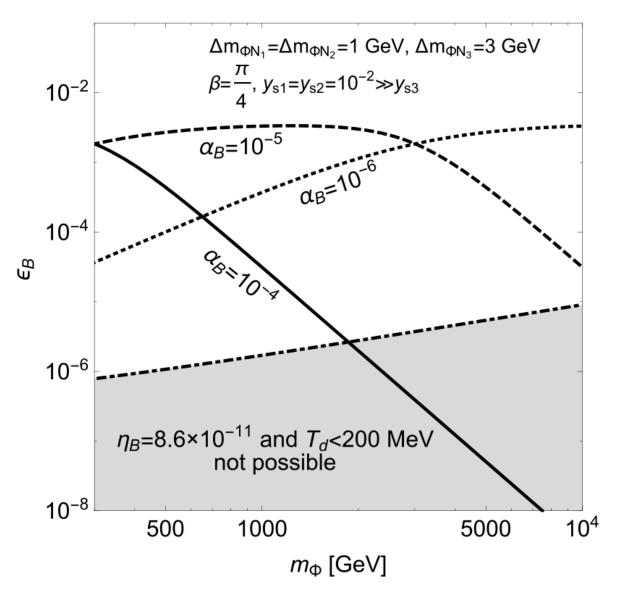
$$\min(\xi) \approx 150$$

$$\max (\eta_B) \approx 10^{-6}$$

Constraints on decay rate



Asymmetry dependence on α_B



Possible signatures

- ► Finding colored scalars at LHC (1 TeV at 1000 fb⁻¹)
 - final states jets will have third generation quarks
 - mostly 2-jet decays but will have 3-jets sometimes
 - possible displaced vertices signature
 - same sign tops (Berger '13)
 - CP violation in same sign tops hard to see at LHC
- Any signature needs to be consistent with neutron-antineutron oscillations and B meson and Kaon oscillations

Conclusions and future work

- ▶ If there is a scalar quark it can form mesinos
- CP violation in mesino oscillations can be the source for baryogenesis
- ► In order to get enough CP violation we need the singlets to be very close in mass with mesinos
- ► Future work would involve putting this model in a SUSY framework and future collider signatures
- Asymmetric DM is also possible by tweaking the Lagrangian a bit.

THANK YOU! QUESTIONS?