Positive Geometry of Scattering Amplitudes

Jaroslav Trnka (California Institute of Technology)
UC Davis, March 2, 2015

Scattering amplitudes

Quantum Field Theory (QFT)

\% Our theoretical framework to describe Nature

* Compatible with two principles

Special relativity

Quantum mechanics

$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

Standard formulation

(Dirac, Heisenberg, Pauli; Feynman, Dyson, Schwinger)
\because Fields, Lagrangian, Path integral
$\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} D \psi-m \bar{\psi} \psi \quad \int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{i S(A, \psi, \bar{\psi}, J)}$

* Feynman diagrams: pictures of particle interactions Perturbative expansion: trees, loops

Great success of QFT

\% QFT has passed countless tests in last 70 years

* Example: Magnetic dipole moment of electron

Theory: $\quad g_{e}=2$
1928
Experiment: $\quad g_{e} \sim 2$

Great success of QFT

\because QFT has passed countless tests in last 70 years

* Example: Magnetic dipole moment of electron

Theory: $g_{e}=2.00232$
1947
Experiment: $g_{e}=2.0023$

Great success of QFT

$\%$ QFT has passed countless tests in last 70 years
\% Example: Magnetic dipole moment of electron
1957 Theory: $g_{e}=2.0023193$
1972 Experiment: $g_{e}=2.00231931$

Great success of QFT

\% QFT has passed countless tests in last 70 years

* Example: Magnetic dipole moment of electron

Theory: $g_{e}=2.0023193044$
1990
Experiment: $\quad g_{e}=2.00231930438$

Dualities

\% At strong coupling: perturbative expansion breaks

\% Surprises: dual to weakly coupled theory

- Gauge-gauge dualities
(Montonen-Olive 1977, Seiberg-Witten 1994)
- Gauge-gravity duality
(Maldacena 1997)

Motivation

\% Our picture of QFT is incomplete

* Also, tension with gravity and cosmology

If there is a new way of thinking about QFT, it must be seen even at weak coupling
\% Explicit evidence: scattering amplitudes

Hidden simplicity in scattering amplitudes

Scattering amplitudes

\because Function of spin and external kinematics $\quad \mathcal{M}(p, s, \ldots)$
\% Probability of a given process during a particle collision
\% Experimentalists measure cross-section

$$
\sigma=\int d \Omega|\mathcal{M}|^{2}
$$

Colliders at high energies

\therefore Proton scattering at high energies

LHC - gluonic factory
\because Needed: amplitudes of gluons for higher multiplicities

$$
g g \rightarrow g g \ldots g
$$

Two helicities: + -

Early 80s

\because Status of the art: $g g \rightarrow g g g$

Brute force calculation
24 pages of result

New collider

\because 1983: Superconducting Super Collider approved
\therefore Energy 40 TeV : many gluons!

\% Demand for calculations, next on the list: $g g \rightarrow g g g g$

Parke-Taylor formula

\because Process $g g \rightarrow g g g g$
$\therefore 220$ Feynman diagrams, ~ 100 pages of calculations

GLUONIC TWO GOES TO FOUR

: 1985: Paper with 14 pages of result

Stephen J. Parke and T.R. Taylor Fermi National Accelerator Laboratory P.0. Box 500, Batavia, IL 60510 U.S.A.

ABSTRACT
The cross section for two gluon to four gluon scattering is given in a form suitable for fast numerical calculations.

Parke-Taylor formula

\because Process $g g \rightarrow g g g g$
$\therefore 220$ Feynman diagrams, ~ 100 pages of calculations

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized

$$
\mathcal{M}_{6}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

Spinor-helicity variables

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \tilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{a}^{(1)} \lambda_{b}^{(2)} \\
{[12] } & =\epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{\dot{a}}^{(1)} \tilde{\lambda}_{\dot{b}}^{(2)}
\end{aligned}
$$

(Mangano, Parke, Xu 1987)

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

: Within a year they realized

AN AMPLITUDE FOR n GLUON SCATTERING

$$
\mathcal{M}_{n}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle \ldots\langle n 1\rangle}
$$

Gauge redundancy

* Where is the problem? Massless particles
\% Particles with spin: gauge redundancy $\epsilon^{\mu} \rightarrow \epsilon^{\mu}+\alpha p^{\mu}$
\% Individual Feynman diagrams not gauge invariant Huge cancellations among diagrams

Locality and unitarity

\because Redundancy: local interaction picture, off-shell particles
\% Two principles manifest:

I) Locality: particles interact point-like
$\begin{gathered}\text { Amplitude: } \\ \text { only poles }\end{gathered} \quad \frac{1}{P^{2}} \rightarrow \infty \quad P=\sum_{i \in \sigma} p_{i}$
II) Unitarity: sum of probabilities is 1

Amplitude: factorization

Modern methods for amplitudes

* Lessons from Parke-Taylor calculation:

Gauge invariance + physical states

\% No fields, Lagrangians or path integrals

* Exploit locality and unitarity: fix the amplitude

Recursion relations

\because Large class of theories at tree-level

* Tree-level unitarity

\therefore Shift momenta + Cauchy formula

$$
\begin{aligned}
& p_{1} \rightarrow p_{1}+z q \\
& p_{2} \rightarrow p_{2}-z q
\end{aligned}
$$

\% Very efficient method:

$$
\begin{gathered}
g g \rightarrow 4 g \\
220 \\
3
\end{gathered}
$$

$g g \rightarrow 5 g$	$g g \rightarrow 6 g$
2485	34300
6	20

Unitarity methods

(Bern-Dixon-Kosower)

\because Iterative use of the unitary cut

*Generate basis of integrals, fixing coefficients from cuts
\% Tremendous success in calculations in 1990-today

Example: Four point 3-loop amplitudes in supersymmetric Yang-Mills theory and gravity

Unitarity methods

(Bern-Dixon-Kosower)
\because QCD background at LHC
\% BlackHat collaboration

* Huge efficiency in NLO calculations

Used by CMS in comparison to data, March 2014

Toy model

\because This is a great success; is there a deeper structure?

* Time-proven method: study a toy model first

Wish list:

- Four-dimensional interacting theory
- Close to the real world (QCD) as much as possible
- Ability to generate plenty of explicit results

Maximally supersymmetric Yang-Mills theory in planar limit

(Brink-Scherk-Schwarz 1977)
© Conformal, convergent series
\therefore Great toy model for QCD

- Tree-level amplitudes identical
- Loop amplitudes simpler, structures similar
- But, no confinement :(
: Past: new methods for amplitudes originated here

Many faces of the theory

\% Useful playground for many theoretical ideas

Simple amplitudes

\because Comparison: Feynman diagrams vs unitary methods

$$
g g \rightarrow g g
$$

Number of graphs

87 vs 1

What is the amplitude?

New definition of the amplitude

\because Standard: Function consistent with locality and unitarity

* Our goal: Different definition
- No fields, Lagrangians, path integrals
- Unitarity, locality emergent from other principles
- Powerful method for calculations

Prelude

Volume of polyhedron

\because New kinematical variables - momentum twistors

$$
Z \in \mathbb{C}^{3}
$$

* Tree-level process: $g g \rightarrow 5 g$
* Comparison of two calculations of recursion relations

Evidence for a new structure

(Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT 2010)

(Arkani-Hamed, Cachazo, Cheung, Kaplan 2009)

"Conjecture"

Amplitudes are volumes of some regions in some space

The Amplituhedron

(Arkani-Hamed, JT 2013)

Strategy

\because Simple intuitive geometric ideas: use equations
\because Generalization: - More complicated geometry

- Higher dimensions
* Same equations persist

Road to Amplituhedron

Road to Amplituhedron

Road to Amplituhedron

Start:
Point inside a convex polygon

Road to Amplituhedron

Road to Amplituhedron

Amplituhedron conjecture

\because Volume of $\mathcal{A}_{n, k, \ell}$:
Amplitudes in maximally supersymmetric Yang-Mills theory

$$
\ell=0: \text { Amplitudes of gluons in } \mathrm{QCD}
$$

* Consistency check: Locality and Unitarity

number of particles
helicity information

\% Explicit checks against reference theoretical data

Volume of the space

\because Set of inequalities: Volume $=$ differential form
\therefore Simple examples: $\quad x>0: \quad \mathrm{Vol}=\frac{d x}{x}$
$y>0, x>0: \quad \mathrm{Vol}=\frac{d x}{x} \frac{d y}{y} \quad y>x>0: \quad \mathrm{Vol}=\frac{d x}{x} \frac{d y}{y-x}$

* Amplituhedron for amplitude $g g \rightarrow g g$
- Nice interpretation: Configuration of vectors on a plane
- Easy to state, hard to solve - "High school problem"

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant
\% Vectors

$$
\vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}}
$$

$$
\operatorname{Vol}(1)=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}}=
$$

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant
\therefore Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

$[\operatorname{Vol}(1)]^{2}=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}} \frac{d x_{2}}{x_{2}} \frac{d y_{2}}{y_{2}} \frac{d z_{2}}{z_{2}} \frac{d w_{2}}{w_{2}}=\square \times \square$

High school problem $\quad g g \rightarrow g g$

: Positive quadrant
\therefore Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

\% Impose:
$\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{2}-\vec{b}_{1}\right) \leq 0 \quad \phi>90^{\circ}$
Subset of configurations allowed

High school problem $\quad g g \rightarrow g g$

* Positive quadrant
\therefore Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

$\operatorname{Vol}(2)=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}} \frac{d x_{2}}{x_{2}} \frac{d y_{2}}{y_{2}} \frac{d z_{2}}{z_{2}} \frac{d w_{2}}{w_{2}}\left[\frac{\vec{a}_{1} \cdot \vec{b}_{2}+\vec{a}_{2} \cdot \vec{b}_{1}}{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{2}-\vec{b}_{1}\right)}\right]$

High school problem $\quad g g \rightarrow g g$

* Positive quadrant
\therefore Vectors

$$
\begin{aligned}
& \vec{a}_{1}=\binom{x_{1}}{y_{1}} \quad \vec{b}_{1}=\binom{z_{1}}{w_{1}} \\
& \vec{a}_{2}=\binom{x_{2}}{y_{2}} \quad \vec{b}_{2}=\binom{z_{2}}{w_{2}}
\end{aligned}
$$

$\operatorname{Vol}(2)=$ \square
\square

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant
\therefore Vectors
$\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3} \quad \vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$
\because Conditions

$$
\begin{aligned}
& \left(\vec{a}_{1}-\vec{a}_{2}\right) \cdot\left(\vec{b}_{1}-\vec{b}_{2}\right) \leq 0 \\
& \left(\vec{a}_{1}-\vec{a}_{3}\right) \cdot\left(\vec{b}_{1}-\vec{b}_{3}\right) \leq 0 \\
& \left(\vec{a}_{2}-\vec{a}_{3}\right) \cdot\left(\vec{b}_{2}-\vec{b}_{3}\right) \leq 0
\end{aligned}
$$

$\operatorname{Vol}(3)=$

High school problem $\quad g g \rightarrow g g$

\% Positive quadrant
\because Vectors

$$
\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{\ell} \quad \vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{\ell}
$$

\therefore Conditions

$$
\left(\vec{a}_{i}-\vec{a}_{j}\right) \cdot\left(\vec{b}_{i}-\vec{b}_{j}\right) \leq 0
$$

for all pairs i, j
Let me know if you solve it!

$\operatorname{Vol}(\ell)=\ldots \ldots$.

Positivity

\because In the definition of Amplituhedron

Amplituhedron

$$
\left.\begin{array}{c|ll}
\text { Positive matrices: } & \mid & * \\
\text { Minors are positive } & * & *
\end{array} \right\rvert\,>0
$$

\% Positivity: crucial property of geometry

- Locality, unitarity, even planarity derived from it
- Hidden symmetry of this theory (Yangian) manifest

Question for mathematicians

How to make big positive matrices?

For the case $\ell=0$ solved by Alexander Postnikov in 2006
Positive Grassmannian $G_{+}(k, n)$

$$
\left(\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right) \quad\left|\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right|>0
$$

Gluing procedure

\% Construct big positive matrix from small ones

Gluing preserves positivity of minors

* Arbitrary graph: positive matrix

$$
\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right)\left(\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right)
$$

* Triangulation of Amplituhedron: set of these diagrams

Permutations

* "Basis" of these matrices: labeled by permutations

$$
\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & *
\end{array}\right) \leftrightarrow
$$

$(3,4,1,2)$
: Juggling patterns
Allen Knutson (Cornell U.)
1990-1995 world record in juggling (12 balls)

POSITROID VARIETIES I: JUGGLING AND GEOMETRY

ALLEN KNUTSON, THOMAS LAM, AND DAVID E SPEYER

Deligne table

Other appearances of graphs

: Cluster variables associated with each graph

(Fock-Goncharov 2003)

* Dual graphs: quivers, Seiberg duality, shalow water waves,...

(Kodama-Williams 2011)

On-shell diagrams

* Same diagrams: radically different interpretation

\because Physical on-shell processes: product of 3pt amplitudes

* Detailed study of this connection

```
arXiv:1212.5605 [pdf, other]
```


Scattering Amplitudes and the Positive Grassmannian

Nima Arkani-Hamed, Jacob La. Bourjaily, Freddy Cachazo, Alexander B. Goncharov, Alexander Postnikov, Jaroslav Trnka Comments: 158 pages, 264 figures
Subjects: High Energy Physics - Theory (hep-th); Algebraic Geometry (math.AG); Combinatorics (math.CO)

Physics vs geometry

* Dynamical particle interactions in 4-dimensions

\because Static geometry in high dimensional space

At the intersection

*Fascinating connection between fields which have

Walter Burke Institute Workshop
Grassmannian Geometry
of Scattering Amplitudes

California Institute of Technology
December 8-12, 2014
Invited speakers: Nima Arkani-Hamed, Till Bargheer, Zvi Bern, Jacob Bourjaily, Johannes Broedel, Lance Dixon, Nick Early, Davide Forcella, Sebastian Franco, Johannes Broedel, Lance Dixon, Nick Early, Davide Forcella, Sebastian Franco,
Daniele Galloni, Song He, Johannes Henn, Andrew Hodges, Thomas Lam, Daniele Galloni, Song He, Johannes Henn, Andrew Hodges, Thomas Lam,
Sangmin Lee, Tomasz Lukowski, Lionel Mason, Timothy Olson, David Speyer Matthias Staudacher, Anastasia Volovich, Lauren Williams, Dan Xie.

Organizers: Hirosi Ooguri, Jaroslav Trnka https://burkeinstitute.caltech.edu/workshops/Grassmannian2014

Back to Parke-Taylor formula

: Scattering $\quad g g \rightarrow g g g \ldots g g$
in our toy model

$$
\mathcal{M}_{n}^{\text {tree }}=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle \ldots\langle n 1\rangle}
$$

Back to Parke-Taylor formula

\because Scattering $\quad g g \rightarrow g g g \ldots g g$
in our toy model
$\mathcal{M}_{n}=\mathcal{M}_{n}^{\text {tree }}\left\{\begin{array}{l}1 \\ 1\end{array}+\right.$
Tree-level
(1985)

Back to Parke-Taylor formula

\because Scattering $\quad g g \rightarrow g g g \ldots g g$
in our toy model

Back to Parke-Taylor formula

\because Scattering $\quad g g \rightarrow g g g \ldots g g$
in our toy model

	$\frac{5}{5}$	$\frac{5+5}{5+5}$
$\begin{aligned} & \frac{\pi}{x}= \\ & \frac{\pi}{4}= \end{aligned}$		of result

Back to Parke-Taylor formula

\because Scattering $g g \rightarrow g g g \ldots g g$
in our toy model

Back to Parke-Taylor formula

\because Scattering $\quad g g \rightarrow g g g \ldots g g$
in our toy model

Back to Parke-Taylor formula

\because Scattering $g g \rightarrow g g g \ldots g g$
in our toy model

Outlook: Beyond the toy model

* Amplituhedron: Geometric picture for amplitudes
* Next step: non-planar, gravity, string amplitudes, QCD
: Evidence beyond the toy model
- On-shell diagram: non-planar, no susy
(Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT 2014)

- Amplituhedron-type construction beyond the planar limit
(Arkani-Hamed, Bourjaily, Cachazo, JT 2014) (Bern, Hermann, Litsey, Stankowicz, JT 2014)
- Connection to EFTs (NL σ M, DBI, Galileon) via soft limits
(Cheung, Kampf, Novotny, JT 2014)

Thank you for your attention

