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Quantum Field Theory
“Theory of quantum fields” (duh!)

∫ ∏

x

dϕ(x) e−
S[ϕ]
~

Infinite-dimensional integral handled by

Introducing a cut-off (e.g., x ∈ Lattice)

Renormalization theory

Mathematicians may get a little nervous, but we think we know what we
are doing...
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S =

∫
dDxL , L = quadratic + g2ϕ4 + . . .

“Easy” when g → 0. Perturbative expansion:

Rescaling ϕ→ ϕ/g gives e
− S

g2~

g → 0 equivalent to classical limit ~→ 0

Hard for large g. Lattice simulations, . . .
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“QFT is about Fields and Lagrangians then . . . ”
But is it?

Discoveries in supersymmetric field theories in various spacetime
dimensions are challenging the traditional framework.

Supersymmetry allows for analytic control, but the conceptual lessons
are likely to be general.
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Inadequacy of “fields” I: Dualities

In happy cases, as g →∞ an equivalent dual description emerges.

Pair of dual theories

T [ϕi; g]⇔ T ′[ϕ′i; g′] , g′ =
1

g

T and T ′ different classical limits of the same quantum theory.

ϕ and ϕ′ not fundamental objects.

Some QFTs are even dual to quantum gravity theories
(in higher spacetime dimensions)!

All that is solid melts into air
Fields, gauge symmetries, spacetime itself...not fundamental?
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Paradigm: S-duality of N = 4 SYM
N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions.
Maximally symmetric cousin of QCD.

Complexified gauge coupling τ = 4πi
g2

+ θ
2π ∈ upper-half plane H.

SL(2,Z) duality (generalizing electric-magnetic duality)

τ → aτ + b

cτ + d
,

(
E
B

)
→
(
a b
c d

) (
E
B

)
.

with a, b, c, d integers and ad− bc = 1.
No path-integral derivation remotely in sight...

“Theory space”
τ ∈ H/SL(2,Z)
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Inadequacy of “fields” II: non-Lagrangian QFTs

d = 6 maximally SUSY theory, known as the (2, 0) theory.

N M5 branes (2, 0)N theory governs low-energy
fluctuations of N five-branes in M-theory

Discrete parameter N , but no continuous coupling.
For finite N , intrinsically quantum.

As N →∞
classical 11d supergravity

on AdS7 × S4

AdS7

S4
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Non-Lagrangian theories in d = 4 Gaiotto 2008

A sequence of theories with half-maximal SUSY (N = 2):

“Trinions” TN

SU(N)× SU(N)× SU(N) global symmetry.

A new kind of strongly coupled “matter”.
These new creatures can be coupled to gauge fields and used as building
blocks for more complex theories, much like ordinary Lagrangian matter.

If this sounds contrived...
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Dualities 2.0

Lagrangian theories are not closed under dualities!

“N = 2 version of QCD”, SU(3)c gauge group with Nf = 6 quarks.

10

Re τ

Im τ

After accounting for “standard” dualities,
still an infinite coupling point at τ = 1.

Novel dual description:
T3 theory with weakly-coupled
SU(2)c gauge fields!
Argyres Seiberg 2007

Far from isolated curiosities, the TN theories are fundamental to piece
together the N = 2 landscape.

Only a measure zero set of the known N = 2 theories have a Lagrangian
description...
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Beyond Lagrangian field theory

In the following, I will advocate an abstract algebraic viewpoint
to study superconformal field theories.

These theories are extremely “rigid”.
Quite possibly, uniquely fixed by quantum consistency alone.

I will explore two notions of consistency:

Consistency of the abstract algebra of operators in a given theory

Consistency of the duality relations in the space of theories.
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Conformal symmetry

Physics simplifies when intrinsic mass scales can be neglected: large/low
energy regimes of QFTs and statistical systems near Tc.
Scale invariance. “Generically” enhanced to conformal invariance.
A conformal transformation acts locally as rotation and dilatation:

CFTs are signposts in the space of QFTs.

Fig. 1. A priori possible IR behavior of renormalization group flows.

theories that asymptote to CFTs both in the UV and the IR,

aUV � aIR, (1.2)

where a is the anomaly coe�cient of the CFT that describes the UV or IR limit. We

will give a version of their proof that closes some potential loopholes in the original

argument in Ref. [1]. We emphasize however that the key points of our proof are

identical to the KS argument.

The idea is to consider the quantum field theory of interest in a conformally flat

metric of the form e�2⌧(x)⌘µ⌫ . The e↵ective action W [⌧ ] then defines the matrix

elements of T in flat spacetime. Alternatively, we can view W [⌧ ] as the action for

dilaton self-interactions obtained by integrating out the quantum field theory. This

physical picture is not necessary for the argument, but it makes the arguments clearer.

Following Ref. [1] we define a particular on-shell forward dilaton-dilaton scattering

amplitude A(s) from W [⌧ ] that has no relevant or marginal counterterms. We write

A(s) =
↵(s)s2

f 4
, (1.3)

where s is the square of the center-of-mass energy, f is the dilaton decay constant

that counts powers of the dilaton field, and ↵(s) is a dimensionless function of s. The

UV and IR limits of this scattering amplitude are completely determined by the “a”

conformal anomaly, in the sense that

↵(s ! 1) � ↵(s ! 0) = �8 (aUV � aIR) . (1.4)

This immediately relates aUV � aIR to the dilaton-dilaton scattering amplitude. The

left-hand side of Eq. (1.4) can be shown to be positive in unitary theories by a disper-

sive argument, thus proving the a-theorem. Our discussion pays particular attention

to the convergence of the dispersion relation, which is crucial for the argument.

2

(Conjecture) Generic behavior of (unitary) QFT:
an RG flow between two CFTs.
DOFUV > DOFIR
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Abstract CFT

A CFT is defined by a set of local operators {Ok(x)} and their correlators

〈O1(x1) . . .On(xn)〉 .

Organize operators in conformal families: primary + derivatives

{Oi, ∂Oi , ∂2Oi , . . . }

Scaling dimensions ∆i: 〈Oi(x)Oi(y)〉 = |x− y|−2∆i

Convergent Operator Product Expansion

OPE : Oi(x)Oj(0) =
∑

k

cijk x
∆k−∆i−∆j (Ok(0) + . . . ) .

cijk: 3pt couplings of primaries. Dots fixed by conformal invariance.
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Conformal bootstrap Polyakov, Ferrara Gatto Grillo ’70s

Decompose 〈O1O2O3O4〉 in two ways

=
∑

O′

∑

O O
O′

1

1

2

2 4

4

3

3

1

E.g., for four identical external operators ϕ(xi)

∑

Oj

c2
ϕϕjGOj (u, v) =

∑

Oj

c2
ϕϕjGOj (v, u)

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

and GOj (u, v) resums contribution of {∂nOj}.

Vastly over-constrained system of equations for {∆i, cijk}.
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Solve or carve?
Traditional bootstrap
Ideally, given some minimal physical input, we’d just find the
(unique?) analytic solution of the bootstrap equations.

Famous success story in d = 2 Belavin Polyakov Zamolodchikov 1984:
conformal symmetry z → f(z), exact solution of many models.

Modern bootstrap Rattazzi Rychkov Tonni Vichi 2008

Crossing + unitarity ⇒ inequalities for {∆i, cijk}.
Carve out numerically the space of CFT data. Works in any d.

allowed region with ∆σ′ ≥ 3 (nmax = 6)

∆σ

∆ε

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 2: Allowed region of (∆σ,∆ε) in a Z2-symmetric CFT3 where ∆σ′ ≥ 3 (only one
Z2-odd scalar is relevant). This bound uses crossing symmetry and unitarity for 〈σσσσ〉,
〈σσεε〉, and 〈εεεε〉, with nmax = 6 (105-dimensional functional), νmax = 8. The 3D Ising point
is indicated with black crosshairs. The gap in the Z2-odd sector is responsible for creating a
small closed region around the Ising point.

The allowed region around the Ising point shrinks further when we increase the value
of nmax. Finding the allowed region at nmax = 10 (N = 275) is computationally intensive,
so we tested only the grid of 700 points shown in figure 5. The disallowed points in the
figure were excluded by assuming both ∆σ′ ≥ 3 and ∆ε′ ≥ 3. On the same plot, we also
show the nmax = 14 single-correlator bound on ∆ε computed in [22] using a very different
optimization algorithm. The final allowed region is the intersection of the region below the
nmax = 14 curve and the region indicated by our allowed multiple correlator points.

Since the point corresponding to the 3D Ising model must lie somewhere in the allowed
region, we can think of the allowed region as a rigorous prediction of the Ising model
dimensions, giving ∆σ = 1/2 + η/2 = 0.51820(14) and ∆ε = 3 − 1/ν = 1.4127(11). In
figure 6 we compare our rigorous bound with the best-to-date predictions using Monte
Carlo simulations [35] and the c-minimization conjecture [22]. Although our result has un-
certainties greater than c-minimization by a factor of ∼10 and Monte-Carlo determinations
by a factor of ∼3, they still determine ∆σ and ∆ε with 0.03% and 0.08% relative uncertainty,
respectively. Increasing nmax further could potentially lead to even better determinations of
∆σ and ∆ε. Indeed, the single correlator bound at nmax = 14 passing through the allowed
region in figure 5 indicates that the nmax = 10 allowed region is not yet optimal. At this
point, it is not even clear whether continually increasing nmax might lead to a finite allowed

25

Kos Poland Simmons-Duffin 2014
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Exact bootstrap in SUSY theories
Beem Lemos Liendo Peelaers LR van Rees 2013

Today, first strategy.

Focus on CFTs with N = 2 SUSY in d = 4 or (2, 0) SUSY in d = 6.

Special supersymmetric operators, “QOBPS = 0”.

Truncation of operator algebra to {OBPS} that lie on a plane C[z,z̄] ⊂ Rd

Oi(z)Oj(w) ∼
∑

k

ckij Ok(w)

(z − w)hi+hj−hk

Even simpler than 2d CFT: z but no z̄ dependence:

known as a chiral algebra.
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BPS bootstrap of (2, 0)N Beem LR van Rees 2014

Abstract approach is all we have for (2, 0) theory.

Using minimal input (from string/M-theory) on BPS spectrum,
able to solve meromorphic bootstrap equations.

Chiral algebra of BPS operators = Famous WN algebra

Exact 3-point functions of for any N .
For N →∞,

ck1k2k3 =
22α−2

(πN)
3
2

Γ
(α

2

)



Γ
(
k123+1

2

)
Γ
(
k231+1

2

)
Γ
(
k312+1

2

)

√
Γ(2k1 − 1)Γ(2k2 − 1)Γ(2k3 − 1)


 .

Striking agreement with supergravity on AdS7 × S4.
One recovers non-linear SUGRA purely from algebraic consistency.

In principle, 1/N corrections ⇒ quantum M-theory corrections.
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BPS bootstrap of TN
Beem Peelaers LR van Rees, Lemos Peelaers 2014

Intricate BPS spectrum: generators in Λk irrep of three SU(N)’s.

T2 chiral algebra: free symplectic bosons

T3 chiral algebra: E6 current algebra at level k = −3.

T4 chiral algebra: a novel, exceptional W-algebra.
Miraculous solution to crossing. New dynamical information.

TN>5: still unsolved.
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6 = 4 +2 Witten 1995

Put (2, 0)N on R4 × T 2. Flow to the IR
⇓

SU(N) N = 4 super Yang-Mills on R4

with coupling τ ≡ modular parameter of T 2.

This picture “explains” S-duality.

τ ′ = aτ+b
cτ+d defines the same T 2.

τ ′ = aτ+b
cτ+d defines the same T 2.

Leonardo Rastelli (YITP) Davis Colloquium II March 17, 2015 17 / 26



6 = 4 +2: class S(ix) theories Gaiotto 2008

Put (2, 0)N on R4 × C.
C ≡ Riemann surface with punctures.

⇓
N = 2 SUSY CFT on R4.

∣∣∣ 4d SCFT T [C] 2d data on C
∣∣∣

∣∣∣Gauge couplings {τi} Complex moduli of C
∣∣∣∣∣∣SU(N) gauge group cylinder
∣∣∣∣∣∣ TN Three-punctured sphere (trinion)
∣∣∣∣∣∣ Global symmetry Puncture
∣∣∣∣∣∣Generalized S-duality Modular transformation of C
∣∣∣

Theory space interpreted as a “real” geometric space, the surface C.
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Consistency conditions in theory space

Degeneration of C ⇒ Theory T [C] splits into decoupled theories.
Very powerful constraint.

courtesy of Ryo Sato

1

[Roy Sato’s drawing, from Tachikawa’s webpage]

Consistency in theory space:
Gluing of surfaces translates into gluing rules for physical observables.

Enough to fix several SUSY observables, provided minimal physical input.
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Example: twisted S3 × S1 partition function

Witten index, encoding the SUSY spectrum:

I(q, p, t; ai) = Tr(−1)F pj12−r qj34−r tR+r
∏

i

ai
fi .

(p, q, t) geometric parameters of the twist.
ai fugacities associated to the flavor symmetry of T .

For a Lagrangian theory, I[T ]= elliptic hypergeometric integral.
Basic ingredient is Elliptic gamma function

I =

∞∏

m,n=0

1− pm+1qn+1t−
1
2

1− pmqnt 12
≡ Γ(t

1
2 ; p, q) .
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Consistency in theory space fixes I[T ] uniquely for all T [C]!
Computed by a Topological QFT living on C.
Gadde Gaiotto Razamat LR Yan

=

=

S(r,s)(a) IC(a,b, c · · ·) = S(r,s)(c) IC(a,b, c, · · ·)

Difference equation of the elliptic RS model.
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Outlook

Still exploring very rich algebraic structure of BPS observables.
Goldmine of interesting mathematical physics.

Numerical bootstrap for non-BPS observables.

Cornering (2, 0)?
Beem Lemos LR van Rees, to appear

Broad exploration of N = 2 landscape in d = 4
Beem Lemos Liendo LR van Rees, 2015

Conceptual and analytical questions on the bootstrap.
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Numerical bootstrap of (2, 0) Theory
Beem Lemos LR van Rees, to appear

Bounding operator dimensions

First and second unprotected long scalars at c = 25

6.0 6.5 7.0 7.5
7

8

9

10

11

12

D0

D'0

17 / 31
Cornering the (2, 0)2 theory!
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6.0

6.2

6.4

6.6

D0

8.0
8.5

9.0
9.5

10.0D2

10.0

10.5

11.0

11.5

12.0

D4

Exclusion region for (2, 0)2.

The corner values conjectured to be the actual leading-twist dimensions
(∆0,∆2,∆4) of the theory.
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Conclusions

We’re still learning what QFT is.

From exploration of superconformal theories,
new insights into the meaning of QFT.

New practical tools,
such as the numerical bootstrap and the exact BPS bootstrap.

New mathematics.

I’ve emphasized two heuristic principles:

“Bootstrap” approach:
Use general principles, as opposed to detailed dynamical models.

Enlarge the view to the whole space of QFTs.
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(From the Salt Lake Tribune)

Pull yourself up from the mud of theory space!

Thank you!
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