UC Davis: The Physics and Mathematics of the Universe Mar.5, 2015

BLACK HOLES, HOLOGRAPHY & ENTANGLEMENT

Veronika Hubeny Durham University

background image: "BH LMC" by Alain - http://commons.wikimedia.org/wiki/File:BH_LMC.png#mediaviewer/File:BH_LMC.png

OUTLINE

• Black holes in many guises

• AdS/CFT correspondence

Holographic entanglement entropy

• Emergent spacetime

Black holes

- Black hole = region of spacetime which cannot communicate with the external Universe
- In Nature, results as endpoint of gravitational collapse

Many guises of black holes

- Astronomical objects, powering some of the most energetic processes in the Universe
- Mathematically beautiful: "the most perfect macroscopic objects there are" [Chandrasekhar]
- Lie at heart of profound dualities (e.g. AdS/CFT)
- Remarkably related to 'ordinary' systems (e.g. fluids)
- May hold a key to quantum gravity...

Black hole thermodynamics

- Stationary black hole characterized by 3 parameters:
 - mass M , angular momentum J , and charge Q

A

• Important properties: horizon area A and surface gravity κ

Laws of BH mechanics mimic laws of thermodynamics:

- 0. κ is constant over horizon for stationary BH
- 1. $dM = (1/8\pi G)\kappa dA + \Omega_H dJ$
- 2. $\delta A \ge 0$ in any process
- 3. Impossible to achieve $\kappa = 0$ by a physical process

0. T is constant over system in thermal equilibrium

 κ

- 1. dE = T dS + work terms
- 2. $\delta S \ge 0$ in any process
- 3. Impossible to achieve T = 0by a physical process

Hence natural to identify $M{\sim}E$, $\kappa \sim T$, and $~A \sim S$

Black holes as thermodynamic objects

- S motivated by gedanken-experiments of matter falling into BH [Bekenstein]
- T substantiated by semi-classical calculations [Hawking]: black holes radiate
- Specifically identify $S_{BH} = \frac{k_B c^3}{G \hbar} \frac{A}{4}$ and $T_{BH} = \frac{\hbar c}{k_B} \frac{\kappa}{2 \pi}$
- Natural question: statistical mechanics origin of BH entropy?
- Generalized Second Law: combined matter+BH entropy increases \Rightarrow Bekenstein bound (weakly gravitating systems): $S_{\text{matter}} \leq 2\pi E R$
 - ⇒ Spherical entropy bound (slowly evolving systems):

$$S_{\text{matter}} \leq \frac{A}{4} \implies \text{entropy } S \text{ is not extensive:} \ S \not\sim V$$

['t Hooft, Susskind]

Holographic Principle

• Covariant entropy bound: full spacetime construct [Bousso]

Entropy on any lightsheet L of a surface σ cannot exceed the area of σ : $S(L) \leq \frac{A(\sigma)}{4}$

- Holographic Principle: in a theory of gravity, the number of degrees of freedom describing the physics on lightsheet $L(\sigma)$ cannot exceed $A(\sigma)/4$
- ⇒ physical equivalence between 2 theories living in different # of dimensions!
- Concrete realization: AdS/CFT correspondence

AdS/CFT correspondence

Key aspects:

- * Gravitational theory maps to non-gravitational one!
- * Holographic: gauge theory lives in fewer dimensions.

AdS/CFT correspondence

* better analogy: stereogram...

...but infinitely more complicated

AdS/CFT correspondence

String theory (\ni gravity) \iff gauge theory (CFT) "in bulk" asymp. AdS \times K "on boundary"

Key aspects:

- * Gravitational theory maps to non-gravitational one!
- * Holographic: gauge theory lives in fewer dimensions.
- * Strong/weak coupling duality.

Invaluable tool to:

- Use gravity on AdS to learn about strongly coupled field theory (as successfully implemented in e.g. AdS/QCD & AdS/CMT programs)
- Use the gauge theory to define & study quantum gravity in AdS
 Pre-requisite: Understand the AdS/CFT 'dictionary'...

Scale/radius duality

What CFT quantity encodes the extra bulk direction?

- Scale/radius (or UV/IR) duality:
 - UV (small scale) in CFT + IR (large radius) in AdS
 - Local bulk excitation at radial position z in AdS is manifested by CFT excitation at scale L~z. [Susskind & Witten]
 - Follows from AdS geometry...

Asymptotic fall-off of bulk fields
 Expectation values of local gauge-invariant operators in CFT

Bulk geometries and CFT states

different bulk geometries ↔ different states in CFT (asymptotically AdS)

• Pure AdS \leftrightarrow vacuum state in CFT

Finite-mass deformations of the bulk geometry result in non-zero boundary stress-energy-momentum tensor

Black holes in equilibrium

different bulk geometries \leftrightarrow different states in CFT

- Pure AdS \leftrightarrow vacuum state in CFT
- Black hole \leftrightarrow thermal state in CFT

But need more refined understanding:

- (How) Does the CFT describe physics behind an event horizon?
- What is the nature of the BH singularity?
- What is the CFT description of causal structure?
- What about time-evolving geometries?

Small deviations from equilibrium

evolving bulk geometries \leftrightarrow corresponding dynamics

- Pure AdS \leftrightarrow vacuum state in CFT
- Black hole \leftrightarrow thermal state in CFT
- Quasinormal modes of perturbed black hole → approach to thermal equilibrium [Horowitz & Hubeny]

★ Horizon response properties → transport coefficients in CFT [Kovtun, Son, Starinets]

Description of dynamics

* Bulk dynamics is specified by Einstein's equations.

$$E_{ab} \equiv R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 0$$

* Boundary dynamics satisfies stress tensor conservation.

$$\nabla_{\mu}T^{\mu\nu} = 0$$

Fluid/Gravity correspondence

[Bhattacharyya, Hubeny, Minwalla, Rangamani, 2008]

Dynamics of bulk black hole ⇔ fluid dynamics on boundary
 5-d Einstein's equations ⊃ 4-d Navier-Stokes equations

w/ negative cosmological const. (describing relativistic, conformal fluid)

- For any given fluid flow, we iteratively construct a solution of a dynamical black hole in AdS whose horizon mimics the fluid.
- Technically: expand in boundary derivatives and solve order by order
- The radial equation is fully nonlinear, and gives patched 'tubes' of different black holes

- We calculate 2nd order transport coefficients for the conformal fluid.
- The pull-back of the horizon area form gives a natural entropy current on the boundary, with automatically non-negative divergence.

[Bhattacharyya, Hubeny, Loganayagam, Mandal, Minwalla, Morita, Rangamani, Reall]

Fluid/Gravity correspondence

[Bhattacharyya, Hubeny, Minwalla, Rangamani, 2008]

• Dynamics of bulk black hole \Leftrightarrow fluid dynamics on boundary

5-d Einstein's equations w/ negative cosmological const. → 4-d Navier-Stokes equations (describing relativistic, conformal fluid)

- For any given fluid flow, we iteratively construct a solution of a dynamical black hole in AdS whose horizon mimics the fluid.
 - Generalizations:
 - charged fluids,
 - superfluids,
 - non-conformal fluids,
 - non-relativistic fluids,
 - fluids with boundary,
 - forced fluids,
 - other dimensions, ...

- Applications:
 - black hole physics,
 - fluid dynamics,
 - nuclear physics,
 - condensed matter physics,
 - solid state physics, ...
- But not yet everyday liquids, e.g. non-Newtonian fluids.

Holographic Turbulence

Beyond fluid/gravity:

- Recently, [Adams, Chesler, Liu] constructed turbulent black holes in asymptotically AdS₄ spacetime by numerically solving Einstein equations
- Resulting bulk solution is well-approximated by the metric derived from fluid/gravity expansion
- Both dual holographic fluid and bulk geometry display signatures of an inverse cascade (see hints of Kolmogorov scaling for driven steady-state turbulence: the power spectrum P of the fluid velocity ~ k^{-5/3})
- Surprise for GR: statistically steady-state black holes dual to d dimensional turbulent flows have horizons which are approximately fractal with fractal dimension D = d + 4/3

Holographic Turbulence

http://turbulent.lns.mit.edu/Turbulence/1307.7267/1307.7267.html

http://turbulent.lns.mit.edu/Turbulence/1307.7267/1307.7267.html

The vorticity field of the quantum liquid holographically derived from the turbulent numerical metric: instability of initial perturbation drives ordered state into turbulent evolution with inverse cascade (small vortices merge into larger ones)

Onward from AdS/CFT

Entanglement

- Most non-classical manifestation of quantum mechanics
 - "Best possible knowledge of a whole does not include best possible knowledge of its parts — and this is what keeps coming back to haunt us" [Schrodinger '35]
- New quantum resource for tasks which cannot be performed using classical resources [Bennet '98]
- Plays a central role in wide-ranging fields
 - quantum information (e.g. cryptography, teleportation, ...)
 - quantum many body systems
 - quantum field theory
- Hints at profound connections to geometry...

Entanglement in 2 qubit system

Consider a system of 2 spins, labeled A and B

- Simple product state: $|\psi\rangle = |\uparrow\rangle_{A} \otimes |\downarrow\rangle_{B} \equiv |\uparrow\downarrow\rangle$
- More complicated product state:
 |ψ⟩ = (↓) + |↑⟩ + |↑⟩ + |↑⟩ + |↑↓⟩ + |↑↑⟩ + |↑↑⟩ + |↑↑⟩)
 Generic state (with arbitrary c_{ij} s.t. ∑ c²_{ij} = 1)
 |ψ⟩ = c₀₀ |↓↓⟩ + c₀₁ |↓↑⟩ + c₁₀ |↑↓⟩ + c₁₁ |↑↑⟩ is entangled when it is not a product state.
- A Bell (EPR) pair, such as $|\psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle)$ is maximally entangled.

Entanglement Entropy (EE)

The amount of entanglement is characterized by Entanglement Entropy S_A . Since we can only measure A, integrate out B:

• reduced density matrix $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$ (more generally, for a mixed total state, $\rho_A = \text{Tr}_B \rho$)

• EE = von Neumann entropy $S_A = -{
m Tr}\,
ho_A\, \log
ho_A$

• For the maximally entangled state $|\psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle)$ $\rho_A = \frac{1}{2}\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix} \implies S_A = \log 2$ • For the non-entangled state $|\psi\rangle = \frac{1}{2}(|\downarrow\downarrow\downarrow\rangle + |\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\uparrow\uparrow\rangle)$

$$\rho_A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad S_A = 0$$

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

• spin chain

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

- spin chain
- many-body quantum system,
 e.g. on a lattice

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

- spin chain
- many-body quantum system, e.g. on a lattice
- QFT: A and B can be spatial regions, separated by a smooth entangling surface

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

- spin chain
- many-body quantum system, e.g. on a lattice
- QFT: A and B can be spatial regions, separated by a smooth entangling surface

In all cases, $S_A = -\operatorname{Tr} \rho_A \log \rho_A$, where $\rho_A = \operatorname{Tr}_B \rho$.

Applications of EE

- Quantum Information theory: new quantum resource [Bennett '98 & Masanes '05]
 - quantum cryptography [Ekert, '91]
 - quantum dense coding [Bennett and Wiesner, '92]
 - quantum teleportation [Bennett et al., '93]
- Condensed Matter theory: diagnostic
 - quantum critical points
 - topological phases
 - computational difficulty, e.g. MERA [Vidal '09]
- Quantum Gravity:
 - suggested as origin of black hole entropy [Bombelli,Koul,Lee&Sorkin,'86 Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...]
 - origin of macroscopic spacetime [Van Raamsdonk et.al., Maldecena&Susskind]

The good news & the bad news

- But EE is hard to deal with...
 - non-local quantity, intricate & sensitive to environment
 - difficult to measure
 - difficult to calculate
 - ... especially in strongly-coupled quantum systems
- AdS/CFT to the rescue?
 - Is there a natural bulk dual of EE?
 (= ''Holographic EE'')

Yes! - described geometrically...

Holographic Entanglement Entropy

Proposal [Ryu & Takayanagi, '06] for static configurations:

In the bulk, EE S_A is captured by the area of minimal co-dimension 2 bulk surface \mathfrak{E} (at constant t) anchored on ∂A .

$$S_{\mathcal{A}} = \min_{\substack{\partial \mathfrak{E} = \partial \mathcal{A}}} \frac{\operatorname{Area}(\mathfrak{E})}{4 \, G_N}$$

Remarks:

- cf. black hole entropy...
- Minimal surface "hangs" into the bulk due to large distances near bdy.
- Note that both LHS and RHS are in fact infinite...

Evidence for HEE

- ✓ Leading contribution correctly reproduces the area law
- Recover known results of EE for intervals in 2-d CFT [Calabrese&Cardy] both in vacuum and in thermal state
- Derivation of holographic EE for spherical entangling surfaces [Cassini,Huerta,&Myers]
- Attempted proof by [Fursaev] elaborated & refined by [Headrick, Faulkner, Hartman, Maldacena&Lewkowycz]

Further suggestive evidence:

- ✓ Automatically satisfies $S_A = S_{A^c}$ for pure states
- Automatically satisfies (strong) subadditivity [Lieb&Ruskai] & Araki-Lieb inequality -- easy to prove on the gravity side, far harder within field theory

Covariant Holographic EE

But the RT prescription is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const. t" slice...

In time-dependent situations, RT prescription must be covariantized:

4 natural candidates: [Hubeny, Rangamani, Takayanagi '07]

- $\mathfrak{E} = Extremal surface$
- Ψ = Minimal-area surface on maximal-volume slice
- $\Phi =$ Surface with zero null expansions
- $\Xi = Causal$ wedge rim

Covariant Holographic EE

But the RT prescription is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const.t" slice...

In time-dependent situations, RT prescription must be covariantized:

4 natural candidates: [Hubeny, Rangamani, Takayanagi '07]

w/ area = causal holographic information χ [Hubeny, Rangamani '12]

Covariant Holographic EE

HRT Prescription: In the bulk EE $S_{\mathcal{A}}$ is captured by the area of extremal co-dimension 2 bulk surface \mathfrak{E} anchored on $\partial \mathcal{A}$ & homologous to \mathcal{A}

 $S_{\mathcal{A}} = \min_{\partial \mathfrak{E} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{E})}{4 \, G_N}$

[Hubeny, Rangamani, Takayanagi '07]

This gives a well-defined quantity in any (arbitrarily time-dependent asymptotically AdS) spacetime \Rightarrow equally robust as in CFT

But we can't use Euclidean techniques for proof...

?: Is HRT prescription consistent with CFT constraints, e.g. causality?

CFT causal restriction

- Entanglement entropy $S_{\mathcal{A}}$ only depends on $D[\mathcal{A}]$ and not on Σ .
- Natural separation of boundary spacetime into 4 regions:

 $\partial \mathcal{M} = D[\mathcal{A}] \cup D[\mathcal{A}^c] \cup I^-[\partial \mathcal{A}] \cup I^+[\partial \mathcal{A}]$

• EE should not be influenced by any change to state within $D[\mathcal{A}]$ or $D[\mathcal{A}^c]$.

CFT causal requirement on bulk

• Extremal surface cannot lie within the bulk causal wedge $\blacklozenge_{\mathcal{A}}$

- $\blacklozenge_{\mathcal{A}} \equiv J^{-}[D[\mathcal{A}]] \cap J^{+}[D[\mathcal{A}]]$
 - $= \{ \text{ bulk causal curves which } begin and end on D[\mathcal{A}] \}$

shown in [Hubeny, Rangamani '12]

• In fact it must lie in the causal shadow $\mathcal{Q}_{\partial\mathcal{A}}$

 $Q_{\partial A}$ = causal shadow = bulk region which is causally disconnected from both A and A^c

• Shown in [Headrick, Hubeny, Lawrence, Rangamani '14]

 Z_{-}

 $\Xi_{\mathcal{A}}$

 \mathcal{T}

• Non-trivial condition on holographic EE

Marginal for static case...

• In static situations where RT applies, causality is upheld just marginally

Danger: arb. small deformation of extremal surface could violate causality!

Entanglement wedge

• Boundary spacetime separation:

 $\partial \mathcal{M} = D[\mathcal{A}] \cup D[\mathcal{A}^c] \cup I^-[\partial \mathcal{A}] \cup I^+[\partial \mathcal{A}]$

• This naturally induces a corresponding separation into 4 bulk regions:

 $\mathcal{M} = \mathcal{W}_E[\mathcal{A}] \cup \mathcal{W}_E[\mathcal{A}^c] \cup I^-[\mathfrak{E}_{\mathcal{A}}] \cup I^+[\mathfrak{E}_{\mathcal{A}}]$

(for pure state)

entanglement wedge of ${\cal A}$

- $\mathcal{W}_E[\mathcal{A}]$ ends on $D[\mathcal{A}]$
- contains the causal wedge $\blacklozenge_{\mathcal{A}}$
- generated by null geodesics normal to $\mathfrak{E}_{\mathcal{A}}$
- \Rightarrow natural 'dual' of $\rho_{\mathcal{A}}$

Entanglement wedge in deformed SAdS

In deformed eternal Schw-AdS, (compact) extremal surface corresponding to $\mathcal{A} = \Sigma_L$ or $\mathcal{A} = \Sigma_R$ must lie in the 'shadow region' \mathcal{Q}

i.e. causally disconnected from both boundaries...

(for static Schw-AdS, shadow region = bifurcation surface)

⇒ Entanglement wedge extends past event horizon

Curious properties of EE:

- EE satisfies very nontrivial causality constraints
- Entanglement plateaux ($\delta S_{\cal A}$ saturates to $S_{
 ho_{\Sigma}}$ for large enough ${\cal A}$)
- EE has two separate components
- EE is a 'fine-grained' observable

These are all easy to see from the holographic dual!

Aside: one use of causal wedge

- Causal wedge can have holes...
- Important implication for entanglement:
 - whenever \mathcal{A} is large enough for $\Xi_{\mathcal{A}}$ to have two disconnected pieces, there cannot exist a single connected extremal (minimal) surface $\mathfrak{E}_{\mathcal{A}}$ homologous to \mathcal{A} !
 - in such cases, $\Rightarrow S_A = S_{A^c} + S_{BH}$ (saturates Araki-Lieb inequality)
 - → entanglement plateau

[VH, Maxfield, Rangamani, Tonni, '13]

- → two components to entanglement
- Causal wedge argument guarantees this even for generic time-dependent BHs.

EE is fine-grained observable!

Example: black hole formed from a collapse

• In contrast to the static (i.e. eternal) black hole, for a collapsed black hole, there is no non-trivial homology constraint on extremal surfaces. [cf.Takayanagi & Ugajin]

• Hence we always have $S_{\mathcal{A}} = S_{\mathcal{A}^c}$ as for a pure state.

Bulk dynamics from EE?

- We can in principle decode the bulk geometry from $\{S_A\}$ for a suitable set of A 's.
- But can we extract bulk dynamics more directly?
 - Use the strong subadditivity property of EE:

$$\delta_{\mathcal{A}}^{2} S_{\mathcal{A}} \sim \int_{\mathfrak{E}_{\mathcal{A}}} E_{ab} n^{a} n^{b} \geq 0$$

cf. Null Energy Conditio

specific 2nd order variation of region

 proved at linearized level in 3-d, but conjectured to hold more generally...

[Bhattacharya, Hubeny, Rangamani, Takayanagi, '14] cf. [Lashkari, Rabideau, Sabella-Garnier, Van Raamsdonk]

Spacetime from entanglement?

How does bulk spacetime emerge in the first place?

 Some connected spacetimes emerge as superpositions of disconnected spacetimes
 [Van Raamsdonk; Swingle]
 eg. eternal AdS black hole as thermofield double:

• Entanglement builds bridges: 'ER = EPR'

[Maldacena, Susskind]

Einstein-Rosen bridge

Einstein-Podolsky-Rosen entanglement

Space Ref (Harvard-Smithsonian CfA)

Thank you!

Roller Wave, by William Dalton

Dancing Non-Newtonian fluid by Milo Vosch