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Tg : Cobordism category of 2-manifolds

objects: 2-manifolds
morphisms: 3-cobordisms

Can extend further,

2-morphisms: 4-cobordisms 2-morphisms: 2d interfaces

cf. [Gadde-Gukov-Putrov ’13]
“4d-2d correspondence”

Cat. of 4d N=2 SUSY thy’s
objects: 4d theories
morphisms: 3d interfaces
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Tg[M ] =

✓ NO
i=1

Tg[�i]

◆�
⇠M =

N[

i=1

�i

Remainder of the talk: g = sl2 GC = SL(2,C) (or                PSL(2,C)

- for simplicity, and some added intuition g = sln
[Dimofte-Gabella-Goncharov ’13]

-                   flat connections are (roughly) hyperbolic metricsPSL(2,C)

= SL(2,C)/{±1})

So:            quantizes, categorifies, etc. classical hyperbolic geometry!Tg[M ]
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I hope this type of work will find a place here at Davis.




