A three-dimensional bridge between physics and mathematics

Tudor Dimofte
Institute for Advanced Study

A three-dimensional bridge between physics and mathematics

"Mathematics provides the language for physics; physics gives life to mathematics."

A three-dimensional bridge between physics and mathematics

"Mathematics provides the language for physics; physics gives life to mathematics."

- Mina Aganagic

I'd like to discuss an example of this symbiosis, in a correspondence that I helped develop, which has been one of the major themes in my work.

A three-dimensional bridge between physics and mathematics

"Mathematics provides the language for physics; physics gives life to mathematics."

- Mina Aganagic

I'd like to discuss an example of this symbiosis, in a correspondence that I helped develop, which has been one of the major themes in my work.
"3d-3d correspondence"

"3d-3d correspondence"

"3d-3d correspondence"

"3d-3d correspondence"

```
first hints:
```



```
3-manifold A,D,E
3d ( \(\mathrm{N}=2\) ) SUSY field theory
depending only on topology of M!
```

$T_{\mathfrak{g}}[M]$ is a top-level top'l inv't of M

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.

"3d-3d correspondence"

$T_{\mathfrak{g}}[M]$ is a top-level top'l inv't of M

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.
e.g.: hyperbolic volume $\operatorname{Vol}(M) \quad$ [Mostow '73]
space of flat $G_{\mathbb{C}}$ conn's $\quad \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$

"3d-3d correspondence"

$T_{\mathfrak{g}}[M]$ is a top-level top'l inv't of M

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.
e.g.: hyperbolic volume $\operatorname{Vol}(M) \quad$ [Mostow '73]
space of flat $G_{\mathbb{C}}$ conn's $\quad \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$ complex Chern-Simons part'n f'n $\quad \mathcal{Z}_{C S}^{G C}(M)$

"3d-3d correspondence"

$T_{\mathfrak{g}}[M]$ is a top-level top'l inv't of M

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.
e.g.: hyperbolic volume $\operatorname{Vol}(M) \quad$ [Mostow '73]
space of flat $G_{\mathbb{C}}$ conn's $\quad \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$ complex Chern-Simons part'n f'n $\quad \mathcal{Z}_{C S}^{G C}(M)$
cf. Jones poly, WRT [Witten '89, Reshetikhin-Turaev '91]
categorification

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M] \begin{aligned}
& \text { fisst hints } \\
& \text { Dimotie-Gukov-Hollands '10] }
\end{aligned}
$$

More than just theory!
e.g.: hyperbolic volume $\operatorname{Vol}(M) \quad$ [Mostow '73]
space of flat $G_{\mathbb{C}}$ conn's $\quad \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$ complex Chern-Simons part'n f'n $\quad \mathcal{Z}_{C S}^{G C}(M)$
categorification

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M] \begin{aligned}
& \text { fisst hintss } \\
& \text { Dimotie-Gukov-Hollands '10] }
\end{aligned}
$$

More than just theory!
"Most" $M, \mathfrak{g}=s l_{2}$: explicit construction of $T_{\mathfrak{g}}[M]$
[Dimofte-Gaiotto-Gukov '11]
[Cecotti-Cordova-Vafa '11]
[Dimofte-Gaiotto-v.d.Veen '13]

$$
\mathfrak{g}=s l_{n}:
$$

[Dimofte-Gabella-Goncharov '13]

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M] \begin{aligned}
& \begin{array}{l}
\text { first hints } \\
\text { Diminte: Gukov-Hollands } \left.s^{\prime} 10\right]
\end{array}
\end{aligned}
$$

More than just theory!
"Most" $M, \mathfrak{g}=s l_{2}$: explicit construction of $T_{\mathfrak{g}}[M]$
[Dimofte-Gaiotto-Gukov '11]
[Cecotti-Cordova-Vafa '11]
[Dimofte-Gaiotto-v.d.Veen '13]

$$
\mathfrak{g}=s l_{n}:
$$

[Dimofte-Gabella-Goncharov '13]

Main tool: (topological) ideal triangulations

+ a generalization of Thurston-Neumann-Zagier gluing methods from hyperbolic geometry ('80's) [Dimofte '11]

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?

Main tool: (topological) ideal triangulations

+ a generalization of Thurston-Neumann-Zagier gluing methods from hyperbolic geometry ('80's) [Dimofte '11]

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Math: New "quantum" topological invariants, a comb'r definition of the $G_{\mathbb{C}}$ Chern-Simons part'n function

$$
\mathcal{Z}_{C S}^{G \mathbb{C}}(M)
$$

for all CS levels $k \in \mathbb{Z}$
[Dimofte-Gaiotto-Gukov '11]
[Dimofte '14]

Main tool: (topological) ideal triangulations

+ a generalization of Thurston-Neumann-Zagier gluing methods from hyperbolic geometry ('80's)

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Math: New "quantum" topological invariants, a comb'r definition of the $G_{\mathbb{C}}$ Chern-Simons part'n function

$$
\mathcal{Z}_{C S}^{G \mathbb{C}}(M)
$$

for all CS levels $k \in \mathbb{Z}$
[Dimofte-Gaiotto-Gukov '11]
[Dimofte '14]

- analyzing asymptotics of $\mathcal{Z}_{C S}^{G C}(M)$ (easy!)
\rightsquigarrow simple, conjectured (tested) formula for $G_{\mathbb{C}}$-twisted Reidemeister-Ray-Singer torsion of M
[Dimofte-Garoufalidis '12]

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Math: New "quantum" topological invariants, a comb'r definition of the $G_{\mathbb{C}}$ Chern-Simons part'n function

$$
\mathcal{Z}_{C S}^{G \mathbb{C}}(M)
$$

for all CS levels $k \in \mathbb{Z}$
[Dimofte-Gaiotto-Gukov '11]
[Dimofte '14]

- analyzing asymptotics of $\mathcal{Z}_{C S}^{G C}(M)$ (easy!)
\rightsquigarrow simple, conjectured (tested) formula for $G_{\mathbb{C}}$-twisted Reidemeister-Ray-Singer torsion of M
[Dimofte-Garoufalidis '12]
\rightsquigarrow predictions for asymptotics of colored Jones poly's (hard!; play a role in Volume Conjecture) [Kashaev '97, Murakami-Murakami '99, Gukov '03] [Dimofte-Garoufalidis '15]

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Math: a comb'r definition of the $G_{\mathbb{C}}$ Chern-Simons part'n function

Hopefully: a combinatorial definition for $G_{\mathbb{C}}$ 3-manifold homology!
in progress w/ Gaiotto-Moore
(Analogous to Khovanov homology for G)

- analyzing asymptotics of $\mathcal{Z}_{C S}^{G}(M)$ (easy!)
\rightsquigarrow simple, conjectured (tested) formula for $G_{\mathbb{C}}$-twisted Reidemeister-Ray-Singer torsion of M
[Dimofte-Garoufalidis '12]
predictions for asymptotics of colored Jones poly's (hard!; play a role in Volume Conjecture) [Kashaev '97, Murakami-Murakami '99, Gukov '03] [Dimofte-Garoufalidis '15]

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Physics: Intuition!
Properties of $3 \mathrm{~d} N=2$ theories are governed by the geometry of 3-manifolds!

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Physics: Intuition!
Properties of $3 d \mathrm{~N}=2$ theories are governed by the geometry of 3-manifolds!

- geometric description of (IR) dualities within a large class of 3d N=2 SUSY gauge theories (from different ways to cut/glue the same M)

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Physics: Intuition!
Properties of $3 d \mathrm{~N}=2$ theories are governed by the geometry of 3-manifolds!

- geometric description of (IR) dualities within a large class of 3d N=2 SUSY gauge theories (from different ways to cut/glue the same M)
- systematic construction of superconformal interfaces

$$
\text { 4d N=2 T }\left.\right|^{T} T_{\mathfrak{g}}[M] \quad \text { 4d N=2 T' } \quad \text { [Dimofte-Gaiotto-v.d.Veen '13] }
$$

"3d-3d correspondence"

$$
M, \mathfrak{g} \quad \rightsquigarrow \quad T_{\mathfrak{g}}[M]
$$

Results?
Physics: Intuition!
Properties of $3 d \mathrm{~N}=2$ theories are governed by the geometry of 3-manifolds!

- geometric description of (IR) dualities within a large class of 3d N=2 SUSY gauge theories (from different ways to cut/glue the same M)
- systematic construction of superconformal interfaces

Remainder of the talk:

Remainder of the talk:

- a few more details on the correspondence, and observables of $T_{\mathfrak{g}}[M]$

Remainder of the talk:

- a few more details on the correspondence, and observables of $T_{\mathfrak{g}}[M]$
- tetrahedra, formulas, and examples

Remainder of the talk:

- a few more details on the correspondence, and observables of $T_{\mathfrak{g}}[M]$
- tetrahedra, formulas, and examples
- first look at homological/categorical invariants

The correspondence

super-conformal-field-theory
Starting point: 6d
$(2,0)$ SCFT
"theory \mathcal{X} "

The correspondence

super-conformal-field-theory
Starting point: 6d
$(2,0)$ SCFT
"theory \mathcal{X} "
(world-volume theory of M5 branes)

The correspondence

super-conformal-field-theory
Starting point: 6d $(2,0)$ SCFT
"theory \mathcal{X} "
(world-volume theory of M5 branes)
labelled by an ADE symmetry algebra \mathfrak{g}

The correspondence

super-conformal-field-theory
 Starting point: 6d $(2,0)$ SCFT
 "theory \mathcal{X} "
 (world-volume theory of M5 branes)
 labelled by an ADE symmetry algebra \mathfrak{g}

$$
\begin{aligned}
\mathcal{X}_{\mathfrak{g}} \quad \text { on } & M \times \mathbb{R}^{3} \text { (topological twist on } \mathrm{M} \text {) } \\
& \rightsquigarrow \text { effective theory } T_{\mathfrak{g}}[M] \text { on } \mathbb{R}^{3}
\end{aligned}
$$

The correspondence

How to describe $T_{\mathfrak{g}}[M]$?

The correspondence

Starting point: 6d \begin{tabular}{l}

super-conformal-field-theory
$(2,0)$ SCFT
"theory \mathcal{X} ",

(world-volume theory of M5 branes)

labelled by an ADE symmetry algebra \mathfrak{g}
\end{tabular}

$$
\begin{aligned}
\mathcal{X}_{\mathfrak{g}} \quad \text { on } & M \times \mathbb{R}^{3} \text { (topological twist on } \mathrm{M} \text {) } \\
& \rightsquigarrow \text { effective theory } T_{\mathfrak{g}}[M] \text { on } \mathbb{R}^{3}
\end{aligned}
$$

How to describe $T_{\mathfrak{g}}[M]$?

- direct, first-principles is hard: \mathcal{X} has no Lagrangian

The correspondence

Starting point: 6d \begin{tabular}{l}

super-conformal-field-theory
$(2,0)$ SCFT
"theory \mathcal{X} ",

(world-volume theory of M5 branes)

[abelled by an ADE symmetry algebra \mathfrak{g}
\end{tabular}

$$
\begin{aligned}
\mathcal{X}_{\mathfrak{g}} \quad \text { on } & M \times \mathbb{R}^{3} \text { (topological twist on } \mathrm{M} \text {) } \\
& \rightsquigarrow \text { effective theory } T_{\mathfrak{g}}[M] \text { on } \mathbb{R}^{3}
\end{aligned}
$$

How to describe $T_{\mathfrak{g}}[M]$?

- direct, first-principles is hard: \mathcal{X} has no Lagrangian
- nevertheless, can infer many properties of $T_{\mathfrak{g}}[M]+$ its compact'ns

The correspondence

Basic property:
$\left\{\right.$ vacua of $T_{\mathfrak{g}}[M]$ on $\left.\mathbb{R}^{2} \times S^{1}\right\}=\left\{\right.$ flat $G_{\mathbb{C}}$ connections on $\left.M\right\}$ $\mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$

To see this:

$$
\begin{array}{cc}
\text { 6d } \mathcal{X}_{\mathfrak{g}} & M \times \mathbb{R}^{2} \times S^{1} \\
\text { 3d } & T_{\mathfrak{g}}[M] \\
& \mathbb{R}^{2} \times S^{1} \\
\text { 2d } & \begin{array}{l}
\downarrow \\
\mathbb{R}^{2}
\end{array}
\end{array}
$$

How to describe $T_{\mathfrak{g}}[M]$?

- direct, first-principles is hard: \mathcal{X} has no Lagrangian
- nevertheless, can infer many properties of $T_{\mathfrak{g}}[M]+$ its compact'ns

The correspondence

Basic property:
$\left\{\right.$ vacua of $T_{\mathfrak{g}}[M]$ on $\left.\mathbb{R}^{2} \times S^{1}\right\}=\left\{\right.$ flat $G_{\mathbb{C}}$ connections on $\left.M\right\}$

$$
\mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)
$$

To see this:

$$
\begin{aligned}
& \text { 3d } \quad \text { 6d } \\
& \text { 3d } T_{\mathfrak{g}}[M] \quad \mathbb{R} \\
& \text { scribe } T_{\mathfrak{g}}[M] ?
\end{aligned}
$$

How to describe $T_{\mathfrak{g}}[M]$?

- direct, first-principles is hard: \mathcal{X} has no Lagrangian
- nevertheless, can infer many properties of $T_{\mathfrak{g}}[M]+$ its compact'ns

The correspondence

Basic property:
$\left\{\right.$ vacua of $T_{\mathfrak{g}}[M]$ on $\left.\mathbb{R}^{2} \times S^{1}\right\}=\left\{\right.$ flat $G_{\mathbb{C}}$ connections on $\left.M\right\}$

$$
\mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)
$$

To see this:
6d $\quad \mathcal{X}_{\mathfrak{g}} \quad M \times \mathbb{R}^{2} \times S^{1}$

look at the vacua of 5d SYM, topologically twisted on M

The correspondence

Basic property:
$\left\{\right.$ vacua of $T_{\mathfrak{g}}[M]$ on $\left.\mathbb{R}^{2} \times S^{1}\right\}=\left\{\right.$ flat $G_{\mathbb{C}}$ connections on $\left.M\right\}$

$$
\mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)
$$

To see this:

look at the vacua of 5d SYM, topologically twisted on M
fields $A_{a}, \phi_{a} \in \mathfrak{g}$

$$
(a=1,2,3)
$$

The correspondence

Basic property:
$\left\{\right.$ vacua of $T_{\mathfrak{g}}[M]$ on $\left.\mathbb{R}^{2} \times S^{1}\right\}=\left\{\right.$ flat $G_{\mathbb{C}}$ connections on $\left.M\right\}$

$$
\mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)
$$

To see this:

look at the vacua of 5d SYM, topologically twisted on M
fields $A_{a}, \phi_{a} \in \mathfrak{g} \quad \rightsquigarrow \quad \mathcal{A}_{a}=A_{a}+i \phi_{a}$

$$
(a=1,2,3) \quad G_{\mathbb{C}} \text { connection on } M
$$

The correspondence

Basic property:
$\left\{\right.$ vacua of $T_{\mathfrak{g}}[M]$ on $\left.\mathbb{R}^{2} \times S^{1}\right\}=\left\{\right.$ flat $G_{\mathbb{C}}$ connections on $\left.M\right\}$

$$
\mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)
$$

To see this:
6d $\mathcal{X}_{\mathfrak{g}} \quad M \times \mathbb{R}^{2} \times S^{1}$

3d $T_{\mathfrak{g}}[M] \quad \mathbb{R}^{2} \times S_{2 \mathrm{~d}}^{S^{1}}$| $M \times \mathbb{R}^{2}$ |
| :--- |
| [has a Lagrangian!] |

look at the vacua of 5d SYM, topologically twisted on M
fields $A_{a}, \phi_{a} \in \mathfrak{g} \quad \rightsquigarrow \quad \mathcal{A}_{a}=A_{a}+i \phi_{a}$

$$
(a=1,2,3) \quad G_{\mathbb{C}} \text { connection on } M
$$

minimize potential:
$d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0$
flat

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
look at the vacua of 5d SYM, topologically twisted on M
fields $A_{a}, \phi_{a} \in \mathfrak{g} \quad \rightsquigarrow \quad \mathcal{A}_{a}=A_{a}+i \phi_{a}$

$$
(a=1,2,3) \quad G_{\mathbb{C}} \text { connection on } M
$$

minimize potential:

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0
$$

flat

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
quantize!
look at the vacua of 5d SYM, topologically twisted on M
fields $A_{a}, \phi_{a} \in \mathfrak{g} \quad \rightsquigarrow \quad \mathcal{A}_{a}=A_{a}+i \phi_{a}$

$$
(a=1,2,3) \quad G_{\mathbb{C}} \text { connection on } M
$$

minimize potential:

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0
$$

flat

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$$
M
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
quantize!
$G_{\mathbb{C}}$ Chern-Simons theory on M $\mathcal{A}: \mathfrak{g}_{\mathbb{C}}$-valued 1-form

$$
\begin{align*}
\mathcal{Z}_{C S}[M]=\int \mathcal{D} \mathcal{A} \mathcal{D} \overline{\mathcal{A}} & e^{\frac{k+i \sigma}{8 \pi i} I_{\mathrm{CS}}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} I_{\mathrm{CS}}(\overline{\mathcal{A}})} \tag{Witten'91}\\
& I_{C S}(\mathcal{A})
\end{align*}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$$
M
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
quantize!
$G_{\mathbb{C}}$ Chern-Simons theory on M $\mathcal{A}: \mathfrak{g}_{\mathbb{C}}$-valued 1-form

$$
\begin{aligned}
& \mathcal{Z}_{C S}[M]=\int \mathcal{D} \mathcal{A} \mathcal{D} \overline{\mathcal{A}} e^{\frac{k+i \sigma}{8 \pi i} I_{\mathrm{CS}}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} I_{\mathrm{CS}}(\overline{\mathcal{A}})} \\
& I_{C S}(\mathcal{A}):=\int_{M} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \\
& k \in \mathbb{Z} \quad \sigma \in \mathbb{R}(\text { or } \mathbb{C})
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
quantize!
$G_{\mathbb{C}}$ Chern-Simons theory on M $\mathcal{A}: \mathfrak{g}_{\mathbb{C}}$-valued 1-form

$$
\begin{gathered}
\mathcal{Z}_{C S}[M]=\int \mathcal{D} \mathcal{A D} \overline{\mathcal{A}} e^{\frac{k+i \sigma}{8 \pi i} I_{\mathrm{CS}}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} I_{\mathrm{CS}}(\overline{\mathcal{A}})} \\
k \in \mathbb{Z} \quad \sigma \in \mathbb{R}(\text { or } \mathbb{C}) \quad I_{C S}(\mathcal{A}):=\int_{M} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
\end{gathered}
$$

[Witten '91]

- classical sol'ns are flat $G_{\mathbb{C}}$ connections

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
quantize!
$G_{\mathbb{C}}$ Chern-Simons theory on $\mathrm{M} \quad \mathcal{A}: \mathfrak{g}_{\mathbb{C}}$-valued 1-form

$$
\begin{gathered}
\mathcal{Z}_{C S}[M]=\int \mathcal{D} \mathcal{A D} \overline{\mathcal{A}} e^{\frac{k+i \sigma}{8 \pi i}} \operatorname{ICS}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} I_{\mathrm{CS}}(\overline{\mathcal{A}}) \\
k \in \mathbb{Z} \quad \sigma \in \mathbb{R}(\text { or } \mathbb{C}) \quad I_{C S}(\mathcal{A}):=\int_{M} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
\end{gathered}
$$

- classical sol'ns are flat $G_{\mathbb{C}}$ connections
[Witten '89]
- cf. compact G CS thy: on knot complements, get Jones polys (combinatorial definition)

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
quantize!
$G_{\mathbb{C}}$ Chern-Simons theory on M $\mathcal{A}: \mathfrak{g}_{\mathbb{C}}$-valued 1-form

$$
\begin{gathered}
\mathcal{Z}_{C S}[M]=\int \mathcal{D} \mathcal{A D} \overline{\mathcal{A}} e^{\frac{k+i \sigma}{8 \pi i} I_{\mathrm{CS}}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} I_{\mathrm{CS}}(\overline{\mathcal{A}})} \\
k \in \mathbb{Z} \quad \sigma \in \mathbb{R}(\text { or } \mathbb{C}) \quad I_{C S}(\mathcal{A}):=\int_{M} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
\end{gathered}
$$

- classical sol'ns are flat $G_{\mathbb{C}}$ connections
- cf. compact G CS thy: on knot complements, get Jones polys (combinatorial definition)
- combinatorial def'n missing for $G_{\mathbb{C}}$ until recently!

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]

$$
\mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

$$
\begin{gathered}
\mathcal{Z}_{C S}[M]=\int \mathcal{D} \mathcal{A D} \overline{\mathcal{A}} e^{\frac{k+i \sigma}{8 \pi i}} \operatorname{ICS}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} \operatorname{ICs}(\overline{\mathcal{A}}) \\
k \in \mathbb{Z} \quad \\
\sigma \in \mathbb{R}(\text { or } \mathbb{C}) \quad I_{C S}(\mathcal{A}):=\int_{M} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
\end{gathered}
$$

- classical sol'ns are flat $G_{\mathbb{C}}$ connections
[Witten '89]
- cf. compact G CS thy: on knot complements, get Jones polys (combinatorial definition)
[Reshetikhin-Turaev '90, etc.]
- combinatorial def'n missing for $G_{\mathbb{C}}$ until recently!

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]

$$
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right]
$$

$$
=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

part'n function on
ellipsoidally-deformed lens space

$$
\begin{gathered}
\mathcal{Z}_{C S}[M]=\int \mathcal{D A D} \overline{\mathcal{A}} e^{\frac{k+i \sigma}{8 \pi i} I_{\mathrm{CS}}(\mathcal{A})+\frac{k-i \sigma}{8 \pi i} I_{\mathrm{CS}}(\overline{\mathcal{A}})} \\
k \in \mathbb{Z} \quad \sigma \in \mathbb{R}(\text { or } \mathbb{C}) \quad I_{C S}(\mathcal{A}):=\int_{M} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
\end{gathered}
$$

- classical sol'ns are flat $G_{\mathbb{C}}$ connections
- cf. compact G CS thy: on knot complements, get Jones polys (combinatorial definition)
- combinatorial def'n missing for $G_{\mathbb{C}}$ until recently!

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

M
$=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
$=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]$
part'n function on
ellipsoidally-deformed lens space

$$
\begin{aligned}
L(k, 1)_{\sigma}= & S_{\sigma}^{3} / \mathbb{Z}_{k} \\
\simeq & \left\{b^{2}|z|^{2}+b^{-2}|w|^{2}=1\right\} \in \mathbb{C}^{2} /(z, w) \sim\left(e^{\frac{2 \pi i}{k}} z, e^{\frac{2 \pi i}{k}} w\right) \\
& b^{2}=\frac{k-i \sigma}{k+i \sigma}
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

M
$=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathrm{C}}\right)$
[Dimofte-Gukov-Hollands '10]
$=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]$

$$
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right]
$$

part'n function on

ellipsoidally-deformed lens space

$$
\begin{aligned}
& L(k, 1)_{\sigma}=S_{\sigma}^{3} / \mathbb{Z}_{k} \\
& b^{2}=\frac{k-i \sigma}{k+i \sigma} \simeq\left\{b^{2}|z|^{2}+b^{-2}|w|^{2}=1\right\} \in \mathbb{C}^{2} /(z, w) \sim\left(e^{\frac{2 \pi i}{k}} z, e^{\frac{2 \pi i}{k}} w\right) \\
& \mathrm{k}=1: \begin{array}{l}
\text { [Terashima-Yamazaki '11] }
\end{array} \\
& \text { [Dimofte-Gaiotto-Gukov '11] } \\
& \text { [Cordova-Jafferis '13] }- \text { physical proof }
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

M
$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]

$$
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right]
$$

$$
=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

part'n function on
ellipsoidally-deformed lens space

$$
\begin{aligned}
& L(k, 1)_{\sigma}=S_{\sigma}^{3} / \mathbb{Z}_{k} \\
& b^{2}=\frac{k-i \sigma}{k+i \sigma} \quad \simeq\left\{b^{2}|z|^{2}+b^{-2}|w|^{2}=1\right\} \in \mathbb{C}^{2} /(z, w) \sim\left(e^{\frac{2 \pi i}{k}} z, e^{\frac{2 \pi i}{k}} w\right) \\
& \mathrm{k}=1 \text { : } \\
& \text { k=0 : }
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

M
$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]

$$
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right] \quad=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

part'n function on
ellipsoidally-deformed lens space

$$
\begin{aligned}
& L(k, 1)_{\sigma}=S_{\sigma}^{3} / \mathbb{Z}_{k} \\
& b^{2}=\frac{k-i \sigma}{k+i \sigma} \quad \simeq\left\{b^{2}|z|^{2}+b^{-2}|w|^{2}=1\right\} \in \mathbb{C}^{2} /(z, w) \sim\left(e^{\frac{2 \pi i}{k}} z, e^{\frac{2 \pi i}{k}} w\right) \\
& \mathrm{k}=1 \text { : } \\
& \text { k=0 : } \\
& \text { [Terashima-Yamazaki '11] } \\
& \text { [Dimofte-Gaiotto-Gukov '11] } \\
& \text { [Cordova-Jafferis '13] - physical proof } \\
& \text { [Dimofte-Gaiotto-Gukov (2) '11] } \\
& \text { [Lee-Yamazaki '13] - physical proof } \\
& \text { [Dimofte '14] }
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

\{vacua on $\mathbb{R}^{2} \times S^{1}$ \}

$$
\begin{gathered}
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right] \\
\mathrm{k}=1: \\
\mathrm{k}=0:
\end{gathered}
$$

general k :
$=\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
$=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]$
[Terashima-Yamazaki '11]
[Dimofte-Gaiotto-Gukov '11]
[Cordova-Jafferis '13] - physical proof
[Dimofte-Gaiotto-Gukov (2) '11]
[Lee-Yamazaki '13] - physical proof
[Dimofte '14]
to tie this all together:

$$
\mathcal{Z}_{C S}^{k, \sigma}[M]=\sum_{\text {flat } \alpha} B_{\alpha}^{k+i \sigma}[M] \overline{B_{\alpha}^{k+i \sigma}[M]}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

\{vacua on $\mathbb{R}^{2} \times S^{1}$ \}

$$
\begin{gathered}
\mathcal{Z}_{\left.T_{\mathrm{s}} M\right]\left[L(k, 1)_{\sigma}\right]} \\
\mathrm{k}=1: \\
\mathrm{k}=0:
\end{gathered}
$$

general k :
$=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$
[Dimofte-Gukov-Hollands '10]
$=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]$
[Terashima-Yamazaki '11]
[Dimofte-Gaiotto-Gukov '11]
[Cordova-Jafferis '13] - physical proof
[Dimofte-Gaiotto-Gukov (2) '11]
[Lee-Yamazaki '13] - physical proof
[Dimofte '14]
to tie this all together:

$$
\begin{aligned}
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right] & =\sum_{\text {vacua } \alpha} B_{\alpha}^{k+i \sigma}[M] \overline{B_{\alpha}^{k+i \sigma}[M]} \quad \mathcal{Z}_{C S}^{k, \sigma}[M]=\sum_{\text {flat } \alpha} B_{\alpha}^{k+i \sigma}[M] \overline{B_{\alpha}^{k+i \sigma}[M]} \\
L(k, 1) & \simeq\left(D^{2} \times S^{1}\right) \cup_{\varphi \in S L(2, \mathbb{Z})}\left(D^{2} \times S^{1}\right)
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathrm{C}}\right)$

$$
\mathcal{Z}_{T_{\mathrm{s}}[M]}\left[L(k, 1)_{\sigma}\right]
$$

$$
=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!
to tie this all together:

$$
\begin{aligned}
\mathcal{Z}_{T_{\mathfrak{s}}[M]}\left[L(k, 1)_{\sigma}\right] & =\sum_{\text {vacua } \alpha} B_{\alpha}^{k+i \sigma}[M] \overline{B_{\alpha}^{k+i \sigma}[M]} \quad \mathcal{Z}_{C S}^{k, \sigma}[M]=\sum_{\text {flat } \alpha} B_{\alpha}^{k+i \sigma}[M] \overline{B_{\alpha}^{k+i \sigma}[M]} \\
L(k, 1) \simeq & \quad\left[D^{2} \times S^{1}\right) \cup_{\varphi \in S L(2, \mathbb{Z})}\left(D^{2} \times S^{1}\right)
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathbb{C}}\right)$

$$
\begin{array}{lll}
\mathcal{Z}_{T_{\mathrm{g}}[M]}\left[L(k, 1)_{\sigma}\right] & = & \mathcal{Z}_{C S}^{(k, \sigma)}[M]
\end{array}
$$

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathrm{C}}\right)$

$$
\mathcal{Z}_{T_{\mathrm{g}}[M]}\left[L(k, 1)_{\sigma}\right] \quad=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

$$
\mathrm{k}=0: \quad \mathcal{Z}_{T[M]}\left(S^{2} \times S^{1}\right)=\operatorname{Tr}_{\mathcal{H}\left(S^{2}\right)}(-1)^{F} q^{J+\frac{F}{2}}
$$

is a an index

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathrm{C}}\right)$

$$
\mathcal{Z}_{T_{\mathrm{g}}[M]}\left[L(k, 1)_{\sigma}\right] \quad=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

$$
\begin{aligned}
\mathrm{k}=0: \quad \mathcal{Z}_{T[M]}\left(S^{2} \times S^{1}\right)= & \operatorname{Tr}_{\mathcal{H}\left(S^{2}\right)}(-1)^{F} q^{J+\frac{F}{2}} \\
\text { is a an index } & \uparrow_{\text {natural vector space }+ \text { differential, }} \\
& \text { Hilb. space of } T_{\mathfrak{g}}[M] \text { on } S^{2}, \text { action of "Q"; }
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathrm{C}}\right)$

$$
\mathcal{Z}_{T_{\mathfrak{s}}[M]}\left[L(k, 1)_{\sigma}\right] \quad=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

$$
\begin{aligned}
& \mathrm{k}=0: \quad \mathcal{Z}_{T[M]}\left(S^{2} \times S^{1}\right)=\operatorname{Tr}_{\mathcal{H}\left(S^{2}\right)}(-1)^{F} q^{J+\frac{F}{2}} \\
& \text { is a an index } \text { natural vector space + differential, } \\
& \text { Hilb. space of } T_{\mathfrak{g}}[M] \text { on } S^{2}, \text { action of "Q"; } \\
& \text { the index is its graded Euler character }
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {fat }}\left(M, G_{\mathrm{C}}\right)$

$$
\begin{array}{lll}
\mathcal{Z}_{T_{\mathfrak{s}}[M]}\left[L(k, 1)_{\sigma}\right] & = & \mathcal{Z}_{C S}^{(k, \sigma)}[M]
\end{array}
$$

So: by studying more refined observables of $T_{\mathfrak{g}}[M]$, like Hilbert spaces, one obtains homological lifts of quantum inv'ts!

One more step: categorify

$$
\begin{aligned}
& \mathrm{k}=0: \quad \mathcal{Z}_{T[M]}\left(S^{2} \times S^{1}\right)=\operatorname{Tr}_{\mathcal{H}\left(S^{2}\right)}(-1)^{F} q^{J+\frac{F}{2}} \\
& \text { is a an index } \uparrow \\
& \begin{aligned}
\uparrow & \text { natural vector space + differential, space of } T_{\mathfrak{g}}[M] \text { on } S^{2}, \text { action of "Q"; } \\
& \text { the index is its graded Euler character }
\end{aligned}
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$

$$
\begin{array}{lll}
\mathcal{Z}_{T_{\mathfrak{s}}[M]}\left[L(k, 1)_{\sigma}\right] & = & \mathcal{Z}_{C S}^{(k, \sigma)}[M]
\end{array}
$$

So: by studying more refined observables of $T_{\mathfrak{g}}[M]$, like Hilbert spaces, one obtains homological lifts of quantum inv'ts!

- analogous to Khovanov homology

One more step: categorify

$$
\begin{aligned}
& \mathrm{k}=0: \quad \mathcal{Z}_{T[M]}\left(S^{2} \times S^{1}\right)= \operatorname{Tr}_{\mathcal{H}\left(S^{2}\right)}(-1)^{F} q^{J+\frac{F}{2}} \\
& \text { is a an index } \uparrow \\
& \text { natural vector space }+ \text { differential, } \\
& \text { Hilb. space of } T_{\mathfrak{g}}[M] \text { on } S^{2}, \text { action of " } Q^{\prime \prime} \text { "; } \\
& \text { the index is its graded Euler character }
\end{aligned}
$$

The correspondence

$$
\underline{T_{\mathfrak{g}}[M]}
$$

$\left\{\right.$ vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\} \quad=\quad\left\{\right.$ flat $G_{\mathbb{C}}$ connections $\} \mathcal{M}_{\text {flat }}\left(M, G_{\mathbb{C}}\right)$

$$
\mathcal{Z}_{T_{\mathfrak{s}}[M]}\left[L(k, 1)_{\sigma}\right] \quad=\quad \mathcal{Z}_{C S}^{(k, \sigma)}[M]
$$

So: by studying more refined observables of $T_{\mathfrak{g}}[M]$, like Hilbert spaces, one obtains homological lifts of quantum inv'ts!

- analogous to Khovanov homology
- work in progress w/ Gaiotto, Moore

$$
\mathrm{k}=0: \quad \mathcal{Z}_{T[M]}\left(S^{2} \times S^{1}\right)=\operatorname{Tr}_{\mathcal{H}\left(S^{2}\right)}(-1)^{F} q^{J+\frac{F}{2}}
$$

is a an index
natural vector space + differential, Hilb. space of $T_{\mathfrak{g}}[M]$ on S^{2}, action of " Q ";
the index is its graded Euler character

The correspondence

This was the "pedestrian" version!

$$
T_{\mathfrak{g}}[M]
$$

\{vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\}$

$$
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right]
$$

So: by studying more refined observables of $T_{\mathfrak{g}}[M]$, like Hilbert spaces, one obtains homological lifts of quantum inv'ts!

- analogous to Khovanov homology
- work in progress w/ Gaiotto, Moore

The correspondence

This was the "pedestrian" version!
Full picture: study M with boundary

$$
\underline{T_{\mathfrak{g}}[M]}
$$

\{vacua on $\left.\mathbb{R}^{2} \times S^{1}\right\}$

$$
\mathcal{Z}_{T_{\mathfrak{g}}[M]}\left[L(k, 1)_{\sigma}\right]
$$

So: by studying more refined observables of $T_{\mathfrak{g}}[M]$, like Hilbert spaces, one obtains homological lifts of quantum inv'ts!

- analogous to Khovanov homology
- work in progress w/ Gaiotto, Moore

The correspondence

This was the "pedestrian" version!
Full picture: study M with boundary

The right way to compactify $\mathcal{X}_{\mathfrak{g}}$ on a space w/ bdy is to stretch to bdy to asymptotic regions

The correspondence

This was the "pedestrian" version!
Full picture: study M with boundary

The right way to compactify $\mathcal{X}_{\mathfrak{g}}$ on a space w/ bdy is to stretch to bdy to asymptotic regions

3d interface between 4d ($\mathrm{N}=2$) SUSY theories
[Dimofte-Gaiotto-v.d.Veen '13]

The correspondence

This was the "pedestrian" version!
Full picture: study M with boundary

The right way to compactify $\mathcal{X}_{\mathfrak{g}}$ on a space w/ bdy is to stretch to bdy to asymptotic regions

The correspondence is functorial:

The correspondence is functorial:

$T_{\mathfrak{g}}:$ Cobordism category of 2-manifolds \longrightarrow Cat. of 4d N=2 SUSY thy's
objects: 2-manifolds
morphisms: 3-cobordisms
objects: 4d theories morphisms: 3d interfaces

The correspondence is functorial:

$T_{\mathfrak{g}}$: Cobordism category of 2-manifolds \longrightarrow Cat. of 4d N=2 SUSY thy's
 objects: 2-manifolds
 morphisms: 3-cobordisms objects: 4d theories morphisms: 3d interfaces

Can extend further,

2-morphisms: 4-cobordisms

The correspondence is functorial:

$T_{\mathfrak{g}}$: Cobordism category of 2-manifolds \longrightarrow Cat. of 4d N=2 SUSY thy's
objects: 2-manifolds
morphisms: 3-cobordisms objects: 4d theories morphisms: 3d interfaces

Can extend further,

2-morphisms: 4-cobordisms

2-morphisms: 2d interfaces
"4d-2d correspondence"
cf. [Gadde-Gukov-Putrov '13]

The correspondence is effective

The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_{\mathfrak{g}}[M]$

The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_{\mathfrak{g}}[M]$

- includes all hyperbolic M, with cusps and/or geodesic bdy

The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_{\mathfrak{g}}[M]$

- includes all hyperbolic M, with cusps and/or geodesic bdy (most 3-manifolds are hyperbolic
= admit a metric of constant neg. curvature)
(given appropriate boundary conditions, the metric is unique)
[Mostow '76,...]

The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_{\mathfrak{g}}[M]$

- includes all hyperbolic M, with cusps and/or geodesic bdy
(most 3-manifolds are hyperbolic
= admit a metric of constant neg. curvature)
(given appropriate boundary conditions, the metric is unique)
[Mostow '76,...]
- method of computation: cut M into (topological) ideal tetrahedra truncated vertices

The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_{\mathfrak{g}}[M]$

- includes all hyperbolic M, with cusps and/or geodesic bdy (most 3-manifolds are hyperbolic
= admit a metric of constant neg. curvature) (given appropriate boundary conditions, the metric is unique)
[Mostow '76,...]
- method of computation: cut M into (topological) ideal tetrahedra

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$ truncated vertices

The correspondence is effective

Remainder of the talk: $\quad \mathfrak{g}=s l_{2} \quad G_{\mathbb{C}}=S L(2, \mathbb{C}) \quad$ (or $\operatorname{PSL}(2, \mathbb{C})$

$$
=S L(2, \mathbb{C}) /\{ \pm 1\})
$$

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

The correspondence is effective

Remainder of the talk: $\quad \mathfrak{g}=s l_{2} \quad G_{\mathbb{C}}=S L(2, \mathbb{C}) \quad($ or $\operatorname{PSL}(2, \mathbb{C})$

$$
=S L(2, \mathbb{C}) /\{ \pm 1\})
$$

- for simplicity, and some added intuition $\quad \mathfrak{g}=s l_{n}$
[Dimofte-Gabella-Goncharov '13]

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

The correspondence is effective

Remainder of the talk: $\quad \mathfrak{g}=s l_{2} \quad G_{\mathbb{C}}=S L(2, \mathbb{C}) \quad($ or $\operatorname{PSL}(2, \mathbb{C})$

$$
=S L(2, \mathbb{C}) /\{ \pm 1\})
$$

- for simplicity, and some added intuition $\quad \mathfrak{g}=s l_{n}$
[Dimofte-Gabella-Goncharov '13]
- PSL(2, $\mathbb{C})$ flat connections are (roughly) hyperbolic metrics

So: $T_{\mathfrak{g}}[M]$ quantizes, categorifies, etc. classical hyperbolic geometry!

$$
M=\bigcup_{i=1}^{N} \Delta_{i}
$$

$$
T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^{3}
- faces are geodesic surfaces

The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^{3}
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$
z=e^{(\text {torsion })+i(\text { angle })}
$$

The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^{3}
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$
z=e^{(\text {torsion })+i(\text { angle })}
$$

equal on opposite edges, and satisfy
[W. Thurston, late '70's]

$$
\begin{gathered}
z z^{\prime} z^{\prime \prime}=-1 \\
z^{\prime \prime}+z^{-1}-1=0
\end{gathered}
$$

The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^{3}
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$
z=e^{(\text {torsion })+i(\text { angle })}
$$

equal on opposite edges, and satisfy
[W. Thurston, late ' 70 's]

$$
\begin{gathered}
z z^{\prime} z^{\prime \prime}=-1 \\
z^{\prime \prime}+z^{-1}-1=0
\end{gathered}
$$

Flat connections: $\quad \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right)$

The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^{3}
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$
z=e^{(\text {torsion })+i(\text { angle })}
$$

equal on opposite edges, and satisfy
[W. Thurston, late ' 70 's]

$$
\begin{gathered}
z z^{\prime} z^{\prime \prime}=-1 \\
z^{\prime \prime}+z^{-1}-1=0
\end{gathered}
$$

Flat connections: $\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right)$

The correspondence is effective

[Dimofte-Gaiotto-Gukov '11]
Tetrahedron theory: $T[\Delta]=$ single free chiral superfield

$$
\begin{gathered}
z z^{\prime} z^{\prime \prime}=-1 \\
z^{\prime \prime}+z^{-1}-1=0
\end{gathered}
$$

Flat connections: $\quad \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right)$

$$
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right)=\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
$$

The correspondence is effective

[Dimofte-Gaiotto-Gukov '11]
Tetrahedron theory: $T[\Delta]=$ single free chiral superfield

$$
\Phi \quad \text { or } \quad \phi, \psi
$$

complex scalar, complex fermion (function on \mathbb{R}^{3}) (section of spinor bundle on \mathbb{R}^{3})

$$
\begin{gathered}
z z^{\prime} z^{\prime \prime}=-1 \\
z^{\prime \prime}+z^{-1}-1=0
\end{gathered}
$$

Flat connections: $\quad \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right)$

$$
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right)=\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
$$

The correspondence is effective

> [Dimofte-Gaiotto-Gukov '11]

Tetrahedron theory: $T[\Delta]=$ single free chiral superfield

$$
\Phi \quad \text { or } \quad \phi, \psi
$$

complex scalar, complex fermion (function on \mathbb{R}^{3}) (section of spinor bundle on \mathbb{R}^{3})

Lagrangian:

$$
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+\bar{\psi}(\sigma \cdot \partial) \psi
$$

$$
\begin{aligned}
& \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
& \cup \\
& \mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right)=\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

> [Dimofte-Gaiotto-Gukov '11]

Tetrahedron theory: $T[\Delta]=$ single free chiral superfield

$$
\Phi \quad \text { or } \quad \phi, \psi
$$

complex scalar, complex fermion (function on \mathbb{R}^{3}) (section of spinor bundle on \mathbb{R}^{3})

Lagrangian: $\quad \mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+\bar{\psi}(\sigma \cdot \partial) \psi+Z|\phi|^{2}+Z \bar{\psi} \psi$
This theory allows a (real) supersymmetric mass term $Z \quad$ (equal for ϕ, ψ)

$$
\begin{aligned}
& \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
& \cup \\
& \mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right)=\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

> [Dimofte-Gaiotto-Gukov '11]

Tetrahedron theory: $T[\Delta]=$ single free chiral superfield

$$
\Phi \quad \text { or } \quad \phi, \psi
$$

complex scalar, complex fermion (function on \mathbb{R}^{3}) (section of spinor bundle on \mathbb{R}^{3})

$$
\text { Lagrangian: } \quad \mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+\bar{\psi}(\sigma \cdot \partial) \psi+Z|\phi|^{2}+Z \bar{\psi} \psi
$$

This theory allows a supersymmetric mass term $Z \quad$ (equal for ϕ, ψ)

Putting the theory on $\mathbb{R}^{2} \times S^{1}, Z$ gets complexified, and can be identified with the hyperbolic modulus: $\quad z=\exp (Z)$

$$
\begin{aligned}
& \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
& \cup \\
& \mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right)=\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

> [Dimofte-Gaiotto-Gukov '11]

Tetrahedron theory: $T[\Delta]=$ single free chiral superfield

$$
\Phi \quad \text { or } \quad \phi, \psi
$$

complex scalar, complex fermion (function on \mathbb{R}^{3}) (section of spinor bundle on \mathbb{R}^{3})

$$
\text { Lagrangian: } \quad \mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+\bar{\psi}(\sigma \cdot \partial) \psi+Z|\phi|^{2}+Z \bar{\psi} \psi
$$

This theory allows a supersymmetric mass term $Z \quad$ (equal for ϕ, ψ)

Putting the theory on $\mathbb{R}^{2} \times S^{1}, Z$ gets complexified, and can be identified with the hyperbolic modulus: $\quad z=\exp (Z)$

$$
\begin{aligned}
& \mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
& \cup \\
& \mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right)=\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldClassical invariants?

Putting the theory on $\mathbb{R}^{2} \times S^{1}, Z$ gets complexified, and can be identified with the hyperbolic modulus: $\quad z=\exp (Z)$

$$
\begin{aligned}
\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) & \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
\cup & \cup \\
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right) & =\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldClassical invariants?
[Witten, Phases of N=2 Theories '93]
On $\mathbb{R}^{2} \times S^{1}$, a standard 1-loop calculation leads to

$$
\mathcal{L}_{\mathrm{eff}}=|d \widetilde{W}(z)|^{2} \quad \widetilde{W}(z)=\operatorname{Li}_{2}(z)
$$

Putting the theory on $\mathbb{R}^{2} \times S^{1}, Z$ gets complexified, and can be identified with the hyperbolic modulus: $\quad z=\exp (Z)$

$$
\begin{aligned}
\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) & \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
\cup & \cup \\
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right) & =\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldClassical invariants?
[Witten, Phases of N=2 Theories '93]
On $\mathbb{R}^{2} \times S^{1}$, a standard 1-loop calculation leads to

$$
\mathcal{L}_{\mathrm{eff}}=|d \widetilde{W}(z)|^{2} \quad \widetilde{W}(z)=\operatorname{Li}_{2}(z)
$$

(complex) volume of Δ !
Putting the theory on $\mathbb{R}^{2} \times S^{1}, Z$ gets complexified, and can be identified with the hyperbolic modulus: $\quad z=\exp (Z)$

$$
\begin{aligned}
\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) & \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
\cup & \cup \\
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right) & =\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldClassical invariants?
[Witten, Phases of N=2 Theories '93]
On $\mathbb{R}^{2} \times S^{1}$, a standard 1-loop calculation leads to

$$
\mathcal{L}_{\mathrm{eff}}=|d \widetilde{W}(z)|^{2} \quad \widetilde{W}(z)=\operatorname{Li}_{2}(z)
$$

(complex) volume of Δ !
Also, vacua of $T[\Delta]$ on $\mathbb{R}^{2} \times S^{1}$ given by $\exp \left(z \frac{d \widetilde{W}(z)}{d z}\right)=z^{\prime \prime}$

$$
\Rightarrow z^{\prime \prime}+z^{-1}-1=0 \quad!
$$

$$
\begin{aligned}
\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) & \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
\cup & \cup \\
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right) & =\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldTurn the crank: quantum invariants

Also, vacua of $T[\Delta]$ on $\mathbb{R}^{2} \times S^{1}$ given by $\exp \left(z \frac{d \widetilde{W}(z)}{d z}\right)=z^{\prime \prime}$

$$
\Rightarrow \quad z^{\prime \prime}+z^{-1}-1=0 \quad!
$$

$$
\begin{aligned}
\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) & \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
\cup & \cup \\
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right) & =\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
Turn the crank: quantum invariants
The lens-space partition functions $\quad \mathcal{Z}_{T[\Delta]}\left[L(k, 1)_{\sigma}\right]$ can all be calculated explicitly - due to SUSY, the path integral reduces to a finite-dimensional integral.
[Kim '09]
[Kapustin-Willett-Yaakov '10]
[Hama-Hosomochi-Lee '11]
[Benini-Nishioka-Yamazaki '11]

Also, vacua of $T[\Delta]$ on $\mathbb{R}^{2} \times S^{1}$ given by $\quad \exp \left(z \frac{d \widetilde{W}(z)}{d z}\right)=z^{\prime \prime}$

$$
\Rightarrow z^{\prime \prime}+z^{-1}-1=0 \quad!
$$

$$
\begin{aligned}
\mathcal{M}_{\text {flat }}\left(\partial \Delta, G_{\mathbb{C}}\right) & \approx \mathbb{C}^{*} \times \mathbb{C}^{*} \quad\left(z, z^{\prime \prime}\right) \\
\cup & \cup \\
\mathcal{M}_{\text {flat }}\left(\Delta, G_{\mathbb{C}}\right) & =\left\{z^{\prime \prime}+z^{-1}-1=0\right\}
\end{aligned}
$$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
Turn the crank: quantum invariants
The lens-space partition functions $\quad \mathcal{Z}_{T[\Delta]}\left[L(k, 1)_{\sigma}\right]$ can all be calculated explicitly - due to SUSY, the path integral
reduces to a finite-dimensional integral.
[Kim '09]
[Kapustin-Willett-Yaakov '10]
[Hama-Hosomochi-Lee '11]
[Benini-Nishioka-Yamazaki '11]
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta}$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
Turn the crank: quantum invariants
The lens-space partition functions $\quad \mathcal{Z}_{T[\Delta]}\left[L(k, 1)_{\sigma}\right]$ can all be calculated explicitly - due to SUSY, the path integral
reduces to a finite-dimensional integral.
[Kim '09]
[Kapustin-Willett-Yaakov '10]
[Hama-Hosomochi-Lee '11]
[Benini-Nishioka-Yamazaki '11]
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta}$
depends on $m \in \mathbb{Z}$, phase $|\zeta|=1$
$q=e^{\frac{2 \pi}{\sigma}}$

- because Δ has a bdy

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldTurn the crank: quantum invariants
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta}$
$q=e^{\frac{2 \pi}{\sigma}}$
depends on $m \in \mathbb{Z}$, phase $|\zeta|=1$

- because Δ has a bdy

$$
\begin{aligned}
& z \sim q^{\frac{m}{2}} \zeta \\
& \bar{z} \sim q^{\frac{m}{2}} \zeta^{-1}
\end{aligned}
$$

The correspondence is effective

 $T[\Delta]=$ single free chiral superfieldTurn the crank: quantum invariants
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta}$ $q=e^{\frac{2 \pi}{\sigma}}$
depends on $m \in \mathbb{Z}$, phase $|\zeta|=1$

- because Δ has a bdy

$$
\begin{aligned}
& z \sim q^{\frac{m}{2}} \zeta \\
& \bar{z} \sim q^{\frac{m}{2}} \zeta^{-1}
\end{aligned}
$$

$\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]$ is a version of a "quantum dilogarithm"

$$
\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right] \underset{\substack{\sigma \rightarrow \infty \\ q \rightarrow 1}}{\sim} e^{\frac{\sigma}{2 \pi} \operatorname{Im} \operatorname{Li}_{2}(z)}
$$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \quad q=e^{\frac{2 \pi}{\sigma}}$

3d SUSY thy: $T[\Delta]$ has a $\mathrm{U}(1)_{e}$ symmetry $(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)$
$\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]$ is a version of a "quantum dilogarithm"

$$
\begin{aligned}
\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right] \underset{\substack{\sigma \rightarrow \infty \\
q \rightarrow 1}}{\sim} e^{\frac{\sigma}{2 \pi} \operatorname{Im} \operatorname{Li}_{2}(z)} & z \sim q^{\frac{m}{2}} \zeta \\
& \bar{z} \sim q^{\frac{m}{2}} \zeta^{-1}
\end{aligned}
$$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \quad q=e^{\frac{2 \pi}{\sigma}}$

3d SUSY thy: $T[\Delta]$ has a U(1) symmetry $(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)$

Hilb. space $\mathcal{H}\left(S^{2}\right)$ is graded by - elec \& mag charges for this $\mathrm{U}(1)_{e}$

$\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]$ is a version of a "quantum dilogarithm"

$$
\begin{array}{rl}
\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right] \underset{\sigma \rightarrow \infty}{\sim} e^{\frac{\sigma}{2 \pi}{\operatorname{Im} \operatorname{Li}_{2}(z)}^{q \rightarrow 1}} & z \sim q^{\frac{m}{2}} \zeta \\
& \bar{z} \sim q^{\frac{m}{2}} \zeta^{-1}
\end{array}
$$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \quad q=e^{\frac{2 \pi}{\sigma}}$

3d SUSY thy: $T[\Delta]$ has a $\mathrm{U}(1)_{e}$ symmetry $(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)$

Hilb. space $\mathcal{H}\left(S^{2}\right)$ is graded by - elec \& mag charges for this $U(1)_{e}$

$$
(m, e) \in \mathbb{Z} \times \mathbb{Z}
$$

- spin $J \in \frac{1}{2} \mathbb{Z} \quad$ (weight for $U(1)_{J}$)

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \quad q=e^{\frac{2 \pi}{\sigma}}$

3d SUSY thy: $T[\Delta]$ has a $\mathrm{U}(1)_{e}$ symmetry $(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)$

Hilb. space $\mathcal{H}\left(S^{2}\right)$ is graded by - elec \& mag charges for this $\mathrm{U}(1)_{e}$

$$
(m, e) \in \mathbb{Z} \times \mathbb{Z}
$$

- spin $J \in \frac{1}{2} \mathbb{Z} \quad$ (weight for $U(1)_{J}$)
- R-charge $R \in \mathbb{Z} \quad(\phi, \psi) \rightarrow\left(\phi, e^{-i \theta} \psi\right)$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \quad q=e^{\frac{2 \pi}{\sigma}}$

3d SUSY thy: $T[\Delta]$ has a $\mathrm{U}(1)_{e}$ symmetry $(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)$ Hilb. space $\mathcal{H}\left(S^{2}\right)$ is graded by - elec \& mag charges for this $\mathrm{U}(1)_{e}$

$$
(m, e) \in \mathbb{Z} \times \mathbb{Z}
$$

- spin $J \in \frac{1}{2} \mathbb{Z} \quad$ (weight for $U(1)_{J}$)
- R-charge $R \in \mathbb{Z} \quad(\phi, \psi) \rightarrow\left(\phi, e^{-i \theta} \psi\right)$

There's a differential

$$
Q: \mathcal{H}\left(S^{2}\right) \rightarrow \mathcal{H}\left(S^{2}\right)
$$

(one of the SUSY generators)

$$
\text { preserves } m, e, J+R / 2 ; \quad R \rightarrow R+1
$$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\begin{array}{rlr}\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right] & =\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} & q=e^{\frac{2 \pi}{\sigma}} \\ & =\operatorname{Tr}_{\mathcal{H}\left(S^{2} ; m\right)}(-1)^{R} q^{J+\frac{R}{2}} \zeta^{e} & \text { (definition!) } \\ & \text { or } H \bullet\left[\mathcal{H}\left(S^{2} ; m\right), Q\right] & \end{array}$

3d SUSY thy: $T[\Delta]$ has a $\mathrm{U}(1)_{e}$ symmetry $(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)$
Hilb. space $\mathcal{H}\left(S^{2}\right)$ is graded by - elec \& mag charges for this $\mathrm{U}(1)_{e}$
 $(m, e) \in \mathbb{Z} \times \mathbb{Z}$

- spin $J \in \frac{1}{2} \mathbb{Z} \quad$ (weight for $\left.U(1)_{J}\right)$
- R-charge $R \in \mathbb{Z} \quad(\phi, \psi) \rightarrow\left(\phi, e^{-i \theta} \psi\right)$

There's a differential $\quad Q: \mathcal{H}\left(S^{2}\right) \rightarrow \mathcal{H}\left(S^{2}\right) \quad$ (one of the SUSY generators) preserves $m, e, J+R / 2 ; \quad R \rightarrow R+1$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g.

$$
\begin{align*}
\mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right] & =\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \longleftarrow \text { modes of } \psi \\
& =\operatorname{Tr}_{\mathcal{H}\left(S^{2} ; m\right)(-1)^{R} q^{J+\frac{R}{2}} \zeta^{e} \quad \text { modes of } \phi} \tag{definition!}\\
& \text { or } H^{\bullet} \cdot\left[\mathcal{H}\left(S^{2} ; m\right), Q\right]
\end{align*}
$$

3d SUSY thy: $T[\Delta]$ has a $\mathrm{U}(1)_{e}$ symmetry

$$
(\phi, \psi) \rightarrow\left(e^{i \theta} \phi, e^{i \theta} \psi\right)
$$

Hilb. space $\mathcal{H}\left(S^{2}\right)$ is graded by - elec \& mag charges for this $\mathrm{U}(1)_{e}$

- spin $J \in \frac{1}{2} \mathbb{Z} \quad$ (weight for $\left.U(1)_{J}\right)$
- R-charge $R \in \mathbb{Z} \quad(\phi, \psi) \rightarrow\left(\phi, e^{-i \theta} \psi\right)$

There's a differential $\quad Q: \mathcal{H}\left(S^{2}\right) \rightarrow \mathcal{H}\left(S^{2}\right) \quad$ (one of the SUSY generators)
preserves $m, e, J+R / 2 ; \quad R \rightarrow R+1$

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
$\begin{aligned} \text { E.g. } \quad \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right] & =\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2} \zeta^{-1}}}{1-q^{-\frac{m}{2}} \zeta^{\text {modes of } \psi} \psi} \text { modes of } \phi \\ & =\operatorname{Tr}_{\mathcal{H}\left(S^{2} ; m\right)(-1)^{R} q^{J+\frac{R}{2}} \zeta^{e} \quad \text { (definition!) }}^{\text {or } H^{\bullet}\left[\mathcal{H}\left(S^{2} ; m\right), Q\right]}\end{aligned}$

Categorical/homological invariant: $\quad H^{\bullet}\left[\mathcal{H}\left(S^{2}\right), Q\right] \quad$ itself

The correspondence is effective

$T[\Delta]=$ single free chiral superfield
E.g. $\quad \begin{aligned} & \mathcal{Z}_{T[\Delta]}\left[S^{2} \times S^{1}\right]=\prod_{r=0}^{\infty} \frac{1-q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta} \text { modes of } \psi \\ &=\operatorname{Tr}_{\mathcal{H}\left(S^{2} ; m\right)}(-1)^{R} q^{J+\frac{R}{2}} \zeta^{e} \quad \text { modes of } \phi \\ & \text { (definition!) } \\ & H \cdot\left[\mathcal{H}\left(S^{2} ; m\right), Q\right]\end{aligned}$

Categorical/homological invariant: $\quad H^{\bullet}\left[\mathcal{H}\left(S^{2}\right), Q\right] \quad$ itself

Free theory: easy

$$
\left.\operatorname{Tr}_{H \cdot\left[\mathcal{H}\left(S^{2} ; m\right), Q\right.}\right]^{R} q^{j+\frac{R}{2}} \zeta^{e}=\prod_{r=0}^{\infty} \frac{1+t q^{1-\frac{m}{2}} \zeta^{-1}}{1-q^{-\frac{m}{2}} \zeta}
$$

That categorifies the volume of a hyperbolic tetrahedron.

The correspondence is effective

In general, glue

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

Categorical/homological invariant: $\quad H^{\bullet}\left[\mathcal{H}\left(S^{2}\right), Q\right] \quad$ itself
Free theory: easy

That categorifies the volume of a hyperbolic tetrahedron.

The correspondence is effective

In general, glue

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

- gluing rules come from promoting Thurston's gluing eqs (and symplectic properties found by [Neumann-Zagier '82]) to the level of 3d SUSY gauge theories

Categorical/homological invariant: $\quad H^{\bullet}\left[\mathcal{H}\left(S^{2}\right), Q\right]$ itself
Free theory: easy

That categorifies the volume of a hyperbolic tetrahedron.

The correspondence is effective

In general, glue

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

- gluing rules come from promoting Thurston's gluing eqs (and symplectic properties found by [Neumann-Zagier '82]) to the level of 3d SUSY gauge theories
- roughly, $T_{s l_{2}}[M]$ contains N chiral multiplets, with extra gauge fields and interactions to enforce the gluing.

Categorical/homological invariant: $\quad H^{\bullet}\left[\mathcal{H}\left(S^{2}\right), Q\right] \quad$ itself
Free theory: easy

That categorifies the volume of a hyperbolic tetrahedron.

The correspondence is effective

In general, glue

$$
M=\bigcup_{i=1}^{N} \Delta_{i} \quad T_{\mathfrak{g}}[M]=\left(\bigotimes_{i=1}^{N} T_{\mathfrak{g}}\left[\Delta_{i}\right]\right) / \sim
$$

- gluing rules come from promoting Thurston's gluing eqs (and symplectic properties found by [Neumann-Zagier '82]) to the level of 3d SUSY gauge theories
- roughly, $T_{s l_{2}}[M]$ contains N chiral multiplets, with extra gauge fields and interactions to enforce the gluing.

What's in it for physics?

The correspondence is good for physics

Two examples:

1. A geometric interpretation (and prediction) of dualities in 3d SUSY theories

What's in it for physics?

The correspondence is good for physics

Two examples:

1. A geometric interpretation (and prediction) of dualities in 3d SUSY theories

A 3-manifold may be glued together in many different ways

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

The correspondence is good for physics

Two examples:

1. A geometric interpretation (and prediction) of dualities in 3d SUSY theories

A 3-manifold may be glued together in many different ways

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

expect

$$
T[M]=\otimes T\left[\Delta_{i}\right] / \sim \underset{\text { equivalent in the IR }}{=} \otimes T\left[\Delta_{j}\right] / \sim
$$

The correspondence is good for physics

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

expect

$$
\begin{gathered}
T[M]=\otimes T\left[\Delta_{i}\right] / \sim \underset{\sim}{=} \otimes T\left[\Delta_{j}\right] / \sim \\
\text { equivalent in the } \mathrm{IR}
\end{gathered}
$$

The correspondence is good for physics

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

expect

$$
\begin{gathered}
T[M]=\otimes T\left[\Delta_{i}\right] / \sim \underset{\text { equivalent in the } \mathrm{IR}}{=} \otimes T\left[\Delta_{j}\right] / \sim \\
\text { en }
\end{gathered}
$$

The correspondence is good for physics

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

expect

$$
\begin{gathered}
T[M]=\otimes T\left[\Delta_{i}\right] / \sim \underset{\text { equivalent in the } \mathrm{IR}}{=} \otimes T\left[\Delta_{j}\right] / \sim \\
\text { en }
\end{gathered}
$$

The correspondence is good for physics

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

expect

$$
\begin{array}{r}
T[M]=\otimes T\left[\Delta_{i}\right] / \sim \underset{=}{=} \otimes T\left[\Delta_{j}\right] / \sim \\
\text { equivalent in the } \mathrm{IR}
\end{array}
$$

The correspondence is good for physics

$T[M]=3 d$ SQED
2 chiral multiplets Φ_{1}, Φ_{2}
$\mathrm{U}(1)$ gauge sym. +1 -1

$$
M=\bigcup_{i=1}^{N} \Delta_{i}=\bigcup_{j=1}^{N^{\prime}} \Delta_{j}
$$

expect

$$
\begin{gathered}
T[M]=\otimes T\left[\Delta_{i}\right] / \sim \underset{\uparrow}{=} \otimes T\left[\Delta_{j}\right] / \sim \\
\text { equivalent in the IR }
\end{gathered}
$$

The correspondence is good for physics

\longrightarrow
$T[M]=3 \mathrm{~d}$ SQED
2 chiral multiplets Φ_{1}, Φ_{2}
$\mathrm{U}(1)$ gauge sym. +1 -1

$$
T[M]=\text { "XYZ model" }
$$

3 chiral multiplets $\Phi_{1}, \Phi_{2}, \Phi_{3}$ cubic superpotential $W=\Phi_{1} \Phi_{2} \Phi_{3}$

$$
\text { i.e. } \mathcal{L}=\ldots+\psi_{1} \psi_{2} \phi_{3}+\left|\phi_{1} \phi_{2}\right|^{2}+\ldots
$$

The correspondence is good for physics

$T[M]=3 d$ SQED
2 chiral multiplets Φ_{1}, Φ_{2}
$\mathrm{U}(1)$ gauge sym. +1 -1
\longrightarrow

$$
T[M]=\text { "XYZ model" }
$$

3 chiral multiplets $\Phi_{1}, \Phi_{2}, \Phi_{3}$ cubic superpotential $W=\Phi_{1} \Phi_{2} \Phi_{3}$

$$
\text { i.e. } \mathcal{L}=\ldots+\psi_{1} \psi_{2} \phi_{3}+\left|\phi_{1} \phi_{2}\right|^{2}+\ldots
$$

3d SQED = "XYZ model"
[Aharony-Hanany-Intriligator-Seiberg-Strassler '97]

The correspondence is good for physics

\longrightarrow
$T[M]=3 d$ SQED
2 chiral multiplets Φ_{1}, Φ_{2}
$\mathrm{U}(1)$ gauge sym. +1 -1

$$
T[M]=\text { "XYZ model" }
$$

3 chiral multiplets $\Phi_{1}, \Phi_{2}, \Phi_{3}$ cubic superpotential $W=\Phi_{1} \Phi_{2} \Phi_{3}$

$$
\text { i.e. } \mathcal{L}=\ldots+\psi_{1} \psi_{2} \phi_{3}+\left|\phi_{1} \phi_{2}\right|^{2}+\ldots
$$

3d SQED = "XYZ model"
[Aharony-Hanany-Intriligator-Seiberg-Strassler '97]
cf. classical

$$
\operatorname{Li}_{2}(x)+\operatorname{Li}_{2}(y)=\operatorname{Li}_{2}\left(\frac{x}{1-y}\right)+\operatorname{Li}_{2}\left(\frac{y}{1-x}\right)+\operatorname{Li}_{2}\left(\frac{(1-x)(1-y)}{x y}\right)+\operatorname{logs}
$$

The correspondence is good for physics

Two examples:
2. $3 \mathrm{~d} N=2$ theories on interfaces in 4 d get labelled by 3-manifolds, and gain systematic constructions
cf. classical $\quad \operatorname{Li}_{2}(x)+\operatorname{Li}_{2}(y)=\operatorname{Li}_{2}\left(\frac{x}{1-y}\right)+\operatorname{Li}_{2}\left(\frac{y}{1-x}\right)+\operatorname{Li}_{2}\left(\frac{(1-x)(1-y)}{x y}\right)+$ logs

The correspondence is good for physics

Two examples:
2. $3 \mathrm{~d} N=2$ theories on interfaces in 4d get labelled by 3-manifolds, and gain systematic constructions
E.g. electric-magnetic (S) duality in 4d maximally SUSY YM thy

The correspondence is good for physics

Two examples:
2. $3 \mathrm{~d} N=2$ theories on interfaces in 4d get labelled by 3-manifolds, and gain systematic constructions
E.g. electric-magnetic (S) duality in 4d maximally SUSY YM thy

$$
M=S^{3} \backslash(\text { Hopf network })
$$

The correspondence is good for physics

Two examples:
2. $3 \mathrm{~d} N=2$ theories on interfaces in 4 d get labelled by 3-manifolds, and gain systematic constructions
E.g. electric-magnetic (S) duality in 4d maximally SUSY YM thy

Moral

There is interesting structure to be discovered and developed,

$$
M=S^{3} \backslash(\text { Hopf network })
$$

$\longrightarrow 4$ or 5Δ 's

$$
\longrightarrow T[M]
$$

Moral

There is interesting structure to be discovered and developed, both in physics and mathematics

- SUSY QFT
- moduli spaces
- partition functions
- (SUSY) Hilbert spaces

- topological invariants
- categorification
- combinatorics
of triangulations

Moral

There is interesting structure to be discovered and developed, both in physics and mathematics

- SUSY QFT
- moduli spaces
- partition functions
- (SUSY) Hilbert spaces

- topological invariants
- categorification
- combinatorics
of triangulations

Relations like the 3d-3d correspondence allow both kinds of structure to be developed in tandem, with double the power and intuition.

Moral

There is interesting structure to be discovered and developed, both in physics and mathematics

- SUSY QFT
- moduli spaces
- partition functions
- (SUSY) Hilbert spaces

- topological invariants
- categorification
- combinatorics
of triangulations

Relations like the 3d-3d correspondence allow both kinds of structure to be developed in tandem, with double the power and intuition.

I hope this type of work will find a place here at Davis.

