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The response of black holes

Gravitational Lensing by Black Holes in Astrophysics and in Interstellar 25

In the figure we see three images of the disk. The upper image swings around the

front of the black hole’s shadow and then, instead of passing behind the shadow, it

swings up over the shadow and back down to close on itself. This wrapping over the

shadow has a simple physical origin: Light rays from the top face of the disk, which is

actually behind the hole, pass up over the top of the hole and down to the camera due

to gravitational light deflection; see Figure 9.8 of [41]. This entire image comes from

light rays emitted by the disk’s top face. By looking at the colours, lengths, and widths

of the disk’s swatches and comparing with those in the inset, one can deduce, in each

region of the disk, the details of the gravitational lensing.

In Figure 13, the lower disk image wraps under the black hole’s shadow and then

swings inward, becoming very thin, then up over the shadow and back down and outward

to close on itself. This entire image comes from light rays emitted by the disk’s bottom

face: the wide bottom portion of the image, from rays that originate behind the hole,

and travel under the hole and back upward to the camera; the narrow top portion, from

rays that originate on the disk’s front underside and travel under the hole, upward on

its back side, over its top, and down to the camera—making one full loop around the

hole.

There is a third disk image whose bottom portion is barely visible near the shadow’s

edge. That third image consists of light emitted from the disk’s top face, that travels

around the hole once for the visible bottom part of the image, and one and a half times

for the unresolved top part of the image.

In the remainder of this section 4 we deal with a moderately realistic accretion

disk—but a disk created for Interstellar by Double Negative artists rather than created

by solving astrophysical equations such as [32]. In Appendix A.6 we give some details

of how this and other Double Negative accretion disk images were created. This artists’

Interstellar disk was chosen to be very anemic compared to the disks that astronomers

Figure 14: A moderately realistic accretion disk, created by Double Negative artists and

gravitationally lensed by the same black hole with a/M = 0.999 as in Figure 13 and

with the same geometry.

James, von Tunzelmann, Franklin, Thorne ‘15

✦ Black holes respond to external perturbations which as we shall see 
extensively in the sequel is in certain cases well described by 
hydrodynamics.



The parable of nearly ideal fluids
✦ The evolution of the three widely disparate systems: the hot quark gluon 

plasma, the cold atom gas, and perturbed black holes, is extremely well 
described by hydrodynamics. 

✦ In fact, these three systems appear to be extreme examples of fluids with 
relatively low friction: the (shear) viscosity is minimized in these systems.
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Figure 2: The viscosity-entropy ratio for some common substances: helium, nitrogen and

water. The ratio is always substantially larger than its value in theories with gravity duals,

represented by the horizontal line marked “viscosity bound.”

experimentally whether the shear viscosity of these gases satisfies the conjectured bound.
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Gravity versus hydrodynamics

GRAVITY 

✴ Classical low energy theory 
describing dynamics on 
macroscopic scales. 

✴ A-priori not statistical, although 
black hole thermodynamics hints 
at some underlying structure of 
this kind. 

✴ Valid when curvature scales are 
large compared to the Planck 
scale. 

HYDRODYNAMICS 

✴ Classical low energy theory 
describing dynamics on 
macroscopic scales for systems in 
local but not global thermal 
equilibrium. 

✴ Intrinsically statistical and coarse-
grained. 

✴ Valid in a suitable low-energy 
limit, when variations are large on 
scale of mean free path. 



Black hole thermodynamics

✦ T is constant in thermal equilibrium. ✦ The surface gravity     is constant over 
the horizon of a stationary black hole.

dE = T dS +work terms dM =

1

8⇡
 dAH +work terms

✦ Energy conservation ✦ Total spacetime energy conservation

✦ Entropy is non-decreasing in any 
physical process (Boltzmann) 

✦ Area of the event horizon is non-
decreasing in any physical process 
(Hawking)

�S � 0 �AH � 0

Thermodynamic Laws Laws of Black hole 
mechanics





Precursor: The membrane paradigm
✦ Black hole entropy being related to the surface area suggests an effective 

model of the geometry in terms of the dynamics on the horizon surface. 

✦ Membrane paradigm: the internal dynamics of a black hole can be 
modeled effectively as a  membrane with electromechanical properties. 
The dynamics of Einstein’s equations allows determination of the response 
of the black hole to external disturbances. 

✦ The membrane paradigm for black holes was invented to demystify the 
characteristics of the black hole and to describe the associated physics as 
one would for “ordinary bodies”.

Damour ‘78; Price, Thorne ‘86

✦ However, puzzles abound…  

✴ non-relativistic, compressible fluid with negative bulk viscosity. 

✴ no systematic low energy limit



Hydrodynamics as an effective field theory

✦ Relativistic fluid dynamics is best thought of as an effective field theory for 
quantum systems in local, but not global thermal equilibrium. 

✦ The description in terms of fluid dynamics is valid when departures from 
equilibrium are on scales that are large compared to the characteristic 
mean free path of the underlying quantum dynamics. 

✦ Local domains of equilibrated 
fluid can be characterized by the 
local temperature/energy density 
and conserved charges. 

✦ Energy/charge flux exchanged 
across the domains: velocity field.

`mfp ⌧ L , tmfp ⌧ t



Axioms of Hydrodynamics I: Fields

✦ Hydrodynamics describes low-energy, near-equilibrium  fluctuations of an 
equilibrium Gibbsian density matrix on scales large compared to the 
characteristic mean free path.  

✦ The macroscopic description involves currents which capture energy-
momentum and charge transport                  (and entropy current      ). Tµ⌫ , Jµ

✦ The currents are functionals of the hydrodynamic fields, which are the 
intensive variables characterizing the density matrix and background 
sources.

✴  temperature and chemical potential 
and a flux vector (fluid velocity) 

✴ background metric and 
electromagnetic potential

T, µ, uµ, uµ uµ = �1

gµ⌫ , Aµ

Jµ
S



Axioms of Hydrodynamics II: Data

✴ Repackage the dynamical degrees of  freedom in a vector an scalar

✴ The currents of hydrodynamics are expressed as functionals of the 
hydrodynamical fields and the background sources.

2.1 The adiabaticity equation
sec:amotive

Consider a fluid characterized by normalized velocity field u

µ (with u

µ
uµ = �1), temperature

T and chemical potential µ moving in a background geometry M with metric gµ⌫ and a

background flavor gauge field Aµ which generically will be taken to be non-abelian.11 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1) eq:hydrofields

The fields {�µ
,⇤�} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2) eq:Tumuinvert

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current J

µ
S which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (2.17). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ⌘ {Tµ⌫

, J

µ
, J

µ
S , Gµ} . (2.3) eq:hydrocurrents

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4) eq:hfields

Then we can write for our currents CH = CH [ ] or more explicitly, for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

11 Generalizations to arbitrary number of flavour symmetries is straightforward.
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• currents

• fields

• constitutive 
relations

thermal vector thermal twist�µ =
uµ

T
, ⇤� ⇠ µ

T

Tµ⌫ , Jµ, Jµ
S



Axioms of Hydrodynamics III: Dynamics

✦ The dynamical content of hydrodynamics is the statement of conservation, 
modulo work done by sources and anomalies:

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H . (2.6) eq:hydroCons

Here, Fµ⌫ and Dµ denote the field-strength and gauge-covariant derivative associated with

Aµ while {Tµ?
H , J?H} are the covariant Lorentz and flavour anomalies respectively.12 The

center-dot “·” is reserved for gauge index contraction which we will never write explicitly.

The gauge-covariant derivative acts on tensors Xµ···⌫
⇢···� in a familiar fashion, viz.,

D↵X
µ···⌫

⇢···� = r↵X
µ···⌫

⇢···� + [A↵, X
µ···⌫

⇢···�] . (2.8) eq:CovDer

These equations which we term as the hydrodynamic Ward identities, together with rµJ
µ
S � 0

capturing the essence of the second law, complete the specification of the hydrodynamic

e↵ective field theory in the current algebra language.

The task of a hydrodynamicist is to provide these constitutive relations, order by order

in gradients of the fields  , subject to symmetry and second law requirements, cf., [2] for the

classic treatment. We will refer the reader to the vast literature on hydrodynamic constitutive

relations which have been computed (in certain cases up to the second order in the gradient

expansion); see [34, 35] for a partial summary of certain results in the past few years.13

While most analyses of the second law constraints are done by classifying first on-shell

independent data, as explained in §1 it is useful to work o↵-shell. To this end we want to

extend the statement of the second law, viz.,

9 J

µ
S [ ] : rµJ

µ
S � 0 , (2.9) eq:slaw

to a more amenable one which is agnostic of dynamics. The simplest way to proceed is

to use the fact that linear combinations of the equations of motion can be added to (2.9)

without a↵ecting the inequality [30]. All we need is appropriate Lagrange multipliers to

ensure that the vectorial energy conservation and the scalar charge conservation equations

can be combined with the gradient of the entropy current. The canonical choice is simply

12 If P[F ,R] is the anomaly polynomial, then the covariant anomalies are determined using the following

equations:

J?H
?1 ⌘

@P
@F

, ⌃?⌫
H µ

?1 ⌘ 2
@P

@Rµ
⌫
, Tµ?

H ⌘

1
2
r⌫⌃

?µ⌫
H . (2.7)

Here ⌃?µ⌫
H is the torque on the system due to Lorentz anomaly. We adopt a bold-face notation for di↵erential

forms. In general our notation follows that of [13, 14, 27] where the reader will find further details on the

conventions used herein. We will be more explicit when we solve the anomalous adiabaticity equation in §12.
13 These computations are typically done by fixing a fluid frame (e.g., in the Landau frame one demands

that the non-ideal parts of Tµ⌫ and Jµ are transverse to velocity). We will a-priori make no such assumptions

though at various stages of our analysis we will present results by making certain frame choices.

– 20 –

work term covariant anomalies

✦ These are effectively Ward identities for the one-point functions of the 
conserved currents in the fluctuating Gibbs density matrix. 

✦ The task of a hydrodynamicist is to specify the currents as a functional of the 
hydrodynamic fields, consistent with the dynamics, constructing a current 
algebra of sorts, but…



Axioms of Hydrodynamics IV: Constraints

✦ From a macroscopic, statistical viewpoint, one has to demand that a local 
form of the second law of thermodynamics is upheld. 

✦ This is required to be upheld on-shell, and complicates the analysis of 
hydrodynamics, for without it the current algebra can be analyzed purely in 
terms of representation theory. 

✦ Note that usually one only requires the existence of some entropy current.

✦ From a microscopic viewpoint the entropy current is rather mysterious; it is 
not associated with any underlying symmetry per se.  

✦ Dealing with density matrices, currents rather than effective actions, etc., 
pose many questions for a first principles formulation. 

9 Jµ
S [ ]: 8  

on-shell

rµJ
µ
S [ ] � 0



Neutral fluids

✦ A neutral fluid is characterized by its energy-momentum stress tensor

⌘, ⇣ � 0

✦ The second law forces some of the transport data to satisfy some 
inequalities, e.g., the viscosities are non-negative definite (friction)

Pµ⌫ = gµ⌫ + uµ u⌫

spatial metric shear vorticity
expansion

acceleration

rµu⌫ = �(µ⌫) + ![µ⌫] +⇥Pµ⌫ � uµ a⌫

Tµ⌫ = ✏(T )uµ u⌫ + p(T )Pµ⌫ � ⌘(T )�µ⌫ � ⇣(T )⇥Pµ⌫ + · · ·

Jµ
S = s uµ + · · ·



Neutral fluids entropy production

⌘, ⇣ � 0

✦ Entropy produced during the fluid flow is determined by viscosities:

✦ For the QGP and cold atom system data suggests that shear viscosity satisfies

rµJ
µ
S = ⌘ �2 + ⇣ ⇥2 + · · ·

⇡ 1014cp⌘ ⇡ ~
4⇡ kB

s

✦ But the right measure of idealness is relative rate of entropy production:

✦ For more common systems the shear viscosity is actually rather small

⌘
water

⇡ 1cp , ⌘
honey

⇡ 104 cp , ⌘
peanut butter

⇡ 2.5⇥ 105cp

rµJ
µ
S ⇠ d log s

dt
=

⌘

s
�2

+

⇣

s
⇥

2



Gravity & Fluids: The holographic fluid

✦ The holographic AdS/CFT correspondence relates the dynamics of 
strongly coupled, planar field theories to classical gravitational dynamics. 

✦ Since the low energy dynamics of any interacting quantum system in the 
near-equilibrium regime is given by hydrodynamics, one should be able to 
use gravity to derive the hydrodynamic equations governing such 
holographic field theories. 

✦ Bonus: universality. The dynamics of energy-momentum flow is universal in 
a large class of holographic field theories, because of underlying 
gravitational description.



The gauge/gravity correspondence

String theory which includes quantum gravity is exactly equivalent (or 

dual) to a non-gravitational quantum theory (gauge theory). 

❖ The quantum theory lives on the 
boundary of the spacetime 
where gravity reigns. 

❖ All the gravitational action is 
captured completely on the 
boundary. 

❖ Boundary dynamics 
holographically captures 
gravitational physics.

Maldacena ‘97



The fluid/gravity correspondence
❖ The fluid/gravity correspondence establishes a correspondence between 

Einstein’s equations with a negative cc and those of relativistic conformal fluids. 

Bhattacharyya, Hubeny, Minwalla, MR ‘07

this statement we are assuming that we have performed a Kaluza-Klein reduction of the

Type IIB supergravity fields over the compact S5 leading to an infinite tower of massive
fields coupled to the gravitational degrees of freedom.

The general structure of this effective five-dimensional lagrangian is not only complicated

but it also depends on the details of the internal space. Were one to replace the S5 by a

Sasaki-Einstein five manifold X5 one would end up with a different effective description

corresponding to a different field theory fixed point in four dimensions. However, there is a

universal sub-sector of Type IIB supergravity which we can focus on – this is just the sector
of solely gravitational dynamics in AdS5 i.e., we set all the Kaluza-Klein harmonics of the

graviton modes on S5 and other matter degrees of freedom consistently to zero. We will

restrict attention to this sub-sector which corresponds in the dual field theory to focussing

on just the dynamics of the energy-momentum tensor.

4.1 The universal sector: gravity in AdSd+1

As discussed above we will concentrate on pure gravitational dynamics in asymptotically

AdS spacetimes. This in particular allows us to work without loss of generality in arbitrary

dimensions as the form the gravitational action is independent of the number of spacetime
dimensions. Let us therefore consider starting with a string or M-theory background of

the form AdSd+1 ×X where X is some compact internal manifold ensuring that one has a

consistent string/M-theory vacuum.21 The universal sector of this theory which we focus on

is the dynamics of Einstein gravity with a negative cosmological constant, i.e.,

Sbulk =
1

16πG(d+1)
N

∫
dd+1x

√
−G (R − 2 Λ) . (4.1)

With a particular choice of units (RAdS = 1) Einstein’s equations are given by22

EMN = RMN − 1

2
GMNR − d(d − 1)

2
GMN = 0

=⇒ RMN + d GMN = 0, R = −d(d + 1).
(4.2)

Of course the equations (4.2) admit AdSd+1 solutions, which correspond to the vacuum

state of the dual field theory. Recall that global AdSd+1 has as its boundary the Einstein

static universe, R×Sd−1. We are free to consider other choices of boundary manifolds Bd; for

instance to discuss field theory on Minkowski space Rd−1,1 we would focus on the Poincaré
patch of AdSd+1. Given a metric g on the boundary Bd we have the bulk geometry to zeroth

21We will be interested in d > 2. As discussed in [66, 69] there is no interesting hydrodynamic limit for a
1+1 dimensional CFT. A conserved traceless stress tensor is simply made up of left and right moving waves
which propagate with no dissipation.

22We use upper case Latin indices {M, N, · · · } to denote bulk directions, while lower case Greek indices
{µ, ν, · · · } refer to field theory or boundary directions. Finally, we use lower case Latin indices {i, j, · · · } to
denote the spatial directions in the boundary.

24

Einstein’s eqn with negative 
cosmological constant (cc)

Relativistic ideal fluid equations 
and beyond… 

✦ Given any solution to the hydrodynamic equations, one can construct, in a 
gradient expansion, an approximate inhomogeneous, dynamical black hole 
solution in an asymptotically AdS spacetime. 

(✏+ p)⇥+ uµrµ ✏+ · · · = 0

P µ
↵ rµp+ (✏+ p) a↵ + · · · = 0



Long-wavelength in gravity
✦  How do  we `derive‘  fluid dynamics from gravity? 

✦ Intuition: perturbations of planar AdS black holes reveal long-wavelength 
quasinormal modes having hydrodynamic character:

scalar/sound channel vector/shear channelRe(!) Re(!)

Im(!)Im(!)

!(k) ! 0 as k ! 0

Horowitz, Hubeny ’98; Policastro, Son, Starinets ‘02



Nonlinear fluids from gravity

Fig. 1: Penrose diagram of the uniform black brane and the causal structure of the spacetimes dual to
fluid mechanics illustrating the tube structure. The dashed line in the second figure denotes
the future event horizon, while the shaded tube indicates the region of spacetime over which
the solution is well approximated by a tube of the uniform black brane.

βi(xµ) are small, G(0) is “tubewise” well approximated by a boosted black brane. Conse-
quently, for slowly varying functions b(xµ), βi(xµ), it might seem intuitively plausible that

(4.11) is a good approximation to a true solution of Einstein’s equations with a regular event

horizon. In [4] this intuition is shown to be correct, provided the functions b(xµ) and βi(xµ)

obey a set of equations of motion, which turn out simply to be the equations of boundary

fluid dynamics.

Einstein’s equations, when evaluated on the metric G(0), yield terms which involve deriva-
tives of the temperature and velocity fields in the boundary directions (i.e., (xi, v) ≡ xµ)

which we can organise order by order in a gradient expansion. Note that since G(0) is an

exact solution to Einstein’s equations when these fields are constants, terms with no deriva-

tives are absent from this expansion. It is then possible to show that field theory derivatives

of either ln b(xµ) or βi(xµ) always appear together with a factor of b. As a result, the con-

tribution of n derivative terms to the Einstein’s equations is suppressed (relative to terms
with no derivatives) by a factor of (b/L)n ∼ 1/(T L)n. Here L is the length scale of varia-

tions of the temperature and velocity fields in the neighbourhood of a particular point, and

T is the temperature at that point. Therefore, provided L T ≫ 1, it is sensible to solve

Einstein’s equations perturbatively in the number of field theory derivatives.29 Essentially

we are requiring that
∂uµ

T
,
∂ log T

T
∼ O (ε) ≪ 1 (4.12)

29Note that the variation in the radial direction, r, is never slow. Although we work order by order in
the field theory derivatives, we will always solve all differential equations in the r direction exactly. This
should be contrasted with the holographic renormalization group which is a perturbative expansion in the
Fefferman-Graham radial coordinate [99].

29

✴ Treat the light quasinormal 
modes as moduli of the 
gravitational problem. 

✴ Hydrodynamics is the collective 
field theory of these modes and 
can be constructed 
systematically in a perturbation 
expansion. 

✴ Intuition: patch together 
different bulk black hole 
spacetimes, along tubes of 
locally equilibrated fluid.



Black holes as lumps of fluid

✦ Black holes really behave as lumps 
of fluid in the low energy limit. 

✦ In the fluid/gravity correspondence, 
the fluid lives at the end of the 
universe, on the asymptotic 
boundary of the spacetime where 
the black hole resides. 

✦ Here the fluid is a hologram, 
honestly capturing all the low 
energy physics of the entire 
geometry.



Connections to physical systems: QGP

✦ The quark gluon plasma created in heavy ion collisions above the 
deconfinement temperature of QCD, whilst not quite a conformal fluid, 
appears to share qualitative features. 

✦ Fluid/gravity transport coefficients have been used successful in 
hydrodynamic models for the evolution of this plasma.

⌘ =
⇡2

8
N2 T 3 =) ⌘

s
=

1

4⇡

⌧ =

2� log 2

⇡ T
⌘  =

2 ⌘

⇡ T
�1 =

2 ⌘

⇡ T �2 =

⌘ log 2

2⇡T
�3 = 0

u↵r↵�µ⌫ Cµ↵⌫� u
↵ u� �µ↵�

↵
⌫ �µ↵!

↵
⌫ !µ↵!

↵
⌫

Bhattacharyya, Hubeny, Minwalla, MR ’07;  Baier, Romatschke, Son, Starinets, Stephanov ‘07

⇣ = 0

conformal symmetry



Connections to physical systems: Cold Atoms

✦ The cold atom systems are non-relativistic compressible fluids, but their 
hydrodynamic descriptions can also be obtained from holography. 

✦ The simplest modeling of these systems involves deforming the standard 
AdS/CFT correspondence to situations with non-relativistic (Galilean) 
conformal symmetry. 

✦  Once again study of black holes in these geometric backgrounds allows 
computation of hydrodynamic transport coefficients in these systems.  

✦ Eg., shear viscosity again takes on the universal value.

Herzog, MR, Ross  ’08 
MR, Ross, Son, Thompson ‘08

Son; McGreevy, Balasubramanian 
Maldacena, Martelli, Tachikawa          ’08 
Adams, McGreevy, Balasubramanian



Entropy current and second law

✦ In the gravitational description, the entropy current which was a 
consequence of the statistical description, has a clean interpretation: it is 
simply the pull-back of the area form on the horizon onto the boundary. 

✦ The classical area theorem in general relativity, then guarantees that the 
entropy current satisfies the second law of thermodynamics.

Bhattacharyya, Hubeny, Loganayagam, Mandal, Minwalla, Morita, MR, Reall ‘08

✦ NB: this picture suggests a way to tackle a notorious gravitational problem — 
definition of black hole entropy in higher derivative theories beyond equilibrium.

✦ So while the conserved currents and the dynamics happens on the 
boundary, we need to pass into the bulk and access the horizon to see the 
physics of entropy production and dissipation.



Lessons for hydrodynamics

✦ The fluid/gravity correspondence provides an excellent environment for 
analyzing structural properties of fluid dynamics. 

✦ We have learnt from various investigations that: 

✴ the effective field theory is at best asymptotic 

✴ second law imposes non-trivial equality relations on transport coefficients  

✴ quantum anomalies manifest themselves in transport (and can be amplified in a 
thermal medium) Son, Surowka ‘08 Jensen, Loganayagam, Yarom ’12-'13

✦ Can one use this intuition to define an autonomous theory of 
hydrodynamics? 

Banerjee et. al, Jensen et. al. ‘12



Convergence of hydrodynamic expansion

✦ The hydrodynamic effective field theory should be an asymptotic expansion with zero 
radius of convergence.  

✦ In the fluid/gravity construction this behaviour follows from the fact that black holes have 
non-hydrodynamic ``massive” quasinormal modes. 

✦ Borel re-summation of the perturbation series should lead to a prediction for the location 
of the non-hydrodynamic quasinormal mode.

Heller, Janik, Witaszczyk ‘13

Bhattacharyya, Hubeny, Minwalla, MR, ‘07

✦ Explicit analysis in gravity for a particular flow (boost invariant Bjorken flow) shows 
excellent agreement between the re-summed answer and the explicit determination 
of the first non-hydrodynamic quasinormal mode in the black hole background.



An autonomous theory of hydrodynamics

✦ Challenges for constructing an effective field theory for hydrodynamics: 

✴ no obvious effective action (dissipative system); instead current algebra 

✴ origins of entropy current somewhat mysterious; no symmetry principle 

✴ dynamics is equivalent to current conservation 

✴ requires understanding mixed states or density matrices (how to 
implement Wilsonian RG)?

Loganayagam, Haehl, MR ’13-‘15Bhattacharyya, Bhattacharya, MR ‘12

Haehl, MR ‘13

✦ Answering this question will also illuminate some outstanding issues in 
gravitational dynamics.



Density matrices and doubling
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Density matrices & equilibrium dynamics

✦  Equilibrium QFT is well understood in this thermofield double, or 
Schwinger-Keldysh construction (useful for computing real time correlation 
functions). 

✦ The gravitational analog for equilibrium dynamics is the eternal black hole 
spacetime which constructs the Hartle-Hawking thermofield state (cf., 
ER=EPR).

Israel ’76; Maldacena ‘01

✦ What is unclear is what classes of interactions, usually called Feynman-
Vernon influence functionals, are admissible?  

✦ Hydrodynamics accords a perfect opportunity to formulate a Wilsonian 
construction in background density matrices. 

✦ Take some cues from holography….
Heemskerk, Polchinski;  Nickel, Son;  Faulkner, Liu, MR ‘11



Towards a hydrodynamic effective field theory

✦ Understand the constraints from the second law on hydrodynamic 
constitutive relations. 

✴ Chart out the space of constitutive relations that do not lead to entropy 
production: these are adiabatic constitutive relations. ✓ 

✴ Understand the constraints on dissipative transport and terms forbidden by 
the second law of thermodynamics. ✓

Loganayagam, Haehl, MR ’13-‘15

✦ Construct effective actions for the adiabatic sector.  ✓ 

✦ This can be done once we double the degrees of freedom, and provides 
insight into the origins of the entropy current.  ✓ 

✦ Effective actions for dissipation…   ⍻

Bhattacharyya ’13-‘14



Eightfold classification of hydrodynamic transport

Fig. 1: The eightfold way of hydrodynamic transport. fig:eightfold

ground sources, {ḡµ⌫ , Āµ}, which morally speaking appear to be a proxy for the the Schwinger-

Keldysh partners of the basic sources. Furthermore, this doubling of sources comes with an

interesting new gauge symmetry – U(1)T KMS-flavor invariance, with an associated gauge

field A(T)
µ!

In the thermofield construction one has sources for the left (L) and right (R) degrees of

freedom; these are specific linear combinations of the sources {gµ⌫ , Aµ} and {ḡµ⌫ , Āµ}. The

necessity to double of the degrees of freedom, whilst curious for adiabatic transport, has al-

ready been encountered previously in attempts to construct e↵ective actions for anomalous

hydrodynamic transport, which forms a special case, in [27]. What is really intriguing is the

gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with the di↵eomor-

phism and gauge invariance forms the symmetries of the e↵ective action.9 The latter act

canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially. All fields

carry U(1)T charges, with the gauge transformation acting as a di↵eomorphism or flavour

gauge transformation in the direction of �µ
,⇤�. In addition, ḡµ⌫ and Ā further undergo

transformations depending on the physical fields {�µ
,⇤�, gµ⌫ , Aµ}. The Bianchi identity

9 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [14].

– 15 –

Loganayagam, Haehl, MR ’14-‘15



Adiabatic fluids in holography

✦ There is ample evidence for the eightfold classification in holography (also 
in kinetic theory). 

✦ At second order, for Weyl invariant neutral fluids, we find

• 5 transport coefficients: 2 HS , 1 HS, 1 D,  1 B 

• Rather surprisingly,  in holographic models the B and D terms vanish.

• This allows us to write down a simple effective action to compute non-
viscous transport (up to second order)

• Vanishing of D term ⇒ holographic fluids are more ideal than expected!

L
conformal

⇠ N2
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T 2
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A new symmetry from the eightfold way

✦ The sevenfold adiabatic classification includes constitutive relations which 
do not admit a simple Lagrangian description (e.g., A,B,C).  

✦ However, there exists a framework which has an enhanced symmetry and 
captures all of the adiabatic transport in a single Lagrangian density.

• the background sources

• the fluid fields

• partners for the sources

• KMS photon

We have in addition an associated holonomy field ⇤(T)

� and a U(1)T chemical potential ⇤(T)

� +

�µA(T)
µ.

The di↵eomorphism and flavor transformations on the fields in an obvious manner. On

the contrary U(1)T acts nonlinearly and mixes with flavor and di↵eomorphism transforma-

tions:

• On all fields, U(1)T acts as a longitudinal di↵eomorphism and flavor gauge transforma-

tion along {�µ
,⇤�}.

• In addition, on {g̃µ⌫ , Ãµ}, there is a further shift by {�
B
gµ⌫ , �BAµ}.

• The field A(T)
µ transforms as a connection for U(1)T and ⇤(T)

� acts like a gauge transfor-

mation parameter, viz., ⇤(T)

� + ��A(T)
� is invariant.

It is worth noting that from a Schwinger-Keldysh point of view, these transformation rules

are not the most natural ones. It would have been more natural to retain the abelian part

of the non-diagonal di↵eomorphism and flavour gauge symmetries along B. We anticipate

that the di↵erence is due to the fact that the natural basis of sources chosen here is not the

canonical Schwinger-Keldysh choice. In fact it seems plausible to conjecture that

g

R
µ⌫ = gµ⌫ ,

A

R
µ = Aµ

g

L
µ⌫ = gµ⌫ � g̃µ⌫ � �µ A

(T)
⌫ � �⌫ A

(T)
µ ,

A

L
µ = Aµ � Ãµ � (⇤� + �↵

A↵) A
(T)

µ

(15.1) eq:skLTdef

as the appropriate identifications for the right (R) and left (L) sources respectively. We will

however not flesh this out in great detail, since it (a) appears much cleaner in the formalism

we introduce to write down U(1)T invariant Lagrangians and (b) the connections with the

Schwinger-Keldysh construction are being deferred to a separate publication [31] anyway. For

the present the reader may therefore take our prescription merely as a technical tool to proof

the completeness of our eightfold classification without worrying about the profound physical

consequences.

15.2 The fields and their transformation properties
sec:fieldsLT

Let us start by writing down the extended set of fields and transformation properties based

on the above discussion. We have the following fields which form the building blocks for the

master Lagrangian:

1. the sources {gµ⌫ , Aµ},

2. the fluid fields {�µ
,⇤�},

3. partners for the sources {g̃µ⌫ , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,
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as the appropriate identifications for the right (R) and left (L) sources respectively. We will

however not flesh this out in great detail, since it (a) appears much cleaner in the formalism

we introduce to write down U(1)T invariant Lagrangians and (b) the connections with the

Schwinger-Keldysh construction are being deferred to a separate publication [31] anyway. For

the present the reader may therefore take our prescription merely as a technical tool to proof

the completeness of our eightfold classification without worrying about the profound physical

consequences.

15.2 The fields and their transformation properties
sec:fieldsLT

Let us start by writing down the extended set of fields and transformation properties based

on the above discussion. We have the following fields which form the building blocks for the

master Lagrangian:

1. the sources {gµ⌫ , Aµ},

2. the fluid fields {�µ
,⇤�},

3. partners for the sources {g̃µ⌫ , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,
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• On all fields, U(1)T acts as a longitudinal di↵eomorphism and flavor gauge transforma-

tion along {�µ
,⇤�}.
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of the non-diagonal di↵eomorphism and flavour gauge symmetries along B. We anticipate

that the di↵erence is due to the fact that the natural basis of sources chosen here is not the

canonical Schwinger-Keldysh choice. In fact it seems plausible to conjecture that

g

R
µ⌫ = gµ⌫ ,

A

R
µ = Aµ

g

L
µ⌫ = gµ⌫ � g̃µ⌫ � �µ A

(T)
⌫ � �⌫ A

(T)
µ ,

A

L
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as the appropriate identifications for the right (R) and left (L) sources respectively. We will

however not flesh this out in great detail, since it (a) appears much cleaner in the formalism

we introduce to write down U(1)T invariant Lagrangians and (b) the connections with the

Schwinger-Keldysh construction are being deferred to a separate publication [31] anyway. For

the present the reader may therefore take our prescription merely as a technical tool to proof

the completeness of our eightfold classification without worrying about the profound physical

consequences.

15.2 The fields and their transformation properties
sec:fieldsLT

Let us start by writing down the extended set of fields and transformation properties based

on the above discussion. We have the following fields which form the building blocks for the

master Lagrangian:

1. the sources {gµ⌫ , Aµ},

2. the fluid fields {�µ
,⇤�},

3. partners for the sources {g̃µ⌫ , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,
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4. an additional U(1)T gauge field A(T)
µ and its holonomy field ⇤(T)

� .

When necessary we will collectively refer to these fields as  T. The symmetries that any

e↵ective Lagrangian needs to preserve are diagonal di↵eomorphisms/flavor gauge transfor-

mations (acting equally on sources and their partners) and in addition the abelian U(1)T
thermal shift symmetry (which we claim enforces consistency of Feynman-Vernon terms).

Let us now record the transformation rules for the fields  T. We denote the trans-

formation parameters of di↵eomorphism, flavor, and U(1)T transformations by {⇠,⇤,⇤(T)}
respectively. In terms of these independent parameters, U(1)T has a twisted action on the

various fields. This is because fields transform non-linearly under it and part of the U(1)T
transformation involves di↵eomorphisms and flavour gauge transformations. We will deal

with the non-trivial mixing between di↵eomorphism and flavor transformations on the one

hand and U(1)T on the other hand using the following trick: instead of using the origi-

nal transformation parameters, we will move to a new basis of transformation parameters

{⇠̄µ, ⇤̄, ⇤̄(T)} which generate combinations of the original transformations which do not mix

with each other. The original transformation parameters are related to these via

⇠

µ ⌘ ⇠̄

µ � (⇤̄(T) + ⇠̄

� A(T)
�)�

µ
, ⇠̄

µ ⌘ ⇠

µ + (⇤(T) + ⇠

� A(T)
�)�

µ
, (15.2a)

⇤ ⌘ ⇤̄� (⇤̄(T) + ⇠̄

� A(T)
�)⇤� , ⇤̄ ⌘ ⇤+ (⇤(T) + ⇠

� A(T)
�)⇤� , (15.2b)

⇤(T) ⌘ ⇤̄(T) + (⇤̄(T) + ⇠̄

� A(T)
�)�

⌫ A(T)
⌫ , ⇤̄(T) ⌘ ⇤(T) � (⇤(T) + ⇠

� A(T)
�)�

⌫ A(T)
⌫ . (15.2c)

We have given the translation between the two sets of gauge transformation parameters

{⇠µ,⇤,⇤(T)} and {⇠̄µ, ⇤̄, ⇤̄(T)} in both forward and reverse directions to facilitate translation

between them in the future. A useful relation in converting between these parameters is

⇤(T) + ⇠

� A(T)
� = ⇤̄(T) + ⇠̄

� A(T)
� .

The transformation rules: Armed with this we are now in a position to write down the

explicit transformations of various fields which takes a simple form in terms of the untwisted

transformation parameters {⇠̄µ, ⇤̄, ⇤̄(T)}:77

�

X
gµ⌫ ⌘ £⇠̄gµ⌫ = Dµ⇠̄⌫ +D⌫ ⇠̄µ ,

�

X
Aµ ⌘ £⇠̄Aµ + [Aµ, ⇤̄] + @µ⇤̄ = Dµ

�

⇤̄+ ⇠̄

⌫
A⌫

�

+ ⇠̄

⌫
F⌫µ ,

�

X
�µ ⌘ £⇠̄�

µ = ⇠̄

⌫
D⌫�

µ � �⌫
D⌫ ⇠̄

µ
,

�

X
⇤� +A⌫ �X�

⌫ ⌘ ⇠̄

µ
�

B
Aµ � �µ

Dµ

�

⇤̄+ ⇠̄

⌫
A⌫

�

+ [⇤� + ��
A�, ⇤̄+ ⇠̄

⌫
A⌫ ] .

(15.3) eq:TactgA

In terms of the original transformation parameters {⇠µ,⇤,⇤(T)}, these transformations

would mix di↵eomorphism and flavor transformations with U(1)T. The advantage gained

from working with {⇠̄, ⇤̄, ⇤̄(T)} is an untwisting of U(1)T such that {gµ⌫ , Aµ,�µ
,⇤�} are blind

77 We denote the derivative operator which covariantly transforms under di↵eomorphisms, flavour gauge,

and U(1)T transformations by Dµ in what follows. It is defined by appropriately extending (2.8) to incorporate

U(1)T transformations as well.
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Schwinger-Keldysh like

U(1)T: macroscopic 
manifestation of KMS 
invariance



The Eightfold Lagrangian

✦ The adiabatic constitutive relations can be derived in one swoop from a 
Lagrangian density that is invariant under diffeomorphisms, flavour gauge 
transformations and the KMS flavour U(1)T symmetry.

The rest of the argument can be made as mathematically precise as desired.

Fortunately, we are with some assumptions able to complete the analysis and argue that

even Class HV terms are under control, by constructing an e↵ective action for the entire

adiabatic constitutive relations.

thm:classLT Theorem 2. The eightfold classes of adiabatic hydrodynamic transport can be obtained from

a scalar Lagrangian density LT

h

�µ
,⇤�, gµ⌫ , Aµ, g̃µ⌫ , Ãµ,A(T)

µ

i

:

LT =
1

2
T

µ⌫
g̃µ⌫ + J

µ · Ãµ + (J�
S + �⌫T

⌫� + (⇤� + �⌫
A⌫) · J�)A(T)

� (14.10)

As indicated the Lagrangian density depends not only on the hydrodynamic fields and the

background sources, but also the ‘Schwinger-Keldysh’ partners of the sources {g̃µ⌫ , Ãµ} and a

new KMS-flavour gauge field A(T)
µ. This Lagrangian is invariant under di↵eomorphisms and

gauge transformations73 and under U(1)T which acts only on the sources as a thermal di↵eo-

morphism or gauge transformation along B. The U(1)T gauge invariance implies a Bianchi

identity, which is nothing but the adiabaticity equation (2.11). Furthermore, a constrained

variational principle for the fields {�µ
,⇤�} ensures that the dynamics of the theory is simply

given by conservation.

Given the Lagrangian LT we are essentially done, since all we need to do is to show that

by picking appropriate scalar densities in the extended space of fields gives rise to a solution

in one of the aforementioned eight classes. This is relatively straightforward as we shall see

in the next section. What is less apparent at first sight is the rationale for the existence of

the extended set of degrees of freedom and the extra U(1)T symmetry. The reader might

take these as part of our construction for the present, though we believe that the Class LT

story we are about to present hints at some fundamental truisms that ought to be valid in

non-equilibrium dynamics of QFTs. references?

Before presenting the detailed construction of LT in §15, we now illustrate our eightfold

classification for various fluid systems.

14.2 Example: Charged parity even fluids
sec:counting

To exemplify our general story we turn to an example that has been discussed in some detail

in [15], viz., a charged parity-even fluid. Neutral fluids are clearly a subset obtained by

setting the chemical potential and charge density to zero. We will describe first outline the

classification in general and then indicate how to special to Weyl invariant case (which has

the advantage of being able to be tested holographically).

We begin by counting the total number of transport coe�cients: there is one frame

invariant scalar (for definiteness, let us take it to be in P

µ⌫ part of the energy momentum

tensor), one frame invariant transverse vector (for definiteness, let us take it to be in the

73 Anomalies if present are dealt with using the inflow mechanism [54]. LT then includes a topological theory

in d+ 1 dimensions coupled to the physical d-dimensional QFT (at the boundary/edge).
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✦ The U(1)T symmetry appear to ensure that the influence functionals which 
are allowed in the Schwinger-Keldysh construction respect the second law. 

✦ A complete map between the Schwinger-Keldysh construction and the 
picture involving the partner sources and KMS photon is being developed, 
but there is a heuristic that is rather suggestive….



Haehl, Loganayagam, MR  (wip)

A gravitational heuristic for KMS flavour invariance

background 
sources

partners for 
the sources

KMS photon

Schwinger-Keldysh like construction, with KMS photon ensuring consistency 
with second law (macroscopic manifestation of KMS conditions).



Gravity & Hydrodynamics

✦ The interplay between gravity and hydrodynamics has been quite enriching 
for both subjects. 

✦ We have been able to compute explicit transport  data at strong coupling for 
an interesting (perhaps exotic) class of QFTs. 

✦ More importantly, aided and abetted by intuition borrowed from the fluid/
gravity correspondence we have succeeded in giving a complete 
classification for hydrodynamic transport. 

✦ In the process have discovered a new symmetry principle which guarantees 
entropy conservation. 



Gravity & Hydrodynamics

✦ The story is far from complete…. 

✴ Understanding the implications of the KMS gauge symmetry? 

✴ Dissipative effective actions? 

✴ Implications for black hole physics and spacetime emergence? 

✴ Connections to paradigms such as ER=EPR? 

✴ Holography and non-equilibrium (beyond hydro)?





Thank You! 



Viscosity data for QGP and cold atoms
string theory conjecture for the minimum ratio, Eq. 1. Our estimates of the viscosity suggest
that a strongly interacting Fermi gas in the normal fluid regime (above 0.8 EF) is a nearly perfect
fluid.
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Figure 5: Estimated ratio of the shear viscosity to the entropy density. Dotted line shows the string theory conjecture [24]
for the minimum ratio, Eq. 1.
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Fig. 15. Figure from Ref.31 which shows how elliptic flow depends on shear viscosity. The theory
curves are most dependable for pT <∼ 1.5GeV and should be compared to the “non-flow corrected”
data. The Glauber and CGC initial conditions have different eccentricities as described in the text.

where the overall constant is adjusted to reproduce the multiplicity in the event.
The simulations assume Bjorken boost invariance with the ansatz

e(τ,x⊥, η) ≡ e(τ,x⊥) , (111)

uµ(τ,x⊥, η) = (uτ , ux, uy, uη) = (uτ (τ,x⊥), ux(τ,x⊥), uy(τ,x⊥), 0) . (112)

In cartesian coordinates uz = uτ sinh(ηs) and ut = uτ cosh(ηs). The calcula-
tions typically assume zero transverse flow velocity at the initial time τo

ux(τo,x⊥) = uy(τo,x⊥) = 0 , uτ (τo,x⊥) = 1 . (113)
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Horizon dual to a fluid flow

Adams, Chesler, Liu ‘13



D-branes and membranes
✦ In classical gravity one can explore the hypersurface dynamics in various 

regimes of charged black branes. 

Brattan, Camps, Loganayagam, MR ’11 
Marolf, MR ’12 
Emparan, Hubeny, MR ’13 
Erdmenger, MR, Steinfurt, Zeller ‘14

✦ Asymptotic region: Blackfold fluid with 
features described earlier. 

✦ Throat region: Conformal fluid dual to 
AdS geometries. Low energy limit of a 
QFT. 

✦ Rindler region: incompressible fluid

✦ Monitor the variation of transport properties of the fluid across the regimes: 
transport coefficients are pretty much determined by the throat dynamics.

asymptotically flat  
blackfold regime

AdS conformal 
fluid

Incompressible 
Rindler fluid


