Studying challenging theories with the superconformal bootstrap

Christopher Beem ${ }^{\dagger}$
Institute for Advanced Study

connected to:
1304.1803, 1306.3228, 1312.5344, 1404.1079, 1408.6522, 1412.7541, 150X.XXXX
with various subsets of:
M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, B. C. van Rees, A. Sen

February 19, 2015

\dagger Supported by the Frank and Peggy Taplin Fellowship

Quantum field theory

Quantum field theory is ubiquitous in modern theoretical physics (and mathematics).

However, quantum field theory is not a technology - can't just take it off the shelf and turn the crank.

This is more than a technical problem. There are hints that we are missing something significant.

Fields, Lagrangians, path integrals...

QFT is usually formulated as a theory of quantum fields:

$$
\varphi(x), \quad \psi_{\alpha}(x), \quad A_{\mu}(x), \quad \ldots,
$$

Write a Lagrangian (subject to some conditions), compute path integral:

$$
\begin{gathered}
\mathcal{L}[\varphi]=\partial_{\mu} \varphi \partial^{\mu} \varphi+m^{2} \varphi+g^{2} \varphi^{4}+\ldots \\
Z=\int[D \varphi] e^{\frac{i}{\hbar} S}, \quad S=\int d^{D} x \mathcal{L}[\varphi(x)] .
\end{gathered}
$$

Many subtleties (regularization, renormalizability), but the story is basically established and useful.

Disclaimer: In this talk, QFT \equiv Lorentz-invariant, unitary QFT

Fields, Lagrangians, path integrals...

So $\{$ quantum field theories $\}=\{(U V$ complete $)$ Lagrangians $\}$?

 007^{-7}

Duality: Some theories admit multiple Lagrangian descriptions.
strongly coupled catfish
weakly coupled catfish

weakly coupled goose
strongly coupled goose
E.g., Electic-Magnetic duality in $\mathcal{N}=4$ super Yang-Mills (+ many more...)

Duality connects to deep mathematics
Mirror symmetry (2d)
Geometric Langlands (4d) [Gukov; Kapustin; Witten]

Fields, Lagrangians, path integrals...

So $\{$ quantum field theories $\}=\{$ Lagrangians $\} /$ Duality

Lagrangians like coordinate charts?

 007

Non-Lagrangian theories: some theories seem to admit no Lagrangian description.

Existence deduced indirectly, often using decoupling limits of string/M-theory. Such theories pose a serious conceptual challenge

In the rest of this talk, I'm going to describe a conservative approach to understanding a particularly interesting class of non-Lagrangian theories using algebraic methods.

$(2,0)$ theory in $d=6[$ [Seiberg (1996)]

No (interacting) continuum Lagrangian QFTs in $d>4$ dimensions.
Nevertheless, six-dimensional interacting QFTs exist.

Conformally invariant:
$S O(5,1) \rightarrow S O(6,2)$
Maximally supersymmetric: $S O(6,2) \rightarrow \operatorname{OSp}(8 \mid 4)$

Holographic dual description for $N \rightarrow \infty$. Can't compute $1 / N$ corrections.
$(2,0)$ theory in $d=6{ }_{[\text {Seiberg (1996)] }}$

These theories appear to play be fairly important:

- No superconformal symmetry in $d>6$ [Nahm (1978)].
(Speculation: no interacting QFT in $d>6$?).
- The "theory of M5 branes" (what is M-theory?)
- $d \leqslant 4$ landscape populated by compactifications.

Explains duality in lower dimensions.

"Explaining" duality in four dimensions [witten (1995)]

$(2,0)_{N}$ on $\mathbb{R}^{4} \times T^{2} \quad \xrightarrow{\mathrm{IR}} \quad S U(N) \mathcal{N}=4 \mathrm{SYM}$ on \mathbb{R}^{4}
Modular parameter of $T^{2} \longrightarrow \quad \tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi}$.

Modular invariance

$$
\longrightarrow \quad S \text {-duality }
$$

So what is the $(2,0)_{N}$ theory?

Liberal: Low energy limit of N coincident M5 branes.
Conservative: List of local operators with superconformally-covariant correlation functions.

Moderate: Mostly conservative, but occasionally cross the aisle.

The conservative approach

Consequences of conformal symmetry

Operators in conformal families: $\left\{\mathcal{O}_{\Delta, \ell}, \partial \mathcal{O}_{\Delta, \ell}, \partial^{2} \mathcal{O}_{\Delta, \ell}\right\}$
Algebraic structure: convergent $O P E$

Coefficients functions fixed by three-point functions of primaries.
n-point functions determined from spectrum and three-point functions (CFT data)

Consequences of conformal symmetry

$$
\begin{aligned}
u & =\frac{x_{12}^{2} x_{34}^{2}}{x_{14}^{2} x_{23}^{2}} \\
v & =\frac{x_{13}^{2} x_{24}^{2}}{x_{14}^{2} x_{23}^{2}}
\end{aligned}
$$

CFT data is nontrivially constrained by crossing symmetry:

$$
\sum_{\mathcal{O}_{j}} c_{i i j}^{2} G_{\Delta_{j}, \ell_{j}}(u, v)=\sum_{\mathcal{O}_{j}} c_{i i j}^{2} G_{\Delta_{j}, \ell_{j}}(v, u)
$$

One equation for each four-point function.
Conformal bootstrap: just solve these equations!
[Ferrara, Gatto, Grillo 1971-1975; Polyakov 1974]
[N.B. need infinite number of conformal families]

21st century bootstrap: convex optimization

In $d \geqslant 3$, no major progress until [Rattazzi, Rychkov, Tonni, Vichi (2008)] numerical approach.

Roughly speaking, the technology is as follows:

- Rewrite crossing symmetry as sum rule with positive coefficients:

$$
\sum_{\mathcal{O}_{i}} c_{i}^{2}\left(G_{\Delta_{i}, \ell_{i}}(u, v)-G_{\Delta_{i}, \ell_{i}}(v, u)\right)=1
$$

- Make assumptions about spectrum - limits the basis of functions on LHS.
- Prove that no solution can exist:

$$
\text { i.e., } \quad f_{i}^{\prime \prime}(0)>0 \Longrightarrow \sum_{i} c_{i}^{2} f_{i}(x) \neq 1
$$

- Keyword: "convex optimization"

21st century bootstrap: convex optimization

In $d \geqslant 3$, no major progress until [Rattazzi, Rychkov, Tonni, Vichi (2008)] numerical approach.

Theories on boundary can have CFT data systematically reconstructed.

Consequences of supersymmetry [Beem, et. al. (2013)]

Superconformal families: $\left\{\mathcal{O}, Q \mathcal{O}, \ldots, \mathcal{Q}^{16} \mathcal{O}\right.$, descendants $\}$
Interesting supersymmetric operators: $Q^{n} \mathcal{O}_{B P S}=0, n<16$.

Expect infinitely many BPS operators
(cp. ordinary CFT: only conserved currents)
OPE algebra admits truncation involving only BPS operators

$$
" \mathcal{O}_{B P S}^{(i)} \times \mathcal{O}_{B P S}^{(j)}=\sum_{k} \mathcal{O}_{B P S}^{(k)} . "
$$

BPS algebra much simpler than full operator algebra.

Disclaimer: actual truncation very complicated

Consequences of supersymmetry [Beem, et. al. (2013)]

For $(2,0)$ theories, truncation requires operators lie in $\mathbb{C}_{[z, \overline{]}]}^{2} \subset \mathbb{R}^{6}$:

$$
\mathcal{O}_{i}(z) \mathcal{O}_{j}(w) \sim \sum_{k} \frac{c_{i j}{ }^{k} \mathcal{O}_{k}(w)}{(z-w)^{h_{i}+h_{j}-h_{k}}}
$$

Known as chiral algebras (or vertex algebras) - appear in 2d CFT.

Crossing symmetry is nontrivial, but tractable.
analogy: complex analysis vs. real analysis

Know enough about BPS spectrum to solve chiral algebra bootstrap completely.

$$
\mathrm{BPS} \text { chiral algebra }=W_{N} \text { algebra }
$$

First calculable correlation functions in the $(2,0)$ theory at finite N

At large N we can algebraically verify predictions from holography:

$$
c_{k_{1} k_{2} k_{3}}=\frac{2^{2 \alpha-2}}{(\pi N)^{3 / 2}} \Gamma\left(\frac{k_{1}+k_{2}+k_{3}}{2}\right)\left(\frac{\Gamma\left(\frac{k_{123}+1}{2}\right) \Gamma\left(\frac{k_{231}+1}{2}\right) \Gamma\left(\frac{k_{312}+1}{2}\right)}{\sqrt{\Gamma\left(2 k_{1}-1\right) \Gamma\left(2 k_{2}-1\right) \Gamma\left(2 k_{3}-1\right)}}\right) .
$$

(Research project): Finite N - quantum gravity corrections in M-theory.

Analytic \Longrightarrow Numerical ${ }_{[B e e m, ~ R a s t e l l i, ~ v a n ~ R e e s ~(2013)] ~}$

BPS correlators alone are a big improvement, but can we do more?
Analytic results for BPS operators sets the stage for numerical analysis:

Solution to chiral algebra bootstrap

$$
\Downarrow
$$

CFT data for BPS operators
\Downarrow
Crossing symmetry for non-BPS operators

Cornering the $(2,0)_{2}$ theory [Beem, Lemos, Rastelliv van Rees (in progesss)

Numerical bootstrap results for $(2,0)$ theory.
"Interesting point" on the boundary seems to correspond to the $(2,0)_{2}$ theory.

$$
(2,0) \text { theory }=\text { Ising model for the } 21 \text { st century? }
$$

Where we are

- Rich algebraic structures connected to SCFTs.
- $6 d \mathcal{N}=(2,0) \Longrightarrow$ chiral algebra
- $4 d \mathcal{N} \geqslant 2 \Longrightarrow$ chiral algebra
[Beem, Rastelli, van Rees (2014)]
[Beem et. al. (2013)]
- $3 d \mathcal{N}=4 \Longrightarrow$ deformation quantization
[Beem, Peelaers, Rastelli (in progress)]
- Can compute BPS correlators in non-Lagrangian theories.
[Beem, Rastelli, van Rees (2014); Beem, Peelaers, Rastelli, van Rees (2014)]
- Strong indications $(2,0)$ theory numerically accessible.
[Beem, Lemos, Rastelli, van Rees (in progress)]

Future directions

- Explore "protected" algebraic structures many connections to interesting mathematics.
- Are numerically accessible theories analytically special?
- Right mathematical framework for the bootstrap?

Thanks!

