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Prelude: LHC Run-II is in mission!

June 3, 2015: Run-II started at
Ecm = 6.5 ⊕ 6.5 = 13 TeV.
New era in science has begun!

High Energy Physics IS at an extremely interesting time!

The completion of the Standard Model: With the discovery
of the Higgs boson, for the first time ever, we have a consis-
tent relativistic quantum-mechanical theory, weakly coupled,
unitary, renormalizable, vacuum (quasi?) stable, valid up to
an exponentially high scale!

Question: Where IS the next scale?

O(1 TeV)? MGUT? MPlanck?



Large spread of masses for elementary particles:

Large hierarchy: Electroweak scale ⇔ MPlanck? Conceptual.

Little hierarchy: Electroweak scale ⇔ Next scale at TeV? Observational.

Consult with the other excellent lectures.



That motivates us to the new energy frontier! ∗

• LHC (300 fb−1), HL-LHC (3 ab−1) lead to way: 2015−2030

• ILC as a Higgs factory (250 GeV) and beyond: 2020−2030

(250/500/1000 GeV, 250/500/1000 fb−1).

• FCCee (4×2.5 ab−1)/CEPC as a Higgs factory: 2028−2035

• FCChh/SPPC/VLHC (100 TeV, 3 ab−1) to the energy frontier: 2040−

∗Nature News (July, 2014)



I-A. Colliders and Detectors

(0). A Historical Count:

Rutherford’s experiments were the first

to study matter structure: α
Gold foil target

α

discover the point-like nucleus:
dσ

dΩ
=

(αZ1Z2)
2

4E2 sin4 θ/2

SLAC-MIT DIS experiments
e

Proton target
e′

discover the point-like structure of the proton:
dσ

dΩ
=

α2

4E2 sin4 θ/2

(

F1(x, Q2)

mp
sin2 θ

2
+

F2(x, Q2)

E − E′ cos2
θ

2

)

QCD parton model ⇒ 2xF1(x, Q2) = F2(x, Q2) =
∑

i

xfi(x)e
2
i .

Rutherford’s legendary method continues to date!



(A). High-energy Colliders:

To study the deepest layers of matter,

we need the probes with highest energies.
~p

E = hν
×

~p′

Two parameters of importance:

1. The energy: ~p1

~p′1
~p2

~p′2

s ≡ (p1 + p2)
2 =

{

(E1 + E2)
2 − (~p1 + ~p2)

2,
m2

1 + m2
2 + 2(E1E2 − ~p1 · ~p2).

Ecm ≡
√

s ≈
{

2E1 ≈ 2E2 in the c.m. frame ~p1 + ~p2 = 0,√
2E1m2 in the fixed target frame ~p2 = 0.



2. The luminosity:

. . . . . . . .

Colliding beam
n1 n2

t = 1/f

L ∝ fn1n2/a,

(a some beam transverse profile) in units of #particles/cm2/s

⇒ 1033 cm−2s −1 = 1 nb−1 s−1 ≈ 10 fb−1/year.

Current and future high-energy colliders:

Hadron
√

s L δE/E f #/bunch L
Colliders (TeV) (cm−2s−1) (MHz) (1010) (km)

LHC Run (I) II (7,8) 13 (1032) 1033 0.01% 40 10.5 26.66
HL-LHC 14 7 × 1034 0.013% 40 22 26.66

FCChh (SppC) 100 1.2 × 1035 0.01% 40 10 100

e+e−
√

s L δE/E f polar. L
Colliders (TeV) (cm−2s−1) (MHz) (km)

ILC 0.5−1 2.5 × 1034 0.1% 3 80,60% 14 − 33
FCCee/CEPC 0.25−0.35 4 · 1035/2 · 1034 0.13% 50-100

CLIC 3−5 ∼ 1035 0.35% 1500 80,60% 33 − 53



(B). e+e− Colliders

The collisions between e− and e+ have major advantages:

• The system of an electron and a positron has zero charge,

zero lepton number etc.,

=⇒ it is suitable to create new particles after e+e− annihilation.

• With symmetric beams between the electrons and positrons,

the laboratory frame is the same as the c.m. frame,

=⇒ the total c.m. energy is fully exploited to reach the highest

possible physics threshold.

• With well-understood beam properties,

=⇒ the scattering kinematics is well-constrained.

• Backgrounds low and well-undercontrol:

For σ ≈ 10 pb ⇒ 0.1 Hz at 1034 cm−2s−1.

• Linear Collider: possible to achieve high degrees of beam polarizations,

=⇒ chiral couplings and other asymmetries can be effectively explored.



Disadvantages

• Large synchrotron radiation due to acceleration,

∆E ∼ 1

R

(

E

me

)4

.

Thus, a multi-hundred GeV e+e− collider will have to be made

a linear accelerator.

• This becomes a major challenge for achieving a high luminosity

when a storage ring is not utilized;

beamsstrahlung severe.

CEPC/FCCee Higgs Factory

It has been discussed to build a circular e+e− collider

50 − 100 km, Ecm = 245 GeV−350 GeV

with multiple interaction points for very high luminosities.



(C). Hadron Colliders
LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.3
√

S ∼ 4 TeV.



• Higher luminosity: 1034/cm2/s ⇒ 100 fb−1/yr.

Annual yield: 1B W±; 100M tt̄; 10M W+W−; 1M H0...

• Multiple (strong, electroweak) channels:

qq̄′, gg, qg, b̄b → colored; Q = 0,±1; J = 0,1,2 states;

WW, WZ, ZZ, γγ → IW = 0,1,2; Q = 0,±1,±2; J = 0,1,2 states.

Disadvantages

• Initial state unknown:

colliding partons unknown on event-by-event basis;

parton c.m. energy unknown: E2
cm ≡ s = x1x2S;

parton c.m. frame unknown.

⇒ largely rely on final state reconstruction.

• The large rate turns to a hostile environment:

⇒ Severe backgrounds!

Our primary job !



(D). Particle Detection:

The detector complex:

Utilize the strong and electromagnetic interactions

between detector materials and produced particles.

hadronic calorimeter

E-CAL

tracking

vertex detector

muon chambers

beam

pipe

( in B field )



What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

d = (βc τ)γ ≈ (300 µm)(
τ

10−12 s
) γ

• stable particles directly “seen”:

p, p̄, e±, γ

• quasi-stable particles of a life-time τ ≥ 10−10 s also directly “seen”:

n,Λ, K0
L, ..., µ±, π±, K±...

• a life-time τ ∼ 10−12 s may display a secondary decay vertex,

“vertex-tagged particles”:

B0,±, D0,±, τ±...

• short-lived not “directly seen”, but “reconstructable”:

π0, ρ0,±... , Z, W±, t, H...

• missing particles are weakly-interacting and neutral:

ν, χ̃0, GKK...



† For stable and quasi-stable particles of a life-time

τ ≥ 10−10 − 10−12 s, they show up as

Theorists should know:

For charged tracks : ∆p/p ∝ p,

typical resolution : ∼ p/(104 GeV).

For calorimetry : ∆E/E ∝ 1√
E

,

typical resolution : ∼ (10%ecal, 50%hcal)/
√

E/GeV



† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30 − 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency”:

ǫb ∼ 70%; ǫc ∼ 40%; ǫτ ∼ 40%.



† For short-lived particles (Z, W±, t, H...): τ < 10−12 s or so,

make use of final state kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence.

pi
1 + pi

2 =
obs.
∑

f

pf + pmiss.

But in hadron collisions, the longitudinal momenta unknown,

thus transverse direction only:

0 =
obs.
∑

f

~pf T + ~pmiss T .

often called “missing pT” (p/T ) or (conventionally) “missing ET” (E/T ).

Note: “missing ET” (MET) is conceptually ill-defined!

It is only sensible for massless particles: E/T =
√

~p2
miss T + m2.



What we “see” for the SM particles
(no universality!)

Leptons Vetexing Tracking ECAL HCAL Muon Cham.
e± × ~p E × ×
µ± × ~p

√ √
~p

τ± √× √
e± h±; 3h± µ±

νe, νµ, ντ × × × × ×
Quarks
u, d, s × √ √ √ ×
c → D

√ √
e± h’s µ±

b → B
√ √

e± h’s µ±

t → bW± b
√

e± b + 2 jets µ±

Gauge bosons
γ × × E × ×
g × √ √ √ ×

W± → ℓ±ν × ~p e± × µ±

→ qq̄′ × √ √
2 jets ×

Z0 → ℓ+ℓ− × ~p e± × µ±

→ qq̄ (b̄b)
√ √

2 jets ×
the Higgs boson

h0 → b̄b
√ √

e± h’s µ±

→ ZZ∗ × ~p e±
√

µ±

→ WW ∗ × ~p e±
√

µ±



Homework:

Exercise 1.1: For a π0, µ−, or a τ− respectively, calculate its decay

length for E = 10 GeV.

Exercise 1.2: An event was identified to have a µ+µ− pair, along with

some missing energy. What can you say about the kinematics of the system

of the missing particles? Consider both an e+e− and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative

errors of energy-momentum measurements for an electron by an

electromagnetic calorimetry (∆E/E) and for a muon by tracking (∆p/p)

at energies of E = 50 GeV and 500 GeV, respectively.

Exercise 1.4: A 125 GeV Higgs boson will have a production cross section

of 20 pb at the 14 TeV LHC. How many events per year do you expect to

produce for the Higgs boson with an instantaneous luminosity 1033/cm2/s?

Do you expect it to be easy to observe and why?



I-B. Basic Techniques

and Tools for Collider Physics

(A). Scattering cross section
For a 2 → n scattering process:

σ(ab → 1 + 2 + ...n) =
1

2s

∑

|M|2 dPSn,

dPSn ≡ (2π)4 δ4



P −
n
∑

i=1

pi



Πn
i=1

1

(2π)3
d3~pi

2Ei
,

s = (pa + pb)
2 ≡ P2 =





n
∑

i=1

pi





2

,

where
∑|M|2: dynamics (dimension 4 − 2n);

dPSn: kinematics (Lorentz invariant, dimension 2n − 4.)

For a 1 → n decay process, the partial width in the rest frame:

Γ(a → 1 + 2 + ...n) =
1

2Ma

∑

|M|2 dPSn.

τ = Γ−1
tot = (

∑

f

Γf)
−1.



(B). Phase space and kinematics ∗

One-particle Final State a + b → 1:

dPS1 ≡ (2π)
d3~p1

2E1
δ4(P − p1)

.
= π|~p1|dΩ1δ3(~P − ~p1)
.
= 2π δ(s − m2

1).

where the first and second equal signs made use of the identities:

|~p|d|~p| = EdE,
d3~p

2E
=
∫

d4p δ(p2 − m2).

Kinematical relations:

~P ≡ ~pa + ~pb = ~p1, Ecm
1 =

√
s in the c.m. frame,

s = (pa + pb)
2 = m2

1.

The “dimensinless phase-space volume” is s(dPS1) = 2π.

∗E.Byckling, K. Kajantie: Particle Kinemaitcs (1973).



Two-particle Final State a + b → 1 + 2:

dPS2 ≡ 1

(2π)2
δ4 (P − p1 − p2)

d3~p1

2E1

d3~p2

2E2

.
=

1

(4π)2
|~pcm

1 |√
s

dΩ1 =
1

(4π)2
|~pcm

1 |√
s

d cos θ1dφ1

=
1

4π

1

2
λ1/2

(

1,
m2

1

s
,
m2

2

s

)

dx1dx2,

d cos θ1 = 2dx1, dφ1 = 2πdx2, 0 ≤ x1,2 ≤ 1,

The magnitudes of the energy-momentum of the two particles are
fully determined by the four-momentum conservation:

|~pcm
1 | = |~pcm

2 | = λ1/2(s, m2
1, m

2
2)

2
√

s
, Ecm

1 =
s + m2

1 − m2
2

2
√

s
, Ecm

2 =
s + m2

2 − m2
1

2
√

s
,

λ(x, y, z) = (x − y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The phase-space volume of the two-body is scaled down
with respect to that of the one-particle by a factor

dPS2

s dPS1

≈ 1

(4π)2
.

just like a “loop factor”.



Exercise 2.1: Assume that ma = m1 and mb = m2. Show that

t = −2p2
cm(1 − cos θ∗a1),

u = −2p2
cm(1 + cos θ∗a1) +

(m2
1 − m2

2)
2

s
,

pcm = λ1/2(s, m2
1, m2

2)/2
√

s is the momentum magnitude in the c.m. frame.

Note: t is negative-definite; t → 0 in the collinear limit.

Exercise 2.2: A particle of mass M decays to two particles

isotropically in its rest frame. What does the momentum distribution

look like in a frame in which the particle is moving with a speed βz?

Compare the result with your expectation for the shape change

for a basket ball.



Three-particle Final State a + b → 1 + 2 + 3:

dPS3 ≡ 1

(2π)5
δ4 (P − p1 − p2 − p3)

d3~p1

2E1

d3~p2

2E2

d3~p3

2E3

.
=

|~p1|2 d|~p1| dΩ1

(2π)3 2E1

1

(4π)2
|~p(23)

2 |
m23

dΩ2

=
1

(4π)3
λ1/2

(

1,
m2

2

m2
23

,
m2

3

m2
23

)

2|~p1| dE1 dx2dx3dx4dx5.

d cos θ1,2 = 2dx2,4, dφ1,2 = 2πdx3,5, 0 ≤ x2,3,4,5 ≤ 1,

|~pcm
1 |2 = |~pcm

2 + ~pcm
3 |2 = (Ecm

1 )2 − m2
1,

m2
23 = s − 2

√
sEcm

1 + m2
1, |~p23

2 | = |~p23
3 | = λ1/2(m2

23, m2
2, m2

3)

2m23
,

The particle energy spectrum is not monochromatic.

The maximum value (the end-point) for particle 1 in c.m. frame is

Emax
1 =

s + m2
1 − (m2 + m3)

2

2
√

s
, m1 ≤ E1 ≤ Emax

1 ,

|~pmax
1 | =

λ1/2(s, m2
1, (m2 + m3)

2)

2
√

s
, 0 ≤ p1 ≤ pmax

1 .



With mi = 10, 20, 30,
√

s = 100 GeV.

More intuitive to work out the end-point for the kinetic energy,

– recall the direct neutrino mass bound in β-decay:

Kmax
1 = Emax

1 − m1 =
(
√

s − m1 − m2 − m3)(
√

s − m1 + m2 + m3)

2
√

s
.



Recursion relation P → 1 + 2 + 3... + n:

p pnpn−1, n

p1 p2  . . .
pn−1

dPSn(P ; p1, ..., pn) = dPSn−1(P ; p1, ..., pn−1,n)

dPS2(pn−1,n; pn−1, pn)
dm2

n−1,n

2π
.

For instance,

dPS3 = dPS2(i)
dm2

prop

2π
dPS2(f).

This is generically true, but particularly useful

when the diagram has an s-channel particle propagation.



Breit-Wigner Resonance, the Narrow Width Approximation

An unstable particle of mass M and total width ΓV , the propagator is

R(s) =
1

(s − M2
V )2 + Γ2

V M2
V

.

Consider an intermediate state V ∗

a → bV ∗ → b p1p2.

By the reduction formula, the resonant integral reads

∫ (mmax∗ )2=(ma−mb)
2

(mmin∗ )2=(m1+m2)
2

dm2
∗ .

Variable change

tan θ =
m2∗ − M2

V

ΓV MV
,

resulting in a flat integrand over θ

∫ (mmax∗ )2

(mmin∗ )2

dm2∗
(m2∗ − M2

V )2 + Γ2
V M2

V

=
∫ θmax

θmin

dθ

ΓV MV
.



In the limit

(m1 + m2) + ΓV ≪ MV ≪ ma − mb − ΓV ,

θmin = tan−1 (m1 + m2)
2 − M2

V

ΓV MV
→ −π,

θmax = tan−1 (ma − mb)
2 − M2

V

ΓV MV
→ 0,

then the Narrow Width Approximation

1

(m2∗ − M2
V )2 + Γ2

V M2
V

≈ π

ΓV MV
δ(m2

∗ − M2
V ).

Exercise 2.4: Consider a three-body decay of a top quark,

t → bW ∗ → b eν. Making use of the phase space recursion relation

and the narrow width approximation for the intermediate W boson,

show that the partial decay width of the top quark can be expressed as

Γ(t → bW ∗ → b eν) ≈ Γ(t → bW ) · BR(W → eν).



(C). Matrix element: The dynamics

Properties of scattering amplitudes T (s, t, u)

• Analyticity: A scattering amplitude is analytical except:

simple poles (corresponding to single particle states, bound states etc.);

branch cuts (corresponding to thresholds).

• Crossing symmetry: A scattering amplitude for a 2 → 2 process is sym-

metric among the s-, t-, u-channels.

• Unitarity:

S-matrix unitarity leads to :

−i(T − T †) = TT †



Partial wave expansion for a + b → 1 + 2:

M(s, t) = 16π
∞
∑

J=M

(2J + 1)aJ(s)dJ
µµ′(cos θ)

aJ(s) =
1

32π

∫ 1

−1
M(s, t) dJ

µµ′(cos θ)d cos θ.

where µ = sa − sb, µ′ = s1 − s2, M = max(|µ|, |µ′|).

By Optical Theorem: σ = 1
s ImM(θ = 0) = 16π

s

∑∞
J=M(2J + 1)|aJ(s)|2.

The partial wave amplitude have the properties:

(a). partial wave unitarity: Im(aJ) ≥ |aJ |2, or |Re(aJ)| ≤ 1/2,

(b). kinematical thresholds: aJ(s) ∝ β
li
i β

lf
f (J = L + S).

⇒ well-known behavior: σ ∝ β
2lf+1

f .

Exercise 2.5: Appreciate the properties (a) and (b) by explicitly

calculating the helicity amplitudes for

e−Le+R → γ∗ → H−H+, e−Le+L,R → γ∗ → µ−
Lµ+

R , H−H+ → G∗ → H−H+.



(D). Calculational Tools

Traditional “Trace” Techniques in QFT:

Good for simple processes

Helicity Techniques:

technical simplification, necessary for multiple particles;

conceptual advancements.
(Henriette’s lectures)

Exercise 2.6: Calculate the squared matrix element for
∑|M(ff̄ → ZZ)|2,

in terms of s, t, u, in whatever technique you like.



Calculational packages:

• Monte Carlo packages for phase space integration:

VEGAS by P. LePage: adaptive important-sampling MC

http://en.wikipedia.org/wiki/Monte-Carlo integration

• Automated evaluation of cross sections:

(1) MadGraph/MadEvent and MadSUSY:

Generate Fortran codes on-line! http://madgraph.hep.uiuc.edu

(Now allows you to input new models.)

(2) CompHEP/CalHEP: computer program for calculation of elementary

particle processes in Standard Model and beyond. CompHEP has a built-in

numeric interpreter. So this version permits to make numeric calculation

without additional Fortran/C compiler. It is convenient for more or less

simple calculations.

— It allows your own construction of a Lagrangian model!

http://theory.npi.msu.su/k̃ryukov

(Now allows you to input new models.)



(3) SHERPA (F. Krauss et al.): (Gaining popularity)

Generate Fortran codes on-line! Merging with MC generators (see next).

http://www.sherpa-mc.de/

• Cross sections at NLO packages: (Gaining popularity)

(1) MC(at)NLO (B. Webber et al.):

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/

Combining a MC event generator with NLO calculations for QCD processes.

(2) MCFM (K. Ellis et al.):

http://mcfm.fnal.gov/

Parton-level, NLO processes for hadronic collisions.

(3) BlackHat (Z.Bern, L.Dixon, D.Kosover et al.):

http://blackhat.hepforge.org/

Parton-level, NLO processes to combine with Sherpa



• Numerical simulation packages: Monte Carlo Event Generators

Reading: http://www.sherpa-mc.de/

(1) PYTHIA:

PYTHIA is a Monte Carlo program for the generation of high-energy

physics events, i.e. for the description of collisions at high energies

between e+, e−, p and p̄ in various combinations.

They contain theory and models for a number of physics aspects,

including hard and soft interactions, parton distributions, initial and

final state parton showers, multiple interactions, fragmentation and decay.

— It can be combined with MadGraph and detector simulations.

http://www.thep.lu.se/ torbjorn/Pythia.html

Already made crucial contributions to Tevatron/LHC.

(2) HERWIG

HERWIG is a Monte Carlo program which simulates pp, pp̄

interactions at high energies. It has the most sophisticated perturbative

treatments, and possible NLO QCD matrix elements in parton showing.

http://hepwww.rl.ac.uk/theory/seymour/herwig/

• Detector Simulations “Pretty Good Simulation” (PGS):

By John Conway: A simplified detector simulation,



mainly for theorists to estimate the detector effects.

http://www.physics.ucdavis.edu/ conway/research/software/pgs/pgs.html

PGS has been adopted for running with PYTHIA and MadGraph.

(but just a “toy”.)

DELPHES: A modular framework for fast simulation of a generic collider

experiment.

http://arxiv.org/abs/1307.6346



Over all:



I-C. Physics at an e+e− Collider

(A.) Simple Formalism

Event rate of a reaction:

R(s) = σ(s)L, for constant L

= L
∫

dτ
dL(s, τ)

dτ
σ(ŝ), τ =

ŝ

s
.

As for the differential production cross section of two-particle a, b,

dσ(e+e− → ab)

d cos θ
=

β

32πs

∑

|M|2

where

• β = λ1/2(1, m2
a/s, m2

b /s), is the speed factor for the out-going particles

in the c.m. frame, and pcm = β
√

s/2,

• ∑|M|2 the squared matrix element, summed and averaged over quantum

numbers (like color and spins etc.)

• unpolarized beams so that the azimuthal angle trivially integrated out,



Total cross sections and event rates for SM processes:



(B). Resonant production: Breit-Wigner formula

1

(s − M2
V )2 + Γ2

V M2
V

If the energy spread δ
√

s ≪ ΓV , the line-shape mapped out:

σ(e+e− → V ∗ → X) =
4π(2j + 1)Γ(V → e+e−)Γ(V → X)

(s − M2
V )2 + Γ2

V M2
V

s

M2
V

,

If δ
√

s ≫ ΓV , the narrow-width approximation:

1

(s − M2
V )2 + Γ2

V M2
V

→ π

MV ΓV
δ(s − M2

V ),

σ(e+e− → V ∗ → X) =
2π2(2j + 1)Γ(V → e+e−)BF (V → X)

M2
V

dL(ŝ = M2
V )

d
√

ŝ

Exercise 3.1: sketch the derivation of these two formulas,

assuming a Gaussian distribution for

dL

d
√

ŝ
=

1√
2π ∆

exp[
−(

√
ŝ −√

s)2

2∆2
].



Note: Away from resonance

For an s-channel or a finite-angle scattering:

σ ∼ 1

s
.

For forward (co-linear) scattering:

σ ∼ 1

M2
V

ln2 s

M2
V

.

• The simplest reaction

σ(e+e− → γ∗ → µ+µ−) ≡ σpt =
4πα2

3s
.

In fact, σpt ≈ 100 fb/(
√

s/TeV)2 has become standard units to measure

the size of cross sections.



(C). Gauge boson radiation:

A qualitatively different process is initiated from gauge boson radiation,

typically off fermions:

f
f

a
pγ / f

X

’

The simplest case is the photon radiation off an electron, like:

e+e− → e+, γ∗e− → e+e−.

The dominant features are due to the result of a t-channel singularity,

induced by the collinear photon splitting:

σ(e−a → e−X) ≈
∫

dx Pγ/e(x) σ(γa → X).

The so called the effective photon approximation.



For an electron of energy E, the probability of finding a collinear photon

of energy xE is given by

Pγ/e(x) =
α

2π

1 + (1 − x)2

x
ln

E2

m2
e
,

known as the Weizsäcker-Williams spectrum.

Exercise 3.3: Try to derive this splitting function.

We see that:

• me enters the log to regularize the collinear singularity;

• 1/x leads to the infrared behavior of the photon;

• This picture of the photon probability distribution is also valid for other

photon spectrum:

Based on the back-scattering laser technique, it has been proposed to

produce much harder photon spectrum, to construct a “photon collider”...



(massive) Gauge boson radiation:

A similar picture may be envisioned for the electroweak massive gauge

bosons, V = W±, Z.

Consider a fermion f of energy E, the probability of finding a (nearly)

collinear gauge boson V of energy xE and transverse momentum pT (with

respect to ~pf) is approximated by

PT
V/f(x, p2

T ) =
g2
V + g2

A

8π2

1 + (1 − x)2

x

p2
T

(p2
T + (1 − x)M2

V )2
,

PL
V/f(x, p2

T ) =
g2
V + g2

A

4π2

1 − x

x

(1 − x)M2
V

(p2
T + (1 − x)M2

V )2
.

Although the collinear scattering would not be a good approximation un-

til reaching very high energies
√

s ≫ MV , it is instructive to consider the

qualitative features.



(D). Recoil mass technique:

One of the most important techniques, that distinguishes an e+e− collisions

from hadronic collisions.

Consider a process:
e+ + e− → V + X,

where V: a (bunch of) visible particle(s); X: unspecified.

Then:
pe+ + pe− = pV + pX, (pe+ + pe− − pV )2 = p2

X,

M2
X = (pe+ + pe− − pV )2 = s + M2

V − 2
√

sEV .

One thus obtain the “model-independent” inclusive measurements

a. mass of X by the recoil mass peak

b. coupling of X by simple event-count at the peak



(E). Physics at a Higgs Factory:

At peak cross section ≈ 200 fb with 5 ab−1 ⇒ 1M h0!

The key point for a Higgs factory:

Model-independent measurements on the ZZh coupling in a clean experi-

mental environment.



Consider: e+ + e− → ff̄ + h.
M2

h = (pe+ + pe− − pf − pf̄)
2 = s + M2

V − 2
√

sEff̄ .

Kinematical selection of “inclusive” signal events!

Marching to higher energies: 500 GeV−1 TeV:


