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A new era of discovery: the Higgs sector

Possible deviations from the SM Higgs couplings could be found 
(e.g. Craig, Galloway, Thomas1305.2424).

New scalars extending the Higgs sector could be found (e.g. Craig, 
D’Eramo, Draper, Thomas, Zhang,1504.04630).

Flavor physics could provide hints to new scalars, that could be 
charged (e.g. Crivellin 1412.2512).

Which one(s) would be the possible extension(s) of the Higgs 
sector corresponding to a particular signature?
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EW Precision

• First experimental constraint: EW precision
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Easily achieved only with a 
vacuum parametrized by SU(2) singlets

and doublets (*)

(* Exceptions: see Gunion, 
Haber, Kane, Dawson, The 

Higgs Hunter’s Guide, or Georgi, 
Machacek, Nucl. Phys. B 262, 

463)

⇢ =

m2
W

m2
Z cos

2 ✓W
= 1.0008+0.0017
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Alignment

• Second experimental constraint,  alignment: 

The Higgs seems to couple to SM particles with similar 
strength than the Higgs condensate (experimental fact) (*)
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Naturally achieved in 
the decoupling limit

 

(* at least to gauge bosons 
and 3rd gen. fermions)
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The EFT's of the Higgs sector

These experimental facts are very constraining. 

The aligned xSM and 2HDM are the simplest UV completions 
fulfilling these principles. 
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The objective 

Be as general as possible and derive 
the xSM and 2HDM EFT (at tree level).

Leave no effect behind.
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Outline

1. The effective theory of the xSM. Democratic dilution of 
couplings?

2. The 2HDM: an unconventional review. Challenges of the mixing 
language.

3. The low energy theory of the 2HDM. 

4. Comments. The complex alignment parameter. Examples of 
applications of the EFT. 
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The xSM
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The xSM

The most general renormalizable potential contains 7 parameters

There are 4 mass scales               . Define the decoupling limit as

We allow for the remaining mass scales to be as large as 
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The vacuum states. Fermionic interactions.

Define the vacuum states 

And standard fermionic interactions 
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Very short review: the mixing language

The interaction term            induces mixing. The Higgs mass 
eigenstate is 

Couplings of the higgs mass eigenstate are democratically diluted 
with respect to SM value *
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Deriving the xSM EFT

An example diagram is

EFT organizes the effects in an expansion in a small parameter.

To get this expansion right, need to identify the operator’s 
effective dimension.
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Figure 1: At dimension four and six

generates the operators (H†H)2 and

∂µ(H†H)∂µ(H†H).
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Figure 2: At dimension six generates the

operator (H†H)3.

ξ ξ

ξ

2ζ

S

S S

H

H

H

H†

H†H†

Figure 3: At dimension six generates the

operator (H†H)3.
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H H
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3λS

H† H†

H†

Figure 4: At dimension eight generates

the operator (H†H)4. This diagrams rep-

resents the leading order correction in λS,

and is considered only for illustrative pur-

poses.

The kinetic operator proportional to ζH and the modification to the quartic operator come

from figure 1. The operator proportional to η6 comes from figures 2 and 3. The operator

proportional to η8 is our example of a higher order term, and it comes from figure 4. Note

that the correction to the Higgs quartic is negative and of order one. This means that

the Higgs potential could have a negative quartic and be stabilized by the h6 term. Note

also that the coupling λS is the only one in the theory that is irrelevant for computing the
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⇠2

µ2 (H†H)2

⇠2

µ4 @µ(H†H)2@µ(H†H)2

In the xSM
Effective dimension = Operator dimension
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The xSM EFT

Up to operator dimension six:

By any means not the most general EFT you could write.

Most coefficients (but not all)  
controlled exclusively by one parameter: 
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The analogue of mixing in EFT terms

Let us expand the kinetic operator  
 

„Mixing“ is encoded in WF renormalization.

The remaining two operators can be replaced in favor of 
operators with no derivatives using e.o.m., and they lead to 
additional modifications of the Higgs couplings.
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Mixing WF renormalization

@µ
�
H†H)@µ(H†H) = v2@µh@

µh+ 2vh@µh@
µh+ h2@µh@
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Fermionic and Gauge Couplings

All couplings are modified at the same operator dimension. 
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The last coupling is not just dilution!
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Four linear couplings do not match

Amplitudes match, couplings do not necessarily match. Consider 
the short distance piece of the amplitude.  

This diagram cannot be neglected: it leads to effects  
of order 
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Trilinear couplings must match

This ensures the equality of the long distance pieces of the 
amplitudes.  

Long distance pieces of amplitudes are controlled by trilinear 
couplings.
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Trilinear couplings in the mixing and
EFT languages always match. 
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The 2HDM: an unconventional review
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The Most General 2HDM

It is a theory of two identical doublets with a condensate 
specified by

As such 
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tan� =
v1
v2

does not have physical 
meaning at this point

(see for instance Haber, 
O’Neil,  0602242)

v21
2

= h�†
1�1i

v22
2

= h�†
2�2i

⇠ = Argh�†
1�2i
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The Higgs Basis

We can always perform a rotation 

This is the Higgs basis (e.g. Davidson, Haber 0504050). Useful in the 
alignment limit, so we work in this basis. 
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e�i⇠/2H1 = cos� �1 + sin� e�i⇠
�2

H2 = � sin� ei⇠ �1 + cos� �2

v2

2
= hH†

1H1i 0 = hH†
2H2i
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The potential in the Higgs basis

The most general renormalizable potential in the Higgs basis is

The EWSB conditions are

The only limitation we will impose, is that we work in the decouplings 
limit 
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The observables in the Higgs potential

The potential contains a U(1) background symmetry

There are 11 invariants under the background symmetry in the 
potential: 11 physical observables (examples:                  )

The background symmetry is unbroken by the Higgs vev.
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U(1)PQ

H1 0
H2 �1

m̃2
1, m̃

2
2, �̃1, �̃2, �̃3, �̃4 0
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12, �̃6, �̃7 +1
�̃5 +2

�̃2, �̃
⇤
6�̃6, v
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The Yukawas. CP violation.

The most general Yukawas are

The physical CP violating phases are
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Review of the mixing language

Normally you would write the mass matrix and diagonalize it.

In the CP violating case this leads to cumbersome expressions 
for the couplings (e.g. Haber, O’Neil 0602242v6). Can this be improved?

Moreover, in the singlet case couplings in the mixing and EFT 
language did not match.
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The 2HDM and the power of EFT
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Deriving the EFT: effective dimension

Examples:
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Figure 6: Diagrams with two λ6 insertions up to effective dimension eight. The upper

diagram must be expanded up to quadratic order in the momentum of the external leg to

work up to effective dimension eight. There are also diagrams with one gauge boson attached

to the internal heavy Higgs propagator which are also considered. The upper diagram at

zero momentum leads to the operator (H†
1H1)3. The upper diagram at quadratic order in

momentum of the external legs leads to ∂µ(H
†
1H1)∂µ(H†

1H1)(H
†
1H1) and also, together with

the diagrams with gauge bosons, to (DµH1)†(DµH1)(H
†
1H1)2.

The diagrams in figure 7 lead to

λ̃6(m̃2
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∗

m̃2
2
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(H†
1H1)

2 −H†
1H1H

†
1!H1

+ H†
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+
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†
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1

2
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(
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†
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µH1 + h.c.
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+ h.c. (3.7)

Rearranging the derivatives

λ̃∗
6m̃

2
12

m̃2
2

[

2(H†
1H1)

2 + ∂µ(H
†
1H1)∂

µ(H†
1H1) + 2(DµH1)

†(DµH1)H
†
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]

(3.8)

where we used λ̃∗
6m̃

2
12 = λ̃6m̃2∗

12 due to 2.22.
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∗ λ̃6H1

H1

H†
1

H†
1

Wb

−2g22TaTb

Wa

(m̃2
12)

∗ λ̃6H1
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Figure 7: Diagrams with one λ6 and one (m̃2
12)

∗ insertion up to effective dimension eight. The

upper diagram must be expanded up to quadratic order in the momentum of the external leg

to work up to effective dimension eight. There are also hermitic conjugate versions of these

diagrams and diagrams with one gauge boson attached to the internal heavy Higgs propaga-

tor, which are also considered. The upper diagram at zero momentum leads to the operator

(H†
1H1)2. The upper diagram at quadratic order in momentum of the external legs leads to

∂µ(H
†
1H1) and also, together with the diagrams with gauge bosons, to (DµH1)†(DµH1)H

†
1H1.

• Diagrams with λ̃3, λ̃4 and λ̃5 vertices The diagrams of figure 8 lead to
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6 + h.c.)

2m̃4
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where we used λ̃∗
6m̃

2
12 = λ̃6m̃2∗

12 due to 2.22.

• Diagrams with yukawas

43
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⇤�6(H
†H)2�⇤

6�6(H
†H)3

⇠ v2 No tadpole condition

ED = 4� nm̃2
2

In the 2HDM
Effective dimension ≠ Operator dimension
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The low energy theory of the 2HDM

This is just to show you how does the EFT look.

… plus many four fermion operators
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The 2HDM EFT: Higgs and fermions

The Higgs-fermion sector contains

27
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• Controlled by the heavy doublet Yukawa and  
• Source of flavor violating processes
• CP violation directly measurable in EDM’s
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(�F = 1 only)
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The 2HDM EFT: fermions 

The fermionic sector contains

28

• Controlled by the heavy doublet Yukawa.
• Source of CP and flavor violation 

�̃u
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m̃2
2

(Qiūj)(ū
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n) + · · ·

(�F = 1 & �F = 2)

Effective dimension six
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The 2HDM EFT: Higgs and gauge bosons

The gauge-kinetic sector contains
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All operators show up first 
at effective dimension eight

Controlled again by    …! �̃6
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The 2HDM EFT: self couplings

The Higgs potential contains
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Comparing the different couplings
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Interesting facts, an example application and a 
scorecard for LHC and flavor
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CP violation

We found CP violation at ED 6 in higgs-fermion interactions.

What about the bosonic CP violating phases               ??
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✓1 & ✓2

The CP violation associated with this phases
does not appear at ED 6.  

All CP violation in Higgs-fermion interactions!
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The complex alignment parameter

What is this     controlling the deviations from the SM couplings?
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�̃⇤
6

It is related to a complex alignment parameter Ξ .  

• It is a physical quantity (it is measurable)
• No need to diagonalize the mass matrix!
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How to detect a perfectly aligned 2HDM 

If all couplings are measured to be SM like, can we get hints of 
the 2HDM in low energy data?
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�̃u
2ij �̃

u†
2mn

m̃2
2

(Qiūj)(ū
†
mQ†

n) + · · ·

There will still be hope to find hints of a second
doublet in flavor experiments. 

This is a large effect: ED 6, couplings can be order one.
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Where is tan𝜷?

If you work with a general 2HDM you should not make any 
reference to tan𝜷. It artificially extends your parameter space.

Where is tan𝜷? It is a direction singled out by particular models:

• In the MSSM: direction relative to the flat direction 
Hu=Hd.

• In type I, II, III, IV 2HDM: direction relative to the 
coupled doublet.
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What is so special about types I-IV?

Just that the Yukawas of the heavy doublets are proportional to 
the mass matrix. Example: type I
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Unique CP violating phase 
in the low energy theory at ED 6.
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Four fermion operators in types I-IV

The CP violating phase does not show up on four fermion 
operators. Consider as an example
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An example application: EDM’s and the 2HDM

The electron dipole moment is strongly constrained from 
experiment

All the contributions at effective dimension six come from Barr-
zee diagrams
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Only diagrams with light higgses.
All masses in the loops are known
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EDM’s in types I-IV 

Places bound on the unique CP violating phase at ED six.

Examples (numbers are estimates, work in progress):
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A scorecard for LHC and flavor experiments
The effective theories of the vacuum
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The xSM The 2HDM

Change in fermionic couplings ED 6 and always smaller than SM ED 6

Change in couplings to gauge 
bosons ED 6 and always smaller than SM ED 8 and always smaller than SM

Change in self couplings ED 6 ED 6 and always smaller than SM

Changes parametrized mostly 
by (*)

(correlations!)
A single real number  

The complex alignment 
parameter and 

a complex matrix 

Flavor violation ✘ chirality violating & chirality 
preserving

CP violation ✘ ED 6 and only in fermionic 
interactions

�F = 1,�F = 2

�̃f
2ij

(* Higgs self couplings are controlled by a larger set of the UV completion parameters)
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Effective dimensions at LHC

The plot below is an exclusion plot for the alignment parameter 
in type I 2HDM. Large exclusion: ED 6 effect. Poor exclusion: only 
ED 8 in action.
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Model tan� (c��↵)
95%
� (c��↵)

95%
+

1 �0.32 0.42

Type 1 10 �0.43 0.40

100 �0.42 0.13

1 �0.11 0.06

Type 2 10 �0.02 0.01

100 — —

Table 3. Values of cos(� � ↵) on positive and negative sides of the alignment limit, denoted by
subscripts ±, at the 95% CL contour for various values of tan�. For Type 2 2HDM, at very large
values of tan� the width of the region in cos(��↵) allowed by measured coupling values of the SM-like
Higgs is narrower than the resolution of our fit procedure; see Fig. 3.
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Figure 2. Left: Global fit of SM-like Higgs couplings in 2HDM of Type 1. Right: Contributions to
the fit coming separately from h ! ��, h ! V V , and h ! bb, ⌧⌧ .

Assuming the fermion couplings dominate the total width, the rates of the important

– 12 –

Craig, Galloway, Thomas 1305.2424 
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A scorecard for LHC and flavor experiments
The effective theories of the vacuum
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The xSM The 2HDM

Change in fermionic couplings ED 6 and always smaller than SM ED 6

Change in couplings to gauge 
bosons ED 6 and always smaller than SM ED 8 and always smaller than SM

Change in self couplings ED 6 ED 6 and always smaller than SM

Changes parametrized mostly 
by (*)

(correlations!)
A single real number  

The complex alignment 
parameter and 

a complex matrix 

Flavor violation ✘ chirality violating & chirality 
preserving

CP violation ✘ ED 6 and only in fermionic 
interactions

�F = 1,�F = 2

�̃f
2ij

(* Higgs self couplings are controlled by a larger set of the UV completion parameters)
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Backup: four fermion operators

From integrating out the heavy Higgs 

From the light Higgs
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Comparison of four fermion operators

Take a particular example. For the Heavy Higgs mediated 
operators

The same operator coming from the light Higgs is

The parametric dependence is different, the ED is the same.
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