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The Fourth Paradigm: 
Data-Intensive Science



Much of Science is now Data-Intensive

Number of Researchers

Data Volume

• Extremely large data sets
• Expensive to move
• Domain standards
• High computational needs
• Supercomputers, HPC, Grids
e.g. High Energy Physics, Astronomy

• Large data sets
• Some Standards within Domains
• Shared Datacenters & Clusters
• Research Collaborations
e.g. Genomics, Financial

• Medium & Small data sets
• Flat Files, Excel
• Widely diverse data; Few standards
• Local Servers & PCs
e.g. Social Sciences, Humanities

Four “V’s” of Data
•Volume
•Variety
•Velocity
•Veracity

‘The Long Tail of 
Science’ 



Jim Gray, Turing Award Winner



The ‘Cosmic Genome Project’:
The Sloan Digital Sky Survey

• Two surveys in one
• Photometric survey in 5 bands

• Spectroscopic redshift survey

• Data is public
• 2.5 Terapixels of images

• 40 TB of raw data => 120TB processed 
data

• 5 TB catalogs => 35TB in the end

• Started in 1992, ‘finished’ in 2008
SkyServer Web Service 

built at JHU by team led by 
Alex Szalay and Jim Gray

The University of Chicago

Princeton University

The Johns Hopkins University

The University of Washington

New Mexico State University

Fermi National Accelerator Laboratory

US Naval Observatory

The Japanese Participation Group

The Institute for Advanced Study

Max Planck Inst, Heidelberg

Sloan Foundation, NSF, DOE, NASA



Open Data: Public Use of the Sloan Data 

• SkyServer web service has 
had over 400 million web

• About 1M distinct users
vs 10,000 astronomers

• >1600 refereed papers!

• Delivered 50,000 hours
of lectures to high schools

 New publishing paradigm: 
data is published before
analysis by astronomers

 Platform for ‘citizen science’ 
with GalaxyZoo project

Posterchild in 21st century data publishing



Carbo-Climate Synthesis
• Role of photosynthesis in global 

warming? 
• Measurements of CO2 in the atmosphere 

show 16-20% less than emissions estimates 
predict

• Difference is either due to plants or ocean 
absorption. 

• Communal field science – each 
investigator acts independently. 
• Cross site studies and integration with 

modeling increasingly important

• Sharepoint site:
www.fluxdata.org

• 921 site-years of data from 240 sites around 
the world; 80+ site-years now being added

• 60+ paper writing teams 
• American data subset is public and served 

more widely
• Summary data products greatly simplify initial 

data discovery
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(Dennis Baldocchi (Berkeley Water Center)

And Catharine van Ingen (Microsoft Research))

http://www.fluxdata.org/


The US National Library of Medicine
• The NIH Public Access Policy

ensures that the public has access 
to the published results of NIH 
funded research. 

• Requires scientists to submit final 
peer-reviewed journal manuscripts 
that arise from NIH funds to the 
digital archive PubMed Central upon 
acceptance for publication. 

• Policy requires that these papers 
are accessible to the public on 
PubMed Central no later than 12 
months after publication.

Nucleotide 
sequences

Protein 
sequences

Taxon

Phylogeny MMDB

3 -D 
Structure

PubMed 
abstracts

Complete 
Genomes

PubMed Entrez 
Genomes

Publishers Genome 
Centers

Entrez cross-database search 

http://publicaccess.nih.gov/policy.htm
http://www.pubmedcentral.nih.gov/


X-Info
• The evolution of X-Info and Comp-X for each discipline X
• How to codify and represent our knowledge

• Data ingest  
• Managing a petabyte
• Common schema
• How to organize it 
• How to reorganize it
• How to share with others

• Query and Vis tools 
• Building and executing models
• Integrating data and Literature  
• Documenting experiments
• Curation and long-term 

preservation

The Generic Problems

Experiments &
Instruments

Simulations

Literature

Other Archives

facts

facts

facts

facts

Questions

Answers

Slide thanks to Jim Gray





Archaeo-Informatics

•

•

•

•

•

PI: Graeme Earl
University of Southampton



Thousand years ago – Experimental Science
• Description of natural phenomena

Last few hundred years – Theoretical Science
• Newton’s Laws, Maxwell’s Equations…

Last few decades – Computational Science
• Simulation of complex phenomena

Today – Data-Intensive Science
• Scientists overwhelmed with data sets

from many different sources 

• Data captured by instruments

• Data generated by simulations

• Data generated by sensor networks

eScience and the Fourth Paradigm
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eScience is the set of tools and technologies
to support data federation and collaboration

• For analysis and data mining
• For data visualization and exploration
• For scholarly communication and dissemination

(With thanks to Jim Gray)

http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif
http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif


eScience and Data-Intensive 
Scientific Discovery

The Fourth Paradigm
Science@Microsoft http://research.microsoft.com

Amazon.com

http://research.microsoft.com/en-us/collaboration/fourthparadigm/default.aspx
mailto:Science@Microsoft
http://research.microsoft.com/
http://www.amazon.com/Fourth-Paradigm-Data-Intensive-Scientific-ebook/dp/B00318D9Y2/ref=sr_1_4?ie=UTF8&s=books&qid=1261412355&sr=8-4


Open Access, Open Data, 
Open Science



Vision for a New Era of Research Reporting 

Dynamic
Documents

Reputation
& Influence

Reproducible 
Research

Interactive 
Data

Collaboration

(Thanks to Bill Gates SC05)



US White House Memorandum
• Directive requiring the major Federal Funding agencies “to develop a 

plan to support increased public access to the results of research funded 
by the Federal Government.”

• The memorandum defines digital data “as the digital recorded factual 
material commonly accepted in the scientific community as necessary to 
validate research findings including data sets used to support scholarly 
publications, but does not include laboratory notebooks, preliminary 
analyses, drafts of scientific papers, plans for future research, peer 
review reports, communications with colleagues, or physical objects, 
such as laboratory specimens.” 

22 February 2013



Open Access:  2013 as the Tipping Point? 

•US White House Memorandum 22 February 2013

•Global Research Council Action Plan 30 May 2013

•G8 Science Ministers Joint Statement 12 June 2013

• European Union Parliament 13 June 2013



University of California approves Open Access

•UC is the largest public research university in the world 
and its faculty members receive roughly 8% of all 
research funding in the U.S. 

•UC produces 40,000 publications per annum 
corresponding to about 2 – 3 % of all peer-reviewed 
articles in world each year

•UC policy requires all 8000 faculty to deposit full text 
copies of their research papers in the UC eScholarship
repository unless they specifically choose to opt-out 

2 August 2013



• PMC Compliance Rate
• Before legal mandate compliance was 19%

• Signed into law by George W. Bush in 2007

• After legal mandate compliance up to 75%

• NIH have taken a further step of announcing that, ‘sometime in 2013’ 
they stated that they
‘… will hold processing of non-competing continuation awards if publications 
arising from grant awards are not in compliance with the Public Access Policy.’

• NIH now implemented their policy about continuation awards
• Compliance rate increasing ½% per month

• By November 2014, compliance rate had reached 86%

NIH  Open Access Compliance?





New Requirements for DOE Research Data



EPSRC Expectations for Data Preservation

•Research organisations will ensure that EPSRC-funded 
research data is securely preserved for a minimum of 
10 years from the date that any researcher ‘privileged 
access’ period expires 

•Research organisations will ensure that effective data 
curation is provided throughout the full data lifecycle, 
with ‘data curation’ and ‘data lifecycle’ being as 
defined by the Digital Curation Centre



Data Curation:
State of the Art



Long Term Access to Large Scientific Data Sets: 
The SkyServer and Beyond

NSF ACI Data Infrastructure Building Blocks (DIBBS)  Program
• $7.6M project
• Started 2013 – end date 2018

Project goals

• Address curation issues arising from the data and service life-cycle

• Support small but complex data in the ‘Long Tail’ of science.

 Need to curate both Data and Services lifecycle



What happened to Virtual Observatories?

• UK AstroGrid project 
• Funding cancelled in 2008

• US Virtual Astronomy Observatory (VAO)
• Project funding discontinued in 2014

But much of the infrastructure, tools and technology 
still lives on with participation in the International 
Virtual Observatory Alliance (IVOA)



Links to e-resources

Links to data

Links to objects

Astrophysics Data System ADS



Strasbourg CDS Datasets 



ADS
Cross-ref 

Meta-data

CDS/Vizier-
Tables from 

journals, 
catalogs

arXiv/data 
conservancy-
PDF, usage, 
data links Observatories/Ar

chives/Data 
Centers- Data 
links, types, 
instruments. 

(Librarians)

CDS/Simbad, 
NED –

object/paper 
links, object 

types

Journals- Full 
XML (text, 
references, 
keywords, 
abstracts)

Libraries –
historical 
materials, 

conference 
proceedings



44 % of data 

links from 

2001 broken in 

2011

Pepe et al. 2012

But Sustainability of Data Links?



Progress since 2004? 
The View from ADS (Michael Kurtz)

Comments:

• Does not see much progress in the last ten years: now one step back, waiting 
for the next two steps forward

• Ten years ago concerned that the Virtual Observatory would suffocate itself 
with bureaucracy: unfortunately this has now happened …

• New large repositories (Zenodo, Dataverse) are creating an infrastructure of 
almost entirely uncurated data

The problem with curation is that the funding is almost entirely local but in the 
digital world the use is mainly global. Leads to tragedy of the commons where 
no one will assume long-term obligation to curate and manage data which is 
mainly not from local sources.



Progress since 2004?
The View from CDS (Francoise Genova)

There are two major areas of progress:

• VO Framework
• Interoperability framework with aspects on data description, formats, vocabularies, data 

models. Helps data producers share data so pay more attention to data curation and use 
elements of this framework. 

• Long Tail Data
• With the funding agency requirements on Data Management Plans and on making their 

data available, researchers more aware of importance of sharing data. 

• In astronomy, most original data from observations is in observatory archives, but at CDS 
we are seeing more data "attached to publications". 





Progress in Environmental Data Curation?
Professor James Frew (UCSB):

• Biggest change is funding agency mandate. 

• NSF’s Data Management Plan for all proposals has made scientists 
(pretend?) to take data curation seriously.

• There are better curated databases and metadata now - but not sure 
that quality fraction is increasing!

• Frew’s first law: scientists don’t write metadata

• Frew’s second law: any scientist can be forced to write bad metadata

Should automate creation of metadata as far as possible

Scientists need to work with metadata specialists with domain 
knowledge



Plan

Collect

Assure

Describe

Preserve

Discover

Integrate

Analyze

34

Enabling Science through 
Tools and Services
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DataONE: Data Management, Sharing and Publication

UTK and ORNL are partners in NSF DataONE Project
Slides courtesy of Bill Michener



Provenance tracking and display



Open Science and Research 
Reproducibility



Jon Claerbout and the Stanford Exploration 
Project (SEP) with the oil and gas industry

• Jon Claerbout is the Cecil Green Professor Emeritus of Geophysics at Stanford 
University

• He was one of the first scientists to recognize that the reproducibility of his 
geophysics research required access not only to the text of the paper but also to 
the data being analyzed and the software used to do the analysis

• His 1992 Paper 
introduced an
early version of an 
‘executable paper’ 



Serious problems of research reproducibility 
in bioinformatics

• Review of 2,047 retracted articles indexed in PubMed in May of
2012 concluded that:
• 21.3% were retracted because of errors,

• 67.4% were retracted because of scientific misconduct
• Fraud or suspected fraud (43.4%)

• Duplicate publication (14.2%)

• Plagiarism (9.8%)

• Study by pharma companies Bayer and Amgen concluded that
between 60% and 70% of biomedicine studies may be non-
reproducible
• Amgen scientists were only able to reproduce 7 out of 53 cancer results

published in Science and Nature





2012 ICERM Workshop on Reproducibility in 
Computational and Experimental Mathematics

• The workshop participants noted that computational science poses a 
challenge to the usual notions of ‘research reproducibility’

• Experimental scientists are taught to maintain lab books that contain 
details of the experimental design, procedures, equipment, raw data, 
processing and analysis (but …)

• Few computational experiments are documented so carefully: 

Typically there is no record of the workflow, no listing of the software 
used to generate the data, and inadequate details of the computer 
hardware the code ran on, the parameter settings and any compiler 
flags that were set



Best Practices for Researchers Publishing
Computational Results

• Data must be available and accessible. In this context the term "data" means the raw data 
files used as a basis for the computations, that are necessary for others to regenerate 
published computational findings. 

• Code and methods must be available and accessible. The traditional methods section in a 
typical publication does not communicate sufficient detail for a knowledgeable reader to 
replicate computational results. A necessary action is making the complete set of 
instructions, typically in the form of computer scripts or workflow pipelines, conveniently 
available. 

• Citation. Do it. If you use data you did not collect from scratch, or code you did not write, 
however little, cite it. Citation standards for code and data are discussed but it is less 
important to get the citation perfect than it is to make sure the work is cited at all. 

• Copyright and Publisher Agreements. Publishers, almost uniformly, request that authors 
transfer all ownership rights over the article to them. All they really need is the authors' 
permission to publish. 

• Supplemental materials. Publishers should establish style guides for supplemental 
sections, and authors should organize their supplemental materials following best 
practices. 

From http://wiki.stodden.net

http://wiki.stodden.net/Data_must_be_available_and_accessible
http://wiki.stodden.net/Code_and_methods_must_be_available_and_accessible
http://wiki.stodden.net/Citation
http://wiki.stodden.net/Copyright_and_Publisher_Agreements
http://wiki.stodden.net/Supplemental_materials
http://wiki.stodden.net/


Open Science Decoded

Nature Physics May 2015

See http://rdcu.be/cM1W

http://rdcu.be/cM1W


Two  Technologies:

Machine Learning

Cloud Services 



Machine Learning



Machine Learning

storing computing

managing indexing

huge amounts
of data

computers are
great tools for

acquisition discovery

aggregation organization

correlation analysis

interpretation inference

of the world’s information
and knowledge

we would like computers to also 
help with the automatic



Machine Learning or ML

ML is exciting the IT industry since it enables us to:

• Build computing systems that improve with 
experience

• Solve extremely hard problems
• Extract more value from Big Data
• Approach human intelligence

In Science, Bayesian ML techniques help us manage 
uncertainties in data and assign probabilities to model 
predictions



Computational Ecology and Environmental 
Science

Where environmental Questions meet Computer Science

Climate change: arguably 
greatest global challenge of the 
21st century
• What will be the impact of 

policy decisions and human 
actions?

• Will vegetation (mostly forests) 
continue to absorb 25% of 
human CO2 emissions?

Computational Modeling seeks to 
create understanding from data 
sets that are distributed and 
diverse in time and space

 Drew Purves CEES Research Group 
Microsoft Research Cambridge, UK



Global Carbon-Climate Feedback Model

Carbon in 
Ocean

Carbon in 
Atmosphere

Carbon on 
Land

Climate e.g. temperature,
precipitation

e.g. temperature,
winds



Current Terrestrial Carbon 
Models are limited

Years



Dealing with Uncertainty
• Characterize and evaluate the component models of the 

Carbon-Climate feedback cycle
• Use Bayesian inference to characterize missing data and 

uncertainty in predictions
Constrain parameters of component eco-physiological 

processes of a Dynamic Global Vegetation Model (DGVM) 
using 12 global empirical data sets
See paper by Matthew Smith et al. :

“The climate dependence of the terrestrial carbon cycle; including parameter 
and structural uncertainties”

http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012.html



Future Global Changes Predicted with 
Uncertainty Ranges



Cloud Services



Industry is building out massive Infrastructure



Public Internet

Speech Reco Service

Bing
(HW load balancer)

Private Cloud
Servers

(Binaries, Data)

Reco Service Load 
Balancer

Bing Speech Recognition Service 
Architecture

• Voice activity 
detector

• Real time HTTP 
Streaming

• Low Bit rate Codec 
customized for SR

Reco Result 
~1 sec after 
End of input

• Deep Neural Networks
• Internal Benchmark - 13.5% 

word error 



The Cloud Advantages

Omnipresent Services

• Uploading data

• Download commands

• Streaming signals

• Network between Devices

Compute and Storage Elasticity

• Lower barriers to adoption

• Lower barriers to scaling

• Lower overheads

Accelerates Collaboration

• Sharing data

• Sharing algorithms

• Co-authoring

• Reproducible Research

• Cloud offers modest HPC services

• Supports Hadoop, Apache Spark, …

• Machine Learning services for Big Data

Cloud is not High-End Supercomputing



An Example of Cloud Power:
Genomics and Personalized medicine

Use genetic markers to…

 Understand causes of disease

 Diagnose a disease

 Infer propensity to get a 
disease

 Predict reaction to a
drug



‘Moondog’ Azure Cloud Project

• Wellcome Trust data for seven 
common diseases

• With FaST-LMM and Azure, can 
look at all SNP pairs (about 60 
billion of them)

• 1,000 compute years; 20 TB 
output 

• Using 27,000 Azure compute 
cores analysis was completed
in just 13 days 



Moondog project with Azure: First Results

PPARD LIMK1

In coronary artery disease…



Data Science in the Future?





What is a Data Scientist?

Data Engineer People who are expert at 
• Operating at low levels close to the data, write code that manipulates
• They may have some machine learning background. 
• Large companies may have teams of them in-house or they may look to third party 

specialists to do the work.

Data Analyst People who explore data through statistical and analytical methods
• They may know programming;  May be an spreadsheet wizard.
• Either way, they can build models based on low-level data.
• They eat and drink numbers; They know which questions to ask of the data. Every 

company will have lots of these.

Data Steward People who think to managing, curating, and preserving data.
• They are information specialists, archivists, librarians and compliance officers.
• This is an important role: if data has value, you want someone to manage it, make it 

discoverable, look after it and make sure it remains usable.

What is a data scientist? Microsoft UK Enterprise Insights Blog, Kenji Takeda
http://blogs.msdn.com/b/microsoftenterpriseinsight/archive/2013/01/31/what-is-a-data-scientist.aspx



Slide courtesy of Jian Qin



Microsoft – new roles for Data Scientists
DATA & APPLIED SCIENTIST

3 ROLES: 

• DATA SCIENTIST 

• MACHINE LEARNING SCIENTIST

• APPLIED SCIENTIST)



Slide thanks to Bryan Lawrence



Jim Gray’s Vision: All Scientific Data Online

• Many disciplines overlap and use data 
from other sciences. 

• Internet can unify all literature and 
data

• Go from literature to computation to 
data back to literature. 

• Information at your fingertips –
For everyone, everywhere

• Increase Scientific Information 
Velocity

• Huge increase in Science Productivity

(From Jim Gray’s last talk)

Literature

Derived and 
recombined data

Raw Data


