Exact Solutions of
 2d Supersymmetric gauge theories

Abhijit Gadde, IAS

w. Sergei Gukov and Pavel Putrov

UV to IR

- Physics at long distances can be strikingly different from the physics at short distances
- Even the notion of "fundamental" particles may be different
- QED and cooper pairs
- Kinks in the Ising model in strong magnetic fields
- Yang Mills theory and mass gap
- Massless QCD and pions
- Given a microscopic theory, finding its manifestation at long distances is of great practical importance.

Low energy theory

- At very low energy scales (i.e. when all the mass scales are taken to infinity), the spectrum could be of one out of two types:
- Gapped

Degenerate vacuum

- Gapless

Nontrivial theory of gapless modes; No scale

- Nontrivial CFT

Tool:Anomaly matching

Seiberg duality

A success of anomaly matching

Supersymmetric QCD

SU(N) gauge theory $\xrightarrow{\text { dual }}$ SU(Nf-N) gauge theory with Nf quarks with Nf "magnetic" quarks

Non-trivial superconformal field theory

- Only supersymmetric checks

$(0,2)$ Supersymmetric QCD

- Generically, have global symmetries with non-vanishing anomalies \rightarrow CFT
- As we will see, they exhibit Seiberg type duality (actually a triality).
- Power of infinite dimensional conformal invariance, anomaly matching and modular invariance Solution of the theory
- Hence "proving" triality.

Motivation from 4-manifolds

- Compactification of 6d $(2,0)$ theory on d manifold \longrightarrow 6-d dim SCFT
- For $d=2$, complex structure of the Riemann surface becomes the coupling constant 4d $\mathrm{N}=2$ field theory
- Partition functions can be computed from 2d
- For $\mathrm{d}=4$

4-manifolds $\longleftrightarrow 2 \mathrm{~d}(0,2)$ theories
Vafa Witten partition function \longleftrightarrow Elliptic genus

$(0,2)$ Multiplets

- Chiral multiplet: $\bar{D}_{+} \Phi=0$

$$
\Phi=\phi+\sqrt{2} \theta^{+} \psi_{+}-i \theta^{+} \bar{\theta}^{+} \partial_{+} \phi
$$

- Complex scalar
- Complex right-moving fermion
- Fermi multiplet: $\bar{D}_{+} \Psi=0$

$$
\Psi=\psi_{-}-\sqrt{2} \theta^{+} G-i \theta^{+} \bar{\theta}^{+} \partial_{+} \psi_{-}
$$

- Complex left-moving fermion
- Vector multiplet:
- Gauge invariant d.o.f.: Fermi multiplet Λ

$(0,2)$ SQCD

- Similar to $4 \mathrm{~d} N=1$ SQCD, but 2 types of matter
- $\mathrm{U}(\mathrm{Nc})$ gauge theory with Nb Chiral and Nf Fermi
- + Gauge anomaly cancellation - + Normalizable vacuum

Anomalies

Central charge

$$
c_{R}=3 \operatorname{Tr} R^{2}
$$

Dual frames

$(0,2)$ SQCD

- Triality is invariance of the fixed point under permutations of N's
- In addition, there are 3 abelian symmetries

Low energy physics

Poincare symmetry

$$
\text { Affine } \mathfrak{H} \equiv \prod_{i=1}^{3} S U\left(N_{i}\right)_{n_{i}} \times U(1)_{N N_{i}}
$$

- The central charges can be determined from c-extremization and gravitational anomaly

$$
\begin{gathered}
c_{\mathrm{R}}=3 \operatorname{Tr} \gamma^{3} R R, \quad c_{\mathrm{R}}-c_{\mathrm{L}}=\operatorname{Tr} \gamma^{3} \\
c_{\mathrm{R}}=\frac{3}{4} \frac{\left(-N_{1}+N_{2}+N_{3}\right)\left(N_{1}-N_{2}+N_{3}\right)\left(N_{1}+N_{2}-N_{3}\right)}{N_{1}+N_{2}+N_{3}} \\
c_{\mathrm{L}}=c_{\mathrm{R}}-\frac{1}{4}\left(N_{1}^{2}+N_{2}^{2}+N_{3}^{2}-2 N_{1} N_{2}-2 N_{2} N_{3}-2 N_{3} N_{1}\right)+2
\end{gathered}
$$

Low energy solution

Modules of \mathfrak{H}

- Sugawara central charge $=c_{\mathrm{L}}$
- Immense simplification: rational CFT
- Modular invariance of the partition function helps fix $\mathcal{H}_{\mathrm{R}}^{\lambda}$

NS-NS partition function

$$
Z(\tau, \bar{\tau}):=\operatorname{Tr}_{\mathcal{H}} e^{2 \pi i\left(\tau L_{0}-\bar{\tau} \bar{L}_{0}\right)}
$$

Affine character

- Invariant under S and T^{2}
$\mathrm{N}=2$ character

$$
Z(\tau, \bar{\tau})=\sum_{\lambda} \chi_{\lambda}(\tau) K_{\lambda}(\bar{\tau})
$$

Partition function (contd)

Use S invariance: $\quad Z(\tau, \bar{\tau})=Z\left(-\frac{1}{\tau},-\frac{1}{\bar{\tau}}\right)$

$$
\begin{gathered}
\chi_{\lambda} \rightarrow S_{\lambda \mu} \chi_{\mu} \quad S \bar{S}=I \\
\Rightarrow K_{\lambda} \rightarrow \bar{S}_{\lambda \mu} K_{\mu}
\end{gathered}
$$

- K is NOT the anti-holomorphic affine character of \mathfrak{H}
- Note that characters of level-rank dual \mathfrak{H}^{t} transform with \bar{S}

$$
\mathfrak{H}^{t}=\prod S U\left(n_{i}\right)_{N_{i}} \times U(1)_{N n_{i}}
$$

To summarize

- K is an $N=2$ character with central charge $c R$
- It transforms as a character of holomorphic \mathfrak{H}^{t} under modular S-transformation
- Singlet under all affine symmetries

- K is a character of the Kazama- Suzuki coset $[\mathfrak{G}] /\left[\mathfrak{H}^{t}\right]$
(For appropriate \mathfrak{G})

Intermission: SUSY WZW

- $[\mathfrak{g}]_{k}$ is SUSY extension of WZW model \mathfrak{g} at level k
- It is obtained by adding free adjoint fermions to \mathfrak{g}

$$
\begin{aligned}
J^{a} & =J_{\mathrm{bos}}^{a}-\frac{i}{k} f_{b c}^{a} \psi^{a} \psi^{c} \\
k & =k_{\mathrm{bos}}+h^{\vee} \\
c_{[\mathfrak{g}]} & =c_{\mathfrak{g}}+\frac{1}{2} \operatorname{dim} \mathfrak{g}
\end{aligned}
$$

- Matching the right-moving central charge with that of the coset:

$$
c_{[\mathfrak{G}]}=N^{2}
$$

- Combined with the condition $\mathfrak{G} \supset \mathfrak{H}^{t}$

$$
[\mathfrak{G G}]=[U(N)]_{N}=[U(1)]_{N^{2}} \times[S U(N)]_{N}
$$

Bosonic level 0
Only bosonic part $U(1)_{N^{2}}$

- Coset character C is a branching function
$U(1)_{N^{2}}$ module

Solution

- We pick modular invariant combinations $\left(\Lambda_{0}, v_{0}\right)$

Then $\quad K_{\lambda}=\sum_{\lambda^{t}} L_{\lambda, \lambda^{t}} C_{\lambda^{t}}^{\Lambda_{0}, v_{0}}$ has all the desired properties!

$$
\mathcal{H}=\bigoplus_{\lambda, \lambda^{t}} L_{\lambda, \lambda^{t}} \mathcal{H}_{\mathrm{L}}^{\lambda} \otimes \mathcal{H}_{\mathrm{R}}^{\lambda^{t}}
$$

Module of $[\mathfrak{G}] /\left[\mathfrak{H}^{t}\right]$

- Matches with the UV computation of the index

Example

$$
\mathfrak{H}=\left(S U(2)_{1} \times U(1)_{6}\right)^{3}
$$

$$
[\mathfrak{G}] /\left[\mathfrak{H}^{t}\right]=[U(3)]_{3} /\left[U(1)_{3}\right]^{3}
$$

$$
\dagger
$$

$\mathrm{c}=\mathrm{I}$ minimal model

$$
\begin{aligned}
Z_{\mathcal{T}_{222}} & =\chi_{(0,0)}^{\mathcal{N}=2}(\bar{\tau}, \bar{\eta})\left(\Xi_{0,0,0}(\tau)+\Xi_{1,1,1}(\tau)+\Xi_{-1,-1,-1}(\tau)\right) \\
& +\chi_{\left(\frac{1}{6}, \frac{1}{3}\right)}^{\mathcal{N}=2}(\bar{\tau}, \bar{\eta})\left(\Xi_{1,0,-1}(\tau)+\Xi_{-1,1,0}(\tau)+\Xi_{0,-1,1}(\tau)\right) \\
& +\chi_{\left(\frac{1}{6},-\frac{1}{3}\right)}^{\mathcal{N}=2}(\bar{\tau}, \bar{\eta})\left(\Xi_{-1,0,1}(\tau)+\Xi_{1,-1,0}(\tau)+\Xi_{0,1,-1}(\tau)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\Xi_{a, b, c}\left(\tau, \xi_{1}, \xi_{2}, \xi_{3}\right) & :=\Xi_{a}\left(\tau, \xi_{1}\right) \Xi_{b}\left(\tau, \xi_{2}\right) \Xi_{c}\left(\tau, \xi_{3}\right) \\
\Xi_{-1}(\tau, \xi) & :=\chi_{(\square,-1)}^{\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{6}}(\tau, \xi)+\chi_{(\cdot, 2)}^{\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{6}}(\tau, \xi) \\
\Xi_{0}(\tau, \xi) & :=\chi_{(\cdot, 0)}^{\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{6}}(\tau, \xi)+\chi_{(\square, 3)}^{\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{6}}(\tau, \xi) \\
\Xi_{1}(\tau, \xi) & :=\chi_{(\square, 1)}^{\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{6}}(\tau, \xi)+\chi_{(\cdot,-2)}^{\mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{6}}(\tau, \xi) .
\end{aligned}
$$

Remarkably

$Z_{\tau_{222}}=\chi_{(0,0)}^{\mathcal{N}=2}(\bar{\tau}, \bar{\eta}) \chi_{\bullet}^{\left(\mathrm{E}_{6}\right)_{1}}\left(\tau, \xi_{i}\right)+\chi_{\left(\frac{1}{6}, \frac{1}{3}\right)}^{\mathcal{N}=2}(\bar{\tau}, \bar{\eta}) \chi_{\square}^{\left(\mathrm{E}_{6}\right)_{1}}\left(\tau, \xi_{i}\right)+\chi_{\left(\frac{1}{6}, \frac{1}{3}\right)}^{\mathcal{N}=2}(\bar{\tau}, \bar{\eta}) \chi_{\bar{\square}}^{\left(\mathrm{E}_{6}\right)_{1}}\left(\tau, \xi_{i}\right)$

Triality and enhancement

Solution to a general quiver

Thank you!

