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UV to IR
• Physics at long distances can be strikingly different 

from the physics at short distances

• Even the notion of “fundamental” particles may be 
different

• QED and cooper pairs

• Kinks in the Ising model in strong magnetic fields

• Yang Mills theory and mass gap

• Massless QCD and pions

• Given a microscopic theory, finding its manifestation 
at long distances is of great practical importance.



Low energy theory
• At very low energy scales (i.e. when all the mass 

scales are taken to infinity), the spectrum could 
be of one out of two types:

• Gapped

Degenerate vacuum

• Gapless

Nontrivial theory of gapless 
modes; No scale

• Nontrivial CFT          Tool: Anomaly matching



Seiberg duality
A success of anomaly matching

SU(N) gauge theory
with Nf quarks

SU(Nf-N) gauge theory
with Nf  “magnetic” quarks

and Mesons

Supersymmetric QCD
dual

Non-trivial superconformal field theory

• Only supersymmetric checks



(0,2) Supersymmetric QCD

• Generically, have global symmetries with 
non-vanishing anomalies          CFT 

• As we will see, they exhibit Seiberg type 
duality (actually a triality).

• Power of infinite dimensional conformal 
invariance, anomaly matching and modular 
invariance          Solution of the theory

• Hence “proving” triality.



Motivation from 4-manifolds

• Compactification of 6d (2,0) theory on d-
manifold           6-d dim SCFT 

• For d=2, complex structure of the Riemann 
surface becomes the coupling constant 4d N=2 
field theory

• Partition functions can be computed from 2d

• For d=4

4-manifolds                      2d (0,2) theories

Vafa Witten partition function               Elliptic genus



(0,2) Multiplets

• Complex scalar 

• Complex right-moving fermion

• Complex left-moving fermion 

• Vector multiplet:

• Chiral multiplet:  
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• Gauge invariant d.o.f.: Fermi multiplet ⇤



(0,2) SQCD
• Similar to 4d N=1 SQCD, but 2 types of matter
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Anomalies
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Central charge
cR = 3TrR2
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(0,2) SQCD
Symmetric labeling

N1 +N2 �N3

2

• Triality is invariance of the fixed point under permutations of N’s

�N1 +N2 �N3

2

��N1 +N2 +N3

2

�N1 �N2 +N3

2

⌘ n1

⌘ n2

⌘ n3

• In addition, there are 3 abelian symmetries



Low energy physics
Poincare symmetry

Virasoro N=2 superconformal (0,2)

Affine H ⌘
3Y

i=1

SU(Ni)ni ⇥ U(1)NNi

• The central charges can be determined from c-extremization 
and gravitational anomaly 

cR = 3Tr�3RR , cR � cL = Tr�3

cR =
3

4

(�N1 +N2 +N3)(N1 �N2 +N3)(N1 +N2 �N3)

N1 +N2 +N3

cL = cR �
1

4
(N2

1 +N2
2 +N2

3 � 2N1N2 � 2N2N3 � 2N3N1) + 2



Low energy solution

H =
M

�

H�
L ⌦H�

R

Integrable modules Modules of N=2

• Immense simplification: rational CFT

• Modular invariance of the partition function helps fix H�
R

• Sugawara central charge = cL

Modules of H



NS-NS partition function

• Invariant under     and  S T 2

Affine character
N=2 character

Z(⌧, ⌧̄) := TrHe2⇡i(⌧L0�⌧̄L̄0)

Z(⌧, ⌧̄) =
X

�

��(⌧)K�(⌧̄)



Partition function (contd)

• K is NOT the anti-holomorphic affine character of H

• Note that characters of level-rank dual       
transform with

Ht

S̄

Ht =
Y

SU(ni)Ni ⇥ U(1)Nni

�� ! S�µ �µ

K� ! S̄�µ Kµ)

SS̄ = I

Use S invariance: Z(⌧, ⌧̄) = Z(�1

⌧
,�1

⌧̄
)



To summarize

• K is an N=2 character with central charge cR

• It transforms as a character of holomorphic        
under modular S-transformation

• Singlet under all affine symmetries 

Ht

• K is a character of the Kazama- Suzuki coset [G]/[Ht]

( For appropriate    )G



Intermission: SUSY WZW

[g]k•       is SUSY extension of  WZW model     at level k

• It is obtained by adding free adjoint fermions to          

g

g

Ja = Ja
bos

� i

k
fa
bc 

a c

k = k
bos

+ h_

c[g] = cg +
1

2
dim g

• Matching the right-moving central charge with that 
of the coset:

c[G] = N2



• Combined with the condition G � Ht

[G] = [U(N)]N = [U(1)]N2 ⇥ [SU(N)]N

Bosonic level 0

Only bosonic part U(1)N2

• Coset character C is a branching function

C⇤,�
�t

moduleU(1)N2

module
SO(dimG/Ht)

moduleHt



Solution
• We pick modular invariant combinations  (⇤0, �0)

K� =
X

�t

L�,�t C⇤0,�0

�tThen

has all the desired properties!

H =
M

�,�t

L�,�t H�
L ⌦H�t

R

Module of Module of H [G]/[Ht]

• Matches with the UV computation of the index



Example

2

2

2

1

H =
⇣
SU(2)1 ⇥ U(1)6

⌘3
[G]/[Ht] = [U(3)]3/[U(1)3]

3

c=1 minimal model
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All other C⇤0,�0
�t are zero. The characters K� are determined using level-rank duality matrix.

This gives the complete low-energy spectrum as a specific pairing of modules of the left-

moving algebra H and modules of the right-moving N = 2 algebra. The partition function is

computed using (3.5):

ZT222 = �N=2
(0,0) (⌧ , ⌘)

⇣
⌅0,0,0(⌧) + ⌅1,1,1(⌧) + ⌅�1,�1,�1(⌧)

⌘
(3.26)

+ �N=2
( 16 ,

1
3 )
(⌧ , ⌘)

⇣
⌅1,0,�1(⌧) + ⌅�1,1,0(⌧) + ⌅0,�1,1(⌧)

⌘
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( 16 ,� 1

3 )
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⌘

The shorthand notation ⌅a,b,c(⌧) stands for ⌅a,b,c(⌧, ⇠1, ⇠2, ⇠3), defined as

⌅a,b,c(⌧, ⇠1, ⇠2, ⇠3) := ⌅a(⌧, ⇠1)⌅b(⌧, ⇠2)⌅c(⌧, ⇠3) (3.27)
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SU(2)1⇥U(1)6
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SU(2)1⇥U(1)6
(·,�2) (⌧, ⇠).

The left-moving characters in (3.26) are obviously invariant under the Z3 symmetry, i.e.

the cyclic permutation of the three SU(2)1 ⇥ U(1)6 factors. This is consistent with the

triality of the UV gauge theory description. They also have manifest Z2 symmetry which is

a combination of charge conjugation and odd permutation.

Remarkably, the left-moving characters combine to form E6 characters at level 1. The

(E6)1 admits only three modules, the vacuum module •, the fundamental module ⇤ and the

anti-fundamental module ⇤. In terms of their characters, the partition function takes a much

more compact form,
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⇤ (⌧, ⇠i), (3.28)

where the variables ⇠i stand for collective E6 fugacities. Correspondingly, the three holo-

morphic modules of (E6)1 elegantly pair up with three anti-holomorphic modules of N = 2
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Figure 9: Extended Dynkin diagram of E
6

, viewed from three triality frames.

From our analysis in section 2, we know that the left-moving a�ne current algebra is

H :=
3Y

i=1

SU(Ni)ni ⇥U(1)NNi (3.1)

and the Sugawara central charge for H is

cH =
3X

i=1

⇣ni(N2
i � 1)

ni +Ni
+ 1

⌘
. (3.2)

Here we used the formula cg = k dim g/(k+ h_g ) for an a�ne symmetry g at level k, with the

dual Coxeter number h_g . Remarkably, the central charge in (3.2) is exactly equal to the left-

moving central charge cL of the gauge theory, see eq. (2.10). This implies that holomorphic

stress tensor is equal to the Sugawara stress tensor of the current algebra and hence the

low-energy spectrum of TN1,N2,N3 consists of states of the type | iL⌦ | iR where | iL belongs

to a module of the corresponding chiral WZW model. The spectrum simplifies immensely as

there are only finitely many such modules labeled by the integrable representations � of the

current algebra:

H =
M

�

H�
LWZW ⌦H�

R . (3.3)

Here H�
LWZW is the module of left-moving H WZW model labeled by �. In addition to con-

straining the left-moving spectrum, this decomposition also defines the right-moving subspace

H�
R that forms a (not necessarily irreducible) representation of N = 2 superconformal algebra.

The partition function of the CFT in the NS-NS sector is defined as

Z(⌧, ⇠i; ⌧ , ⌘) := TrH e2⇡i(⌧L0+
P

i ⇠iH
i
0�⌧L0�⌘ J0) q = e2⇡i⌧ , y = e2⇡i⌘, zi = e2⇡i⇠i .

Here, ⌧ is the complex structure of the torus, the chemical potential ⌘ couples to the R-

symmetry in the right-moving sector and the chemical potentials ⇠i couple to Cartan gener-

ators H i
0 of the global symmetries H in the left-moving sector. We will sometimes use the

– 12 –

Triality and enhancement
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cH =
3X

i=1

⇣ni(N2
i � 1)

ni +Ni
+ 1

⌘
. (3.2)

Here we used the formula cg = k dim g/(k+ h_g ) for an a�ne symmetry g at level k, with the

dual Coxeter number h_g . Remarkably, the central charge in (3.2) is exactly equal to the left-

moving central charge cL of the gauge theory, see eq. (2.10). This implies that holomorphic

stress tensor is equal to the Sugawara stress tensor of the current algebra and hence the

low-energy spectrum of TN1,N2,N3 consists of states of the type | iL⌦ | iR where | iL belongs

to a module of the corresponding chiral WZW model. The spectrum simplifies immensely as

there are only finitely many such modules labeled by the integrable representations � of the

current algebra:

H =
M

�

H�
LWZW ⌦H�

R . (3.3)

Here H�
LWZW is the module of left-moving H WZW model labeled by �. In addition to con-

straining the left-moving spectrum, this decomposition also defines the right-moving subspace

H�
R that forms a (not necessarily irreducible) representation of N = 2 superconformal algebra.

The partition function of the CFT in the NS-NS sector is defined as

Z(⌧, ⇠i; ⌧ , ⌘) := TrH e2⇡i(⌧L0+
P

i ⇠iH
i
0�⌧L0�⌘ J0) q = e2⇡i⌧ , y = e2⇡i⌘, zi = e2⇡i⇠i .

Here, ⌧ is the complex structure of the torus, the chemical potential ⌘ couples to the R-

symmetry in the right-moving sector and the chemical potentials ⇠i couple to Cartan gener-

ators H i
0 of the global symmetries H in the left-moving sector. We will sometimes use the
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Figure 6: An example of a general quiver.

to all closed triangular loops in the quiver diagram. It is important that the representations

of the chiral multiplets are compatible with such a superpotential. Moreover, we require every

chiral multiplet to be part of a superpotential term. The orientation of the fermionic edge is

automatically determined by the orientation of the bososnic edges.

For each gauge node 6

i�, let us define X
i

⌘ { j� : j� ! i�},Y
i

⌘ { j� : j�  i�} and

Z
i

⌘ { j� : j� - - i�}. The cancellation of SU(N
i

) anomaly requires

N
i

=
⇣ X

j�2Xi

N
j

+
X

j�2Yi

N
j

�
X

j�2Zi

N
j

⌘
/2 . (4.1)

This condition uniquely determines the ranks of gauge groups in terms of the ranks of flavor

groups. In order to cancel the anomaly for the U(1)
i

part of the gauge node i�, we need

to introduce Fermi multiplets ⌦
`

in representations detn
`
i of U(N

i

). The U(1)
i

anomaly

cancellation as well as the mixed anomaly cancellation between U(1)
i

and U(1)
j

require
X

`

n`

i

n`

j

= 2�
ij

�A
ij

, (4.2)

where A
ij

is the super-adjacency matrix of the quiver in which bosonic and fermionic edges

contribute +1 and �1, respectively. It follows that if the gauge nodes form a tree, it should be

of the ADE type because the vectors ~n
i

define a root system. It is an interesting combinatorial

exercise to classify all the graphs admitting solutions to (4.1) and (4.2). Note that, if we choose

to gauge only the SU(N) part of the gauge group then we do not need to worry about the

condition (4.2).

4.1 The triality rules

The triality of section 3 now acts on each individual node. The general transformation rules

for a “local” triality at i� are:

6
To emphasize the rank of the gauge node

i�, we sometimes use the notation .
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Thank you!


