A three-dimensional bridge between physics and mathematics

Tudor Dimofte
Institute for Advanced Study
A three-dimensional bridge between physics and mathematics

“Mathematics provides the language for physics; physics gives life to mathematics.”
- Mina Aganagic
A three-dimensional bridge between physics and mathematics

“Mathematics provides the language for physics; physics gives life to mathematics.”
- Mina Aganagic

I’d like to discuss an example of this symbiosis, in a correspondence that I helped develop, which has been one of the major themes in my work.
A three-dimensional bridge between physics and mathematics

“Mathematics provides the language for physics; physics gives life to mathematics.”
- Mina Aganagic

I’d like to discuss an example of this symbiosis, in a correspondence that I helped develop, which has been one of the major themes in my work.

“3d-3d correspondence”
“3d-3d correspondence”

\[M \ , \ g \ \sim \rightarrow \ T_g[M] \]

3-manifold A,D,E 3d (N=2) SUSY field theory

first hints: [Dimofte-Gukov-Hollands ’10]
“3d-3d correspondence”

\[M, \, g \overset{\sim}{\mapsto} T_g[M] \]

3-manifold \(A, D, E \) \quad 3d (N=2) SUSY field theory

depending only on topology of \(M \)!

first hints:
[Dimofte-Gukov-Hollands '10]
“3d-3d correspondence”

\[M, g \xrightarrow{\sim} T_g[M] \]

3-manifold \(A,D,E \) \hspace{1cm} 3d (N=2) SUSY field theory

depending only on topology of \(M \)!

\[T_g[M] \] is a top-level top’l inv’t of \(M \)

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.

first hints:
[Dimofte-Gukov-Hollands ’10]
“3d-3d correspondence”

\[M, g \overset{\sim}{\rightarrow} T_g[M] \]

3-manifold \(A, D, E \) \hspace{2cm} 3d (N=2) SUSY field theory depending only on topology of \(M \)!

first hints: [Dimofte-Gukov-Hollands ’10]

\(T_g[M] \) is a top-level top’l inv’t of \(M \)

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.

e.g.: hyperbolic volume \(\text{Vol}(M) \) \hspace{2cm} [Mostow ’73]

space of flat \(G_\mathbb{C} \) conn’s \(\mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \)
"3d-3d correspondence"

\[M, g \sim \mapsto T_g[M] \]

3-manifold \(A, D, E \) \rightarrow 3d (N=2) SUSY field theory

depending only on topology of \(M \)!

\(T_g[M] \) is a top-level top’l inv’t of \(M \)

- its observables (quantities one can compute) all correspond
to classical, quantum, or categorical topological invariants,
some old, but many new.

ev.g.: hyperbolic volume \(\text{Vol}(M) \) \[\text{[Mostow '73]}\]
space of flat \(G_\mathbb{C} \) conn’s \(\mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \)
complex Chern-Simons part’n f’n \(\mathcal{Z}^{G_\mathbb{C}}_{CS}(M) \)

cf. Jones poly, WRT \[\text{[Witten '89, Reshetikhin-Turaev '91]}\]
“3d-3d correspondence”

\[M, \mathfrak{g} \sim \rightarrow T_{\mathfrak{g}}[M] \]

3-manifold A,D,E \hspace{1cm} 3d (N=2) SUSY field theory

depending only on topology of M!

\[T_{\mathfrak{g}}[M] \] is a top-level top’l inv’t of \(M \)

- its observables (quantities one can compute) all correspond to classical, quantum, or categorical topological invariants, some old, but many new.

e.g.: hyperbolic volume \(\text{Vol}(M) \) \[\text{[Mostow '73]} \]
space of flat \(G_{\mathbb{C}} \) conn’s \(\mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}}) \)

complex Chern-Simons part’n f’n \(\mathcal{Z}_{CS}^{G_{\mathbb{C}}}(M) \)

cf. Jones poly, WRT \[\text{[Witten '89, Reshetikhin-Turaev '91]} \]
categorification
“3d-3d correspondence”

\[M, g \mapsto T_g[M] \]

first hints: [Dimofte-Gukov-Hollands '10]

More than just theory!

e.g.: hyperbolic volume \(\text{Vol}(M) \) [Mostow '73]
space of flat \(G_\mathbb{C} \) conn’s \(\mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \)
complex Chern-Simons part’n f’n \(Z_{CS}^{G_\mathbb{C}}(M) \)
cf. Jones poly, WRT [Witten '89, Reshetikhin-Turaev '91]
categorification
“3d-3d correspondence”

\[M \ , \ g \ \sim\sim \ T_g[M] \]

first hints:
[Dimofte-Gukov-Hollands ’10]

More than just theory!

“Most” \(M \ , \ g = \mathfrak{sl}_2 \) : explicit construction of \(T_g[M] \)

[Dimofte-Gaiotto-Gukov ’11]
[Cecotti-Cordova-Vafa ’11]
[Dimofte-Gaiotto-v.d.Veen ’13]

\(g = \mathfrak{sl}_n \) :

[Dimofte-Gabella-Goncharov ’13]
“3d-3d correspondence”

\[M, \ g \mapsto T_g[M] \]

first hints:
[Dimofte-Gukov-Hollands ’10]

More than just theory!

“Most” \[M, \ g = sl_2 : \] explicit construction of \[T_g[M] \]

[Dimofte-Gaiotto-Gukov ’11]
[Cecotti-Cordova-Vafa ’11]
[Dimofte-Gaiotto-v.d.Veen ’13]

\[g = sl_n : \]

[Dimofte-Gabella-Goncharov ’13]

Main tool: (topological) ideal triangulations
+ a generalization of Thurston-Neumann-Zagier gluing methods from hyperbolic geometry (’80’s)

[Dimofte ’11]
“3d-3d correspondence”

\[M, g \quad \leadsto \quad T_g[M] \]

Results?

Main tool: (topological) ideal triangulations
+ a generalization of Thurston-Neumann-Zagier gluing methods from hyperbolic geometry (’80’s)

[Dimofte ’11]
“3d-3d correspondence”

\[M, \ g \quad \sim \Rightarrow \quad T_g[M] \]

Results?
Math: New “quantum” topological invariants, a comb’r definition of the \(G_C \) Chern-Simons part’n function
\[Z_{CS}^{G_C}(M) \]
for all CS levels \(k \in \mathbb{Z} \)

Main tool: (topological) ideal triangulations + a generalization of Thurston-Neumann-Zagier gluing methods from hyperbolic geometry (’80’s)

[Dimofte-Gaiotto-Gukov ’11]
[Dimofte ’14]
“3d-3d correspondence”

\[M, g \quad \sim \quad T_g[M] \]

Results?

Math: New “quantum” topological invariants,
a comb’r definition of the \(G_\mathbb{C} \) Chern-Simons part’n function
\[Z_{CS}^{G_\mathbb{C}}(M) \]
for all CS levels \(k \in \mathbb{Z} \)

- analyzing asymptotics of \(Z_{CS}^{G_\mathbb{C}}(M) \) (easy!)

\(\sim \) simple, conjectured (tested) formula for
\(G_\mathbb{C} \)-twisted Reidemeister-Ray-Singer torsion of \(M \)

[Dimofte-Gaiotto-Gukov ’11]
[Dimofte ’14]

[Dimofte-Garoufalidis ’12]
“3d-3d correspondence”

\[M, \ g \quad \rightsquigarrow \quad T_g[M] \]

Results?

Math: New “quantum” topological invariants, a comb’r definition of the \(G_C \) Chern-Simons part’n function \(Z_{CS}^{G_C}(M) \) for all CS levels \(k \in \mathbb{Z} \)

- analyzing asymptotics of \(Z_{CS}^{G_C}(M) \) (easy!)
 \(\rightsquigarrow \) simple, conjectured (tested) formula for \(G_C \)-twisted Reidemeister-Ray-Singer torsion of \(M \)
 [Dimofte-Garoufalidis ’12]
<predictions for asymptotics of colored Jones poly’s (hard!; play a role in Volume Conjecture)
 [Kashaev ’97, Murakami-Murakami ’99, Gukov ’03]
 [Dimofte-Gukov-Lenells-Zagier ’08]
 [Dimofte-Garoufalidis ’15]
“3d-3d correspondence”

\[M, \ g \ \sim\Rightarrow \ T_g[M] \]

Results?

Math: a comb’r definition of the \(G_C \) Chern-Simons part’n function \(Z_{CS}^G(M) \)

Hopefully: a combinatorial definition for \(G_C \) 3-manifold homology!

in progress w/ Gaiotto-Moore

(Analogous to Khovanov homology for \(G \))

- analyzing asymptotics of \(Z_{CS}^G(M) \) (easy!)

\[\sim\Rightarrow \text{simple, conjectured (tested) formula for} \]

\(G_C \)-twisted Reidemeister-Ray-Singer torsion of \(M \)

[Dimofte-Garoufalidis ’12]

predictions for asymptotics of colored Jones poly’s

(hard!; play a role in Volume Conjecture)

[Kashaev ’97, Murakami-Murakami ’99, Gukov ’03]

[Dimofte-Gukov-Lenells-Zagier ’08]

[Dimofte-Garoufalidis ’15]
“3d-3d correspondence”

\[M, g \sim \rightarrow T_g[M] \]

Results?

Physics: Intuition!

Properties of 3d N=2 theories are governed by the geometry of 3-manifolds!
“3d-3d correspondence”

\[M, \ g \quad \sim \quad T_g[M] \]

Results?

Physics: Intuition!

Properties of 3d N=2 theories are governed by the geometry of 3-manifolds!

- geometric description of (IR) dualities within a large class of 3d N=2 SUSY gauge theories
 (from different ways to cut/glue the same \(M \))
“3d-3d correspondence”

\[M, g \quad \rightsquigarrow \quad T_g[M] \]

Results?

Physics: Intuition!

Properties of 3d N=2 theories are governed by the geometry of 3-manifolds!

- geometric description of (IR) dualities within a large class of 3d N=2 SUSY gauge theories (from different ways to cut/glue the same \(M \))

- systematic construction of superconformal interfaces

\[T_g[M] \]

[Dimofte-Gaiotto-v.d.Veen ‘13]

4d N=2 T \quad 4d N=2 T’
“3d-3d correspondence”

\[M, \ g \quad \sim \quad T_g [M] \]

Results?

Physics: Intuition!

Properties of 3d N=2 theories are governed by the geometry of 3-manifolds!

- geometric description of (IR) dualities within a large class of 3d N=2 SUSY gauge theories (from different ways to cut/glue the same \(M \))

- systematic construction of superconformal interfaces

\[T_g [M] \]

[S-duality: \(g_{YM} \) \(g'_{YM} \sim 1/g_{YM} \)]

[Dimofte-Gaiotto-v.d.Veen ’13]
Remainder of the talk:

\[T_g[M] \]

S-duality:

4d N=2 T

\[g_{YM} \]

4d N=2 T'

\[g'_{YM} \sim 1/g_{YM} \]

[Dimofte-Gaiotto-v.d.Veen '13]
Remainder of the talk:

- a few more details on the correspondence, and observables of $T_\mathfrak{g}[\mathcal{M}]$
Remainder of the talk:
- a few more details on the correspondence, and observables of $T_g[M]$
- tetrahedra, formulas, and examples
Remainder of the talk:
- a few more details on the correspondence, and observables of $T_g[M]$
- tetrahedra, formulas, and examples
- first look at homological/categorical invariants
The correspondence

Starting point: 6d \((2,0) \) SCFT

"theory \(\mathcal{X} \)"

[Strominger, Witten '90's]

super-conformal-field-theory
The correspondence

super-conformal-field-theory

Starting point: 6d (2,0) SCFT

“theory \mathcal{X}”

(world-volume theory of M5 branes)

[Strominger, Witten '90's]
The correspondence

starting point: 6d (2,0) SCFT “theory \(\mathcal{X} \)”

(world-volume theory of M5 branes)

labelled by an ADE symmetry algebra \(\mathfrak{g} \)

[Strominger, Witten '90's]
The correspondence

Starting point: 6d \((2,0)\) SCFT

“theory \(\mathcal{X}\)”

(world-volume theory of M5 branes)

labelled by an ADE symmetry algebra \(\mathfrak{g}\)

\[\mathcal{X}_g\] on \(M \times \mathbb{R}^3\) (topological twist on M)

\(\leadsto\) effective theory \(T_g[M]\) on \(\mathbb{R}^3\)
The correspondence

Starting point: 6d (2,0) SCFT
“theory \mathcal{X}”
(world-volume theory of M5 branes)
labelled by an ADE symmetry algebra \mathfrak{g}

\mathcal{X}_g on $M \times \mathbb{R}^3$ (topological twist on M)
$\sim \Rightarrow$ effective theory $T_g[M]$ on \mathbb{R}^3

How to describe $T_g[M]$?
The correspondence

Starting point: 6d (2,0) SCFT "theory \mathcal{X}"

(world-volume theory of M5 branes)

labelled by an ADE symmetry algebra \mathfrak{g}

\mathcal{X}_g on $M \times \mathbb{R}^3$ (topological twist on M)

\leadsto effective theory $T_g[M]$ on \mathbb{R}^3

How to describe $T_g[M]$?

- direct, first-principles is hard: \mathcal{X} has no Lagrangian
The correspondence

super-conformal-field-theory

Starting point: 6d (2,0) SCFT

“theory \mathcal{X}”

(world-volume theory of M5 branes)

labelled by an ADE symmetry algebra \mathfrak{g}

\mathcal{X}_g on $M \times \mathbb{R}^3$ (topological twist on M)

\leadsto effective theory $T_g[M]$ on \mathbb{R}^3

How to describe $T_g[M]$?

- direct, first-principles is hard: \mathcal{X} has no Lagrangian

- nevertheless, can infer many properties of $T_g[M]$ + its compact’ns
The correspondence

Basic property:

\[\{ \text{vacua of } T_g[M] \text{ on } \mathbb{R}^2 \times S^1 \} = \{ \text{flat } G_{\mathbb{C}} \text{ connections on } M \} \]

\[\mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}}) \]

To see this:

\[\begin{align*}
6d & \quad \mathcal{X}_g & \quad M \times \mathbb{R}^2 \times S^1 \\
3d & \quad T_g[M] & \quad \mathbb{R}^2 \times S^1 \\
2d & & \quad \mathbb{R}^2
\end{align*} \]

How to describe \(T_g[M] \)?

- direct, first-principles is hard: \(\mathcal{X} \) has no Lagrangian
- nevertheless, can infer many properties of \(T_g[M] \) + its compact’ns
The correspondence

Basic property:

\[\{ \text{vacua of } T_g[M] \text{ on } \mathbb{R}^2 \times S^1 \} = \{ \text{flat } G_{\mathbb{C}} \text{ connections on } M \} = \mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}}) \]

To see this:

How to describe \(T_g[M] \)?
- direct, first-principles is hard: \(\mathcal{X} \) has no Lagrangian
- nevertheless, can infer many properties of \(T_g[M] \) + its compact’ns
The correspondence

Basic property:

\[\{ \text{vacua of } T_g[M] \text{ on } \mathbb{R}^2 \times S^1 \} = \{ \text{flat } G_\mathbb{C} \text{ connections on } M \} \equiv \mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \]

To see this:

\[
\begin{align*}
6d \quad &X_g & M \times \mathbb{R}^2 \times S^1 \\
3d \quad &T_g[M] & \mathbb{R}^2 \times S^1 \\
2d & & \mathbb{R}^2 \\
5d \text{ super-YM} & & M \times \mathbb{R}^2
\end{align*}
\]

look at the vacua of 5d SYM, topologically twisted on M

[has a Lagrangian!]
The correspondence

Basic property:

\{\text{vacua of } T_g[M] \text{ on } \mathbb{R}^2 \times S^1\} = \{\text{flat } G_C \text{ connections on } M \} \\
\mathcal{M}_{\text{flat}}(M, G_C)

To see this:

\begin{align*}
\text{6d } \mathcal{X}_g & \quad M \times \mathbb{R}^2 \times S^1 \\
\text{3d } T_g[M] & \quad \mathbb{R}^2 \times S^1 \\
\text{2d } & \quad \mathbb{R}^2 \\
\text{5d super-YM} & \quad M \times \mathbb{R}^2
\end{align*}

[has a Lagrangian!]

look at the vacua of 5d SYM, topologically twisted on M

fields \quad A_a, \phi_a \in g \\
(a = 1, 2, 3)
The correspondence

Basic property:

\[\{ \text{vacua of } T_g[M] \text{ on } \mathbb{R}^2 \times S^1 \} = \{ \text{flat } G_C \text{ connections on } M \} \]

To see this:

\[\begin{align*}
6d & \quad \mathcal{X}_g \quad M \times \mathbb{R}^2 \times S^1 \\
3d & \quad T_g[M] \quad \mathbb{R}^2 \times S^1 \quad M \times \mathbb{R}^2 \\
2d & \quad \mathbb{R}^2 \\
5d \text{ super-YM} & \quad \{ \text{has a Lagrangian!} \}
\end{align*} \]

look at the vacua of 5d SYM, topologically twisted on M

fields \(A_a, \phi_a \in g \) \((a = 1, 2, 3) \)

\[\sim \rightarrow \quad A_a = A_a + i \phi_a \]

\(G_C \) connection on \(M \)
The correspondence

Basic property:

\[\{ \text{vacua of } T_g[M] \text{ on } \mathbb{R}^2 \times S^1 \} = \{ \text{flat } G_C \text{ connections on } M \} \]

\[\mathcal{M}_{\text{flat}}(M, G_C) \]

To see this:

\begin{align*}
\text{6d} & \quad \mathcal{X}_g & \quad M \times \mathbb{R}^2 \times S^1 \\
\text{3d} & \quad T_g[M] & \quad \mathbb{R}^2 \times S^1 \\
\text{2d} & \quad & \quad M \times \mathbb{R}^2 \\
\text{5d super-YM} & \quad & \quad [\text{has a Lagrangian!}] \\
\end{align*}

look at the vacua of 5d SYM, topologically twisted on M

fields \[A_a, \phi_a \in g \quad (a = 1, 2, 3) \]

\[\rightsquetext{A_a = A_a + i\phi_a} \]

minimize potential:

\[dA + A \wedge A = 0 \]

\[\text{flat} \]
The correspondence

$$T_g[M]$$

{vacua on $\mathbb{R}^2 \times S^1$} = {flat G_C connections} $\mathcal{M}_{\text{flat}}(M, G_C)$

[Dimofte-Gukov-Hollands '10]

look at the vacua of 5d SYM, topologically twisted on M

fields $A_a, \phi_a \in g$ ($a = 1, 2, 3$)

\leadsto $A_a = A_a + i\phi_a$

G_C connection on M

minimize potential: $dA + A \wedge A = 0$

flat
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\} = \{\text{flat } G_\mathbb{C} \text{ connections}\} \ M_{\text{flat}}(M, G_\mathbb{C})

[Dimofte-Gukov-Hollands '10]

quantize!

look at the vacua of 5d SYM, topologically twisted on \(M \)

fields \(A_a, \phi_a \in \mathfrak{g} \) \((a = 1, 2, 3) \)

\(\sim \rightarrow \) \(A_a = A_a + i\phi_a \)

\(G_\mathbb{C} \) connection on \(M \)

minimize potential:

\[dA + A \wedge A = 0 \] flat
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\) = \{flat \(G_\mathbb{C} \) connections\} \(\mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \)

[Dimofte-Gukov-Hollands '10]

quantize!

\(G_\mathbb{C} \) Chern-Simons theory on \(M \)

\(\mathcal{A} \): \(g_\mathbb{C} \)-valued 1-form

\[Z_{CS}[M] = \int \mathcal{D}A \mathcal{D}\overline{A} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(A) + \frac{k-i\sigma}{8\pi i} I_{CS}(\overline{A})} \]

[Witten '91]

\[I_{CS}(\mathcal{A}) := \int_M \text{Tr} \left(\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A} \right) \]
The correspondence

\[T_g[M] \quad \{ \text{vacua on } \mathbb{R}^2 \times S^1 \} = \quad \{ \text{flat } G_\mathbb{C} \text{ connections} \} \quad \mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \]

[Dimofte-Gukov-Hollands '10]

quantize!

\[Z_{CS}[M] = \int \mathcal{D}A \mathcal{D}\overline{A} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(A)+\frac{k-i\sigma}{8\pi i} I_{CS}(\overline{A})} \]

[I_{CS}(A) := \int_M \text{Tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) \]

\[k \in \mathbb{Z} \quad \sigma \in \mathbb{R} \text{ (or } \mathbb{C} \text{)} \]

\(G_\mathbb{C}\) Chern-Simons theory on \(M\)

\(A\) : \(g_\mathbb{C}\)-valued 1-form
The correspondence

\[T_g[M] \]

\{vacua on \ \mathbb{R}^2 \times S^1\} = \{flat \ G_\mathbb{C} connections\} \ \mathcal{M}_{\text{flat}}(M, G_\mathbb{C})

[Dimofte-Gukov-Hollands '10]

quantize!

\(G_\mathbb{C} \) Chern-Simons theory on \(M \)

\(\mathcal{A}: \ g_\mathbb{C}\text{-valued 1-form} \)

\[
\mathcal{Z}_{CS}[M] = \int \mathcal{D}A \mathcal{D}\overline{A} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(A) + \frac{k-i\sigma}{8\pi i} I_{CS}(\overline{A})} \]

[Witten '91]

\(k \in \mathbb{Z} \quad \sigma \in \mathbb{R} \) (or \(\mathbb{C} \)) \quad I_{CS}(A) := \int_M \text{Tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right)

- classical sol’ns are flat \(G_\mathbb{C} \) connections
The correspondence

\[T_g[M] \]

\{ vacua on \(\mathbb{R}^2 \times S^1 \) \} \hspace{2cm} \{ flat \ \mathbf{G}_\mathbb{C} \ \text{connections} \} \ \mathcal{M}_{\text{flat}}(M, \mathbf{G}_\mathbb{C})

[Dimofte-Gukov-Hollands '10]

quantize!

\(\mathbf{G}_\mathbb{C} \) Chern-Simons theory on \(M \)
\(\mathcal{A} : \ \mathfrak{g}_\mathbb{C} \)-valued 1-form

\[Z_{CS}[M] = \int \mathcal{D}\mathcal{A}\mathcal{D}\overline{\mathcal{A}} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(\mathcal{A}) + \frac{k-i\sigma}{8\pi i} I_{CS}(\overline{\mathcal{A}})} \]

\[k \in \mathbb{Z} \quad \sigma \in \mathbb{R} \ (\text{or } \mathbb{C}) \quad I_{CS}(\mathcal{A}) := \int_M \text{Tr} \left(\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A} \right) \]

- classical sol’ns are flat \(\mathbf{G}_\mathbb{C} \) connections

- cf. compact \(\mathbf{G} \) CS thy: on knot complements, get Jones polys

(combinatorial definition)

[Witten '89]

[Reshetikhin-Turaev '90, etc.]
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\) \hspace{1cm} = \hspace{1cm} \{\text{flat } G_\mathbb{C} \text{ connections} \} \quad M_{\text{flat}}(M, G_\mathbb{C})

[Dimofte-Gukov-Hollands ’10]

quantize!

\(G_\mathbb{C} \) Chern-Simons theory on \(M \)

\(A : g_\mathbb{C} \)-valued 1-form

\[Z_{CS}[M] = \int \mathcal{D}A \mathcal{D}\overline{A} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(A) + \frac{k-i\sigma}{8\pi i} I_{CS}(\overline{A})} \]

[Witten ’91]

\(k \in \mathbb{Z} \quad \sigma \in \mathbb{R} \text{ (or } \mathbb{C} \text{)} \quad I_{CS}(A) := \int_M \text{Tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) \)

- classical sol’ns are flat \(G_\mathbb{C} \) connections

- cf. compact \(G \) CS thy: on knot complements, get Jones polys (combinatorial definition)

- combinatorial def’n missing for \(G_\mathbb{C} \) until recently!

[Reshetikhin-Turaev ’90, etc.]
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\)

\[\overset{\text{}}{= \quad \{ \text{flat } G_\mathbb{C} \text{ connections} \}} \quad \overset{\text{}}{\mathcal{M}_{\text{flat}}(M, G_\mathbb{C})} \]

[Dimofte-Gukov-Hollands '10]

\[Z^{(k, \sigma)}_{CS}[M] \]

\[Z_{CS}[M] = \int \mathcal{D}A \overline{\mathcal{D}A} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(A) + \frac{k-i\sigma}{8\pi i} I_{CS}(\overline{A})} \]

[Witten '91]

\[k \in \mathbb{Z} \quad \sigma \in \mathbb{R} \quad \text{(or } \mathbb{C}) \quad I_{CS}(A) := \int_M \text{Tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) \]

- classical sol’ns are flat \(G_\mathbb{C} \) connections

[Witten '89]

- cf. compact \(G \) CS thy: on knot complements, get Jones polys

(combinatorial definition)

[Reshetikhin-Turaev '90, etc.]

- combinatorial def’n missing for \(G_\mathbb{C} \) until recently!
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\) = \{flat \(G_{\mathbb{C}} \) connections\} \(\mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}}) \)

[Dimofte-Gukov-Hollands '10]

\[Z_{T_g}[M][L(k, 1)\sigma] = Z_{CS}^{(k,\sigma)}[M] \]

part’n function on ellipsoidally-deformed lens space

\[Z_{CS}[M] = \int \mathcal{D}A \mathcal{D}\overline{A} e^{\frac{k+i\sigma}{8\pi i} I_{CS}(A) + \frac{k-i\sigma}{8\pi i} I_{CS}(\overline{A})} \]

[Witten '91]

\[k \in \mathbb{Z} \quad \sigma \in \mathbb{R} \ (\text{or } \mathbb{C}) \quad I_{CS}(A) := \int_M \text{Tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) \]

- classical sol’ns are flat \(G_{\mathbb{C}} \) connections

- cf. compact \(G \) CS thy: on knot complements, get Jones polys

(combinatorial definition)

- combinatorial def’n missing for \(G_{\mathbb{C}} \) until recently!

[Witten '89]

[Reshetikhin-Turaev '90, etc.]
The correspondence

\[T_g[M] \quad \{ \text{vacua on } \mathbb{R}^2 \times S^1 \} \quad = \quad \{ \text{flat } G_{\mathbb{C}} \text{ connections} \} \quad \mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}}) \quad \text{[Dimofte-Gukov-Hollands '10]} \]

\[Z_{T_g[M]}[L(k, 1)_{\sigma}] \quad = \quad Z_{CS}^{(k, \sigma)}[M] \]

part'n function on ellipsoidally-deformed lens space

\[L(k, 1)_{\sigma} = S^3_{\sigma}/\mathbb{Z}_k \]

\[\simeq \{ b^2|z|^2 + b^{-2}|w|^2 = 1 \} \in \mathbb{C}^2 \bigg/ (z, w) \sim (e^{\frac{2\pi i}{k}}z, e^{\frac{2\pi i}{k}}w) \]

\[b^2 = \frac{k - i\sigma}{k + i\sigma} \]
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\) = \{flat \(G_{\mathbb{C}} \) connections\} \(\mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}}) \)

[Dimofte-Gukov-Hollands '10]

\[\mathcal{Z}_{T_g[M]}[L(k, 1)_\sigma] \]

= \[\mathcal{Z}_{CS}^{(k, \sigma)}[M] \]

part'n function on
ellipsoidally-deformed lens space

\[L(k, 1)_\sigma = S^3_\sigma / \mathbb{Z}_k \]

\[b^2 = \frac{k - i\sigma}{k + i\sigma} \]

\(\simeq \{ b^2|z|^2 + b^{-2}|w|^2 = 1 \} \) \(\in \mathbb{C}^2 \) \((z, w) \sim (e^{\frac{2\pi i}{k}} z, e^{\frac{2\pi i}{k}} w) \)

k=1:

[Terashima-Yamazaki '11]
[Dimofte-Gaiotto-Gukov '11]
[Cordova-Jafferis '13] — physical proof
The correspondence

\[T_g[M] \quad \{\text{vacua on } \mathbb{R}^2 \times S^1\} = \{\text{flat } G_\mathbb{C} \text{ connections} \} \ M_{\text{flat}}(M, G_\mathbb{C}) \]

[Dimofte-Gukov-Hollands '10]

\[Z_{T_g[M]}[L(k, 1)_\sigma] = \] \[Z_{(k, \sigma)}[M] \]

part'n function on ellipsoidally-deformed lens space

\[L(k, 1)_\sigma = S^3/\mathbb{Z}_k \]

\[b^2 = \frac{k - i\sigma}{k + i\sigma} \quad \simeq \{b^2|z|^2 + b^{-2}|w|^2 = 1\} \subset \mathbb{C}^2/(z, w) \sim (e^{\frac{2\pi i}{k}} z, e^{\frac{2\pi i}{k}} w) \]

k=1 :

[Terashima-Yamazaki '11]
[Dimofte-Gaiotto-Gukov '11]
[Cordova-Jafferis '13] — physical proof

k=0 :

[Dimofte-Gaiotto-Gukov (2) '11]
[Lee-Yamazaki '13] — physical proof
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\} = \{flat \ G_\mathbb{C} \ connections\} \ M_{\text{flat}}(M, G_\mathbb{C})

[Dimofte-Gukov-Hollands '10]

\[\mathcal{Z}_{T_g[M]}[L(k, 1)_\sigma] \]

= \[\mathcal{Z}_{CS}^{(k, \sigma)}[M] \]

part’n function on ellipsoidally-deformed lens space

\[L(k, 1)_\sigma = S^3_\sigma / \mathbb{Z}_k \]

\[b^2 = \frac{k - i\sigma}{k + i\sigma} \quad \simeq \{b^2|z|^2 + b^{-2}|w|^2 = 1\} \in \mathbb{C}^2 \setminus \{(z, w) \sim (e^{\frac{2\pi i}{k}} z, e^{\frac{2\pi i}{k}} w)\} \]

k=1 :

[Terashima-Yamazaki '11]
[Dimofte-Gaiotto-Gukov '11]
[Cordova-Jafferis '13] — physical proof

k=0 :

[Dimofte-Gaiotto-Gukov (2) '11]
[Lee-Yamazaki '13] — physical proof

general k:

[Dimofte '14]
The correspondence

\[T_\mathfrak{g}[M] \quad \{ \text{vacua on } \mathbb{R}^2 \times S^1 \} \quad = \quad \{ \text{flat } G_\mathbb{C} \text{ connections} \} \quad M_{\text{flat}}(M, G_\mathbb{C}) \]

[Dimofte-Gukov-Hollands '10]

\[Z_{T_\mathfrak{g}[M]}[L(k, 1)\sigma] \quad = \quad Z^{(k,\sigma)}_{CS}[M] \]

k=1 :
[Terashima-Yamazaki '11]
[Dimofte-Gaiotto-Gukov '11]
[Cordova-Jafferis '13] — physical proof

k=0 :
[Dimofte-Gaiotto-Gukov (2) '11]
[Lee-Yamazaki '13] — physical proof

general k:
[Dimofte '14]

to tie this all together:

\[Z^{k,\sigma}_{CS}[M] = \sum_{\text{flat } \alpha} B^{k+i\sigma}[M] \overline{B}^{k+i\sigma}[M] \]
The correspondence

\[T_g[M] \{ \text{vacua on } \mathbb{R}^2 \times S^1 \} = \{ \text{flat } G_C \text{ connections} \} M_{\text{flat}}(M, G_C) \]

[Dimofte-Gukov-Hollands '10]

\[Z_{T_g[M]}[L(k, 1)_\sigma] = Z^{(k, \sigma)}_{CS}[M] \]

[Dimofte-Gaiotto-Gukov '11]

\[Z_{T_g[M]}[L(k, 1)_\sigma] = \sum_{\text{vacua } \alpha} B^k+i\sigma[M]B^{k+i\sigma}[M] \]

[Terashima-Yamazaki '11]

\[Z_{T_g[M]}[L(k, 1)_\sigma] = \sum_{\text{flat } \alpha} B^k+i\sigma[M]B^{k+i\sigma}[M] \]

[Dimofte-Gaiotto-Gukov (2) '11]

k=1 :

[Dimofte-Gaiotto-Gukov '11]

[Terashima-Yamazaki '11]

[Cordova-Jafferis '13] — physical proof

k=0 :

[Dimofte-Gaiotto-Gukov '11]

[Lee-Yamazaki '13] — physical proof

general k:

[Dimofte '14]

to tie this all together:

\[L(k, 1) \simeq (D^2 \times S^1) \cup_{\varphi \in SL(2, \mathbb{Z})} (D^2 \times S^1) \]

[Beem-Dimofte-Pasquetti '12]
The correspondence

$$\frac{T_g[M]}{\{\text{vacua on } \mathbb{R}^2 \times S^1\}} = \frac{M}{\{\text{flat } G_\mathbb{C} \text{ connections}\} \mathcal{M}_{\text{flat}}(M, G_\mathbb{C})}$$

$$Z_{T_g[M]}[L(k, 1)_\sigma] = Z_{CS}^{(k, \sigma)}[M]$$

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

to tie this all together:

$$Z_{T_g[M]}[L(k, 1)_\sigma] = \sum_{\text{vacua } \alpha} B^{k+i\sigma}_\alpha[M] \overline{B^{k+i\sigma}_\alpha[M]}$$

$$Z_{CS}^{k,\sigma}[M] = \sum_{\text{flat } \alpha} B^{k+i\sigma}_\alpha[M] \overline{B^{k+i\sigma}_\alpha[M]}$$

[Beem-Dimofte-Pasquetti '12]

$L(k, 1) \simeq (D^2 \times S^1) \cup_{\varphi \in SL(2,\mathbb{Z})} (D^2 \times S^1)$
The correspondence

\[T_g[M] \]

\{vacua on \(\mathbb{R}^2 \times S^1 \}\) \quad = \quad \{flat \; \underline{G_C} \; connections\} \; \mathcal{M}_{\text{flat}}(M, G_C)

\[Z_{T_g[M]}[L(k, 1)\sigma] \quad = \quad Z^{(k, \sigma)}_{CS}[M] \]

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify
The correspondence

\[
\begin{align*}
T_g[M] \quad & \quad \{\text{vacua on } \mathbb{R}^2 \times S^1\} \\
\quad & \quad = \quad \{\text{flat } G_\mathbb{C} \text{ connections}\} \quad \mathcal{M}_{\text{flat}}(M, G_\mathbb{C})
\end{align*}
\]

\[
\begin{align*}
Z_{T_g[M]}[L(k, 1)_\sigma] \quad & \quad = \quad Z_{(k, \sigma)}[M]
\end{align*}
\]

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

\[
k=0: \quad Z_{T[M]}(S^2 \times S^1) = \text{Tr}_{\mathcal{H}(S^2)}(-1)^F q^J + \frac{F}{2}
\]

is a an index
The correspondence

\[
\begin{align*}
\mathcal{Z}_{T_g[M]}[L(k, 1)_{\sigma}] & = \mathcal{Z}^{(k, \sigma)}_{CS}[M] \\
\{\text{vacua on } \mathbb{R}^2 \times S^1\} & = \{\text{flat } G_{\mathbb{C}} \text{ connections}\} \mathcal{M}_{\text{flat}}(M, G_{\mathbb{C}})
\end{align*}
\]

So: quantum invariants of 3-manifolds
can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

\[
k=0: \quad \mathcal{Z}_{T[M]}(S^2 \times S^1) = \text{Tr}_{\mathcal{H}(S^2)}(-1)^F q^J + \frac{F}{2}
\]

is a an index

natural vector space + differential,

Hilb. space of \(T_g[M] \) on \(S^2 \), action of “Q”;
The correspondence

\[T_g[M] \]
{vacua on \(\mathbb{R}^2 \times S^1 \)} = \{flat \ G_\mathbb{C} \ connections\} \(\mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \)

\[Z_{T_g[M]}[L(k, 1)_\sigma] \]
= \[Z_{CS}^{(k, \sigma)}[M] \]

So: quantum invariants of 3-manifolds can be understood via 3d SUSY theories on lens spaces!

One more step: categorify

k=0: \(Z_{T[M]}(S^2 \times S^1) = \text{Tr}_{\mathcal{H}(S^2)}(-1)^F q^J + \frac{F}{2} \)

is a an index

natural vector space + differential, Hilb. space of \(T_g[M] \) on \(S^2 \), action of “Q”; the index is its graded Euler character
The correspondence

\[T_g[M] \] \{vacua on \(\mathbb{R}^2 \times S^1 \}\} = \{\text{flat } G_\mathbb{C} \text{ connections}\} \mathcal{M}_{\text{flat}}(M, G_\mathbb{C})

\[\mathcal{Z}_{T_g[M]}[L(k, 1)\sigma] = \mathcal{Z}_{CS}^{(k, \sigma)}[M] \]

So: by studying more refined observables of \(T_g[M] \), like Hilbert spaces, one obtains homological lifts of quantum inv’ts!

One more step: categorify

\[k=0: \quad \mathcal{Z}_{T[M]}(S^2 \times S^1) = \text{Tr}_{\mathcal{H}(S^2)}(-1)^F q^{J + \frac{F}{2}} \]

is a an index

natural vector space + differential,
Hilb. space of \(T_g[M] \) on \(S^2 \), action of “Q”;
the index is its graded Euler character
The correspondence

\[
\begin{array}{ccc}
T_g[M] & \cong & M \\
\{\text{vacua on } \mathbb{R}^2 \times S^1\} & = & \{\text{flat } G_\mathbb{C} \text{ connections}\} \mathcal{M}_{\text{flat}}(M, G_\mathbb{C})
\end{array}
\]

\[
Z_{T_g[M]}[L(k, 1)_{\sigma}] = Z_{CS}^{(k, \sigma)} [M]
\]

So: by studying more refined observables of \(T_g[M] \), like Hilbert spaces, one obtains homological lifts of quantum inv’ts!

- analogous to Khovanov homology

One more step: categorify

\[
k=0: \quad Z_{T[M]}(S^2 \times S^1) = \text{Tr}_{\mathcal{H}(S^2)}(-1)^F q^{J + \frac{F}{2}}
\]

is a an index

natural vector space + differential,

Hilb. space of \(T_g[M] \) on \(S^2 \), action of “Q”;

the index is its graded Euler character
The correspondence

\[T_g[M] \quad \{\text{vacua on } \mathbb{R}^2 \times S^1\} \quad = \quad \{\text{flat } G_C \text{ connections}\} \quad M_{\text{flat}}(M, G_C) \]

\[Z_{T_g[M]}[L(k, 1)\sigma] \quad = \quad Z_{CS}^{(k, \sigma)}[M] \]

So: by studying more refined observables of \(T_g[M] \), like Hilbert spaces, one obtains homological lifts of quantum inv’ts!
- analogous to Khovanov homology
- work in progress w/ Gaiotto, Moore

\[k=0: \quad Z_{T[M]}(S^2 \times S^1) = \text{Tr}_{\mathcal{H}(S^2)}(-1)^F q^J + \frac{F}{2} \]

is a an index
natural vector space + differential,
Hilb. space of \(T_g[M] \) on \(S^2 \), action of “Q”;
the index is its graded Euler character
The correspondence

This was the “pedestrian” version!

\[
\begin{align*}
T_g[M] & \quad \{\text{vacua on } \mathbb{R}^2 \times S^1\} \\
& \quad = \quad \{\text{flat } G_\mathbb{C} \text{ connections}\} \quad \mathcal{M}_{\text{flat}}(M, G_\mathbb{C}) \\
\mathcal{Z}_{T_g[M]}[L(k, 1)_\sigma] & \quad = \quad \mathcal{Z}_{CS}^{(k, \sigma)}[M]
\end{align*}
\]

So: by studying more refined observables of \(T_g[M], \)
like Hilbert spaces, one obtains homological lifts of quantum inv’ts!

- analogous to Khovanov homology
- work in progress w/ Gaiotto, Moore
The correspondence

This was the “pedestrian” version!

Full picture: study M with boundary

$$T_g[M]$$

{vacua on $\mathbb{R}^2 \times S^1$} = {flat $G_\mathbb{C}$ connections} $\mathcal{M}_{\text{flat}}(M, G_\mathbb{C})$

$$\mathcal{Z}_{T_g[M]}[L(k, 1)_\sigma]$$

= $$\mathcal{Z}_{CS}^{(k, \sigma)}[M]$$

So: by studying more refined observables of $T_g[M]$, like Hilbert spaces, one obtains homological lifts of quantum inv’ts!

- analogous to Khovanov homology
- work in progress w/ Gaiotto, Moore
The correspondence

This was the “pedestrian” version!

Full picture: study M with boundary

The right way to compactify \mathcal{X}_g on a space w/ bdy is to stretch to bdy to asymptotic regions

\mathcal{X}_g on $\mathbb{R}^3 \times \partial M_1 \times \mathbb{R}_+ \times \partial M_2 \times \mathbb{R}_+$
The correspondence

This was the “pedestrian” version!

Full picture: study M with boundary

The right way to compactify \mathcal{X}_g on a space w/ bdy is to stretch to bdy to asymptotic regions

\mathcal{X}_g on $\mathbb{R}^3 \times M \cong \partial M_1 \times \mathbb{R}_+ \cup \partial M_2 \times \mathbb{R}_+$

3d interface between 4d (N=2) SUSY theories

[Dimofte-Gaiotto-v.d.Veen ’13]
The correspondence

This was the “pedestrian” version!

Full picture: study M with boundary

The right way to compactify \mathcal{X}_g on a space w/ bdry is to stretch to bdry to asymptotic regions

\mathcal{X}_g on $\mathbb{R}^3 \times M \quad \partial M_1 \times \mathbb{R}_+ \quad \partial M_2 \times \mathbb{R}_+$

“2d-4d correspondence”

[Dimofte-Gaiotto-v.d.Veen ‘13]

3d interface between 4d (N=2) SUSY theories

[Gaiotto, Gaiotto-Moore-Nietzke ‘09]
The correspondence is functorial:

\[\mathcal{X}_g \text{ on } \mathbb{R}^3 \times \partial M_1 \times \mathbb{R}_+ \]

3d interface between 4d (N=2) SUSY theories

“2d-4d correspondence”

[Dimofte-Gaiotto-v.d.Veen ‘13]

[Gaiotto, Gaiotto-Moore-Nietzke ‘09]
The correspondence is functorial:

\[T_g : \text{Cobordism category of 2-manifolds} \rightarrow \text{Cat. of 4d N=2 SUSY thy’s} \]

objects: 2-manifolds
morphisms: 3-cobordisms

\[\mathcal{X}_g \ 	ext{on} \ R^3 \times M \]
\[\partial M_1 \times R_+ \quad \downarrow \quad \partial M_2 \times R_+ \]

“2d-4d correspondence”

[Gaiotto, Gaiotto-Moore-Nietzke ‘09]

3d interface
between 4d (N=2) SUSY theories

[Dimofte-Gaiotto-v.d.Veen ‘13]
The correspondence is functorial:

\[T_g : \text{Cobordism category of 2-manifolds} \rightarrow \text{Cat. of 4d N=2 SUSY thy’s} \]

objects: 2-manifolds
morphisms: 3-cobordisms

objects: 4d theories
morphisms: 3d interfaces

Can extend further,

2-morphisms: 4-cobordisms
The correspondence is functorial:

$T_g : \text{Cobordism category of 2-manifolds} \rightarrow \text{Cat. of 4d N=2 SUSY thy's}$

- objects: 2-manifolds
- morphisms: 3-cobordisms

- objects: 4d theories
- morphisms: 3d interfaces

Can extend further,

- 2-morphisms: 4-cobordisms
- 2-morphisms: 2d interfaces

“4d-2d correspondence”

cf. [Gadde-Gukov-Putrov ’13]
The correspondence is effective
The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_g[M]$
give an explicit 3d Lagrangian density
The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_g[M]$

give an explicit 3d Lagrangian density

- includes all hyperbolic M, with cusps and/or geodesic bdy
The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_g[M]$

give an explicit 3d Lagrangian density

- includes all hyperbolic M, with cusps and/or geodesic bdy

(most 3-manifolds are hyperbolic
 = admit a metric of constant neg. curvature)
(given appropriate boundary conditions, the metric is unique)

[Mostow ’76,…]
The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_g[M]$

give an explicit 3d Lagrangian density

- includes all hyperbolic M, with cusps and/or geodesic bdy

 (most 3-manifolds are hyperbolic
 = admit a metric of constant neg. curvature)
 (given appropriate boundary conditions, the metric is unique)

 [Mostow '76,...]

- method of computation: cut M into (topological) ideal tetrahedra

 truncated vertices
The correspondence is effective

For a large class of 3-manifolds, can explicitly compute $T_g[M]$

give an explicit 3d Lagrangian density

- includes all hyperbolic M, with cusps and/or geodesic bdy

(most 3-manifolds are hyperbolic

= admit a metric of constant neg. curvature)

(given appropriate boundary conditions, the metric is unique)

[Mostow ’76,…]

- method of computation: cut M into (topological) ideal tetrahedra

$$M = \bigcup_{i=1}^{N} \Delta_i$$

$$T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim$$

truncated vertices
The correspondence is effective

Remainder of the talk: \[g = sl_2 \quad G_\mathbb{C} = SL(2, \mathbb{C}) \quad \text{(or} \quad PSL(2, \mathbb{C}) \quad = \quad SL(2, \mathbb{C})/\{\pm 1\}) \]

\[
M = \bigcup_{i=1}^{N} \Delta_i \quad \quad T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim
\]
The correspondence is effective

Remainder of the talk: \(g = sl_2 \quad G_C = SL(2, \mathbb{C}) \) (or \(PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\{\pm1\} \))

- for simplicity, and some added intuition \(g = sl_n \)

[Dimofte-Gabella-Goncharov '13]

\[
M = \bigcup_{i=1}^{N} \Delta_i \\
T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim
\]
The correspondence is effective

Remainder of the talk: \(g = sl_2 \) \(G_C = SL(2, \mathbb{C}) \) (or \(PSL(2, \mathbb{C}) \) = \(SL(2, \mathbb{C})/\{\pm 1\} \))

- for simplicity, and some added intuition \(g = sl_n \)

[Dimofte-Gabella-Goncharov ’13]

- \(PSL(2, \mathbb{C}) \) flat connections are (roughly) hyperbolic metrics

So: \(T_g[M] \) quantizes, categorifies, etc. classical hyperbolic geometry!

\[
M = \bigcup_{i=1}^{N} \Delta_i \quad T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim
\]
The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

$$\partial \mathbb{H}^3 \cong \mathbb{C} \cup \{\infty\}$$
The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^3
- faces are geodesic surfaces
The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^3
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$z = e^{(\text{torsion})+i(\text{angle})}$$
The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^3
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$z = e^{(\text{torsion}) + i(\text{angle})}$$

equal on opposite edges, and satisfy

$$zz'z'' = -1$$

$$z'' + z^{-1} - 1 = 0$$

[W. Thurston, late '70's]
The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^3
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

$$|z| = e^{(\text{torsion})} + i(\text{angle})$$

equal on opposite edges, and satisfy

$$zz'z'' = -1$$
$$z'' + z^{-1} - 1 = 0$$

Flat connections: $\mathcal{M}_{flat}(\partial \Delta, G_\mathbb{C}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'')$
The correspondence is effective

Single (ideal, hyperbolic) tetrahedron:

- vertices at on the bdy of \mathbb{H}^3
- faces are geodesic surfaces
- the hyperbolic structure is encoded in 6 complexified dihedral angles

\[
z = e^{(\text{torsion})+i(\text{angle})}
\]
equal on opposite edges, and satisfy

[W. Thurston, late '70's]

\[
zz'z'' = -1
\]

\[
z'' + z^{-1} - 1 = 0
\]

Flat connections:

\[
\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* (z, z'')
\]

[Dimofte '10]

\[
\bigcup \mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{z'' + z^{-1} - 1 = 0\}
\]
The correspondence is effective

Tetrahedron theory: \(T[\Delta] = \) single free chiral superfield

Flat connections: \(\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \) (\(z, z'' \)) \[\cup \] \(\mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \)

\(zz'z'' = -1 \)
\(z'' + z^{-1} - 1 = 0 \)

[Dimofte-Gaiotto-Gukov '11]
[Dimofte '10]
The correspondence is effective

Tetrahedron theory: \(T[\Delta] = \) single free chiral superfield
\[
\Phi \quad \text{or} \quad \phi, \psi
\]
complex scalar, complex fermion

(function on \(\mathbb{R}^3 \)) (section of spinor bundle on \(\mathbb{R}^3 \))

Flat connections:
\[
\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'')
\]
\[
\bigcup \bigcup \mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{z'' + z^{-1} - 1 = 0\}
\]

\[
zz'z'' = -1
\]
\[
z'' + z^{-1} - 1 = 0
\]

[Dimofte-Gaiotto-Gukov ’11]

[Dimofte ’10]
The correspondence is effective

Tetrahedron theory: \(T[\Delta] = \) single free chiral superfield
\(\Phi \) or \(\phi, \psi \)
complex scalar, complex fermion
(function on \(\mathbb{R}^3 \)) (section of spinor bundle on \(\mathbb{R}^3 \))

Lagrangian: \(\mathcal{L} = |\partial_\mu \phi|^2 + \overline{\psi}(\sigma \cdot \partial)\psi \)

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_\mathbb{C}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'') \]

\[\mathcal{M}_{\text{flat}}(\Delta, G_\mathbb{C}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

Tetrahedron theory: \(T[\Delta] = \) single free chiral superfield

\[\Phi \quad \text{or} \quad \phi, \psi \]

complex scalar, complex fermion

(function on \(\mathbb{R}^3 \)) (section of spinor bundle on \(\mathbb{R}^3 \))

Lagrangian:

\[\mathcal{L} = |\partial_\mu \phi|^2 + \overline{\psi} (\sigma \cdot \partial) \psi + Z |\phi|^2 + Z \overline{\psi} \psi \]

This theory allows a supersymmetric mass term \(Z \) (equal for \(\phi, \psi \))

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_C) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'') \]

\[\mathcal{M}_{\text{flat}}(\Delta, G_C) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

[Tetrahedron theory: $T[\Delta] = \text{single free chiral superfield}$]

$$
\Phi \quad \text{or} \quad \phi, \psi
$$

complex scalar, complex fermion

(function on \mathbb{R}^3) (section of spinor bundle on \mathbb{R}^3)

Lagrangian: $L = |\partial_\mu \phi|^2 + \bar{\psi} (\sigma \cdot \partial) \psi + Z |\phi|^2 + Z \bar{\psi} \psi$

This theory allows a supersymmetric mass term Z (equal for ϕ, ψ)

Putting the theory on $\mathbb{R}^2 \times S^1$, Z gets complexified, and can be identified with the hyperbolic modulus: $z = \exp(Z)$

$\mathcal{M}_{\text{flat}} (\partial \Delta, G_\mathbb{C}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'')$

$$
\mathcal{M}_{\text{flat}} (\Delta, G_\mathbb{C}) = \{z'' + z^{-1} - 1 = 0\}
$$

[Dimofte-Gaiotto-Gukov ’11]

[Dimofte ’10]
The correspondence is effective

Tetrahedron theory: \(T[\Delta] = \) single free chiral superfield

\(\Phi \) or \(\phi, \psi \)

complex scalar, complex fermion

(function on \(\mathbb{R}^3 \)) (section of spinor bundle on \(\mathbb{R}^3 \))

Lagrangian:

\[
\mathcal{L} = |\partial_\mu \phi|^2 + \overline{\psi} (\sigma \cdot \partial) \psi + Z |\phi|^2 + Z \overline{\psi} \psi
\]

(real)

This theory allows a supersymmetric mass term \(Z \) (equal for \(\phi, \psi \))

Putting the theory on \(\mathbb{R}^2 \times S^1 \), \(Z \) gets complexified, and can be identified with the hyperbolic modulus:

\[
z = \exp(Z)
\]

\[
\mathcal{M}_{\text{flat}}(\partial \Delta, G_\mathbb{C}) \cong \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'')
\]

\[
\mathcal{M}_{\text{flat}}(\Delta, G_\mathbb{C}) = \{z'' + z^{-1} - 1 = 0\}
\]

[Dimofte-Gaiotto-Gukov ’11]

[Dimofte ’10]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Classical invariants?

Putting the theory on \(\mathbb{R}^2 \times S^1 \), \(Z \) gets complexified, and can be identified with the hyperbolic modulus:

\[z = \exp(Z) \]

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (\bar{z}, z'') \]

\[\mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Classical invariants? [Witten, *Phases of N=2 Theories* '93]

On \(\mathbb{R}^2 \times S^1 \), a standard 1-loop calculation leads to

\[\mathcal{L}_{\text{eff}} = |d\tilde{W}(z)|^2 \quad \tilde{W}(z) = \text{Li}_2(z) \]

Putting the theory on \(\mathbb{R}^2 \times S^1 \), \(Z \) gets complexified, and can be identified with the hyperbolic modulus: \(z = \exp(Z) \)

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (\bar{z}, \bar{z}''') \]

\[\bigcup \mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Classical invariants? [Witten, *Phases of N=2 Theories '93*

On \(\mathbb{R}^2 \times S^1 \), a standard 1-loop calculation leads to

\[\mathcal{L}_{\text{eff}} = |d\widetilde{W}(z)|^2 \quad \widetilde{W}(z) = \text{Li}_2(z) \]

(complex) volume of \(\Delta \)!

Putting the theory on \(\mathbb{R}^2 \times S^1 \), \(Z \) gets complexified, and can be identified with the hyperbolic modulus:

\[z = \exp(Z) \]

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'') \]

\[\mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Classical invariants?

On \(\mathbb{R}^2 \times S^1 \), a standard 1-loop calculation leads to

\[\mathcal{L}_{\text{eff}} = |d\tilde{W}(z)|^2 \quad \quad \tilde{W}(z) = \text{Li}_2(z) \]

(complex) volume of \(\Delta \)!

Also, vacua of \(T[\Delta] \) on \(\mathbb{R}^2 \times S^1 \) given by

\[\exp \left(z \frac{d\tilde{W}(z)}{dz} \right) = z'' \]

\[\Rightarrow \quad z'' + z^{-1} - 1 = 0 \quad ! \]

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (\bar{z}, \bar{z}'') \]

\[\cup \quad \cup \quad \mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Turn the crank: quantum invariants

Also, vacua of \(T[\Delta] \) on \(\mathbb{R}^2 \times S^1 \) given by

\[\exp \left(z \frac{dW(z)}{dz} \right) = z'' \]

\[\implies z'' + z^{-1} - 1 = 0 \]

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \supseteq \mathbb{C}^* \times \mathbb{C}^* \quad (\bar{z}, \bar{z}'') \]

\[\mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Turn the crank: quantum invariants

The lens-space partition functions \[\mathcal{Z}_{T[\Delta]}[L(k, 1)_\sigma] \]
can all be calculated explicitly — due to SUSY, the path integral reduces to a finite-dimensional integral.

Also, vacua of \(T[\Delta] \) on \(\mathbb{R}^2 \times S^1 \) given by

\[\exp \left(z \frac{dW(z)}{dz} \right) = z'' \]

\[\Rightarrow z'' + z^{-1} - 1 = 0 \]

\[\mathcal{M}_{\text{flat}}(\partial \Delta, G_{\mathbb{C}}) \approx \mathbb{C}^* \times \mathbb{C}^* \quad (z, z'') \]

\[\mathcal{M}_{\text{flat}}(\Delta, G_{\mathbb{C}}) = \{ z'' + z^{-1} - 1 = 0 \} \]
The correspondence is effective

t[Δ] = single free chiral superfield

Turn the crank: quantum invariants

The lens-space partition functions \(Z_{T[Δ]}[L(κ, 1)_σ] \) can all be calculated explicitly — due to SUSY, the path integral reduces to a finite-dimensional integral.

[kim '09]
kapustin-willett-yaakov '10]
[hama-hosomochi-lee '11]
[benini-nishioka-yamazaki '11]

E.g. \(Z_{T[Δ]}[S^{2} × S^{1}] = \prod_{r=0}^{∞} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{\frac{m}{2}} \zeta} \) \[q = e^{\frac{2π}{σ}} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Turn the crank: quantum invariants

The lens-space partition functions \(\mathcal{Z}_{T[\Delta]}[L(k, 1)_{\sigma}] \) can all be calculated explicitly — due to SUSY, the path integral reduces to a finite-dimensional integral.

[Kim ’09]
[Kapustin-Willett-Yaakov ’10]
[Hama-Hosomochi-Lee ’11]
[Benini-Nishioka-Yamazaki ’11]

E.g.

\[\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \]

depends on \(m \in \mathbb{Z} \), phase \(|\zeta| = 1 \) — because \(\Delta \) has a bdy

\[q = e^{\frac{2\pi}{\sigma}} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Turn the crank: quantum invariants

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \quad q = e^{\frac{2\pi}{\sigma}} \]

depends on \(m \in \mathbb{Z} \), phase \(|\zeta| = 1\) — because \(\Delta \) has a bdy

\[z \sim q^{\frac{m}{2}} \zeta \]
\[\bar{z} \sim q^{\frac{m}{2}} \zeta^{-1} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

Turn the crank: quantum invariants

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{- \frac{m}{2}} \zeta} \]

\[q = e^{\frac{2\pi}{\sigma}} \]

depends on \(m \in \mathbb{Z} \), phase \(|\zeta| = 1\) — because \(\Delta \) has a bdy

\[z \sim q^{\frac{m}{2}} \zeta \]
\[\bar{z} \sim q^{\frac{m}{2}} \zeta^{-1} \]

\[Z_{T[\Delta]}[S^2 \times S^1] \] is a version of a “quantum dilogarithm”

\[Z_{T[\Delta]}[S^2 \times S^1] \sim e^{\frac{\sigma}{2\pi} \text{Im} \text{Li}_2(z)} \]

\(\sigma \to \infty \)
\(q \to 1 \)
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[
\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta}
\]

\[q = e^{\frac{2\pi}{\sigma}} \]

3d SUSY thy: \(T[\Delta] \) has a \(U(1)_e \) symmetry

\((\phi, \psi) \rightarrow (e^{i\theta} \phi, e^{i\theta} \psi) \)

\[
\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] \ 	ext{is a version of a “quantum dilogarithm”}
\]

\[
\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] \sim e^{\frac{\sigma}{2\pi} \text{Im} \text{Li}_2(z)} \quad \sigma \rightarrow \infty \quad q \rightarrow 1
\]

\[
z \sim q^{\frac{m}{2}} \zeta
\]

\[
\bar{z} \sim q^{\frac{m}{2}} \zeta^{-1}
\]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g. \[\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{\frac{m}{2}} \zeta} \]

\[q = e^{\frac{2\pi}{\sigma}} \]

3d SUSY thy: \(T[\Delta] \) has a \(U(1)_e \) symmetry \((\phi, \psi) \to (e^{i\theta} \phi, e^{i\theta} \psi) \)

Hilb. space \(\mathcal{H}(S^2) \) is graded by - elec & mag charges for this \(U(1)_e \)

\((m, e) \in \mathbb{Z} \times \mathbb{Z} \)

\[\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] \text{ is a version of a “quantum dilogarithm”} \]

\[\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] \sim e^{\frac{\sigma}{2\pi} \text{Im} \text{Li}_2(z)} \]

\[\sigma \to \infty \]

\[q \to 1 \]

\[z \sim q^{\frac{m}{2}} \zeta \]

\[\bar{z} \sim q^{\frac{m}{2}} \zeta^{-1} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \]

\[q = e^{\frac{2\pi}{\sigma}} \]

3d SUSY thy: \(T[\Delta] \) has a \(U(1)_e \) symmetry

- elec & mag charges for this \(U(1)_e \)

\[(\phi, \psi) \rightarrow (e^{i\theta} \phi, e^{i\theta} \psi) \]

Hilb. space \(\mathcal{H}(S^2) \) is graded by

- spin \(J \in \frac{1}{2} \mathbb{Z} \) (weight for \(U(1)_J \))

\((m, e) \in \mathbb{Z} \times \mathbb{Z} \)
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[
Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \quad q = e^{\frac{2\pi}{\sigma}}
\]

3d SUSY thy: \(T[\Delta] \) has a \(U(1)_e \) symmetry

\((\phi, \psi) \rightarrow (e^{i\theta} \phi, e^{i\theta} \psi) \)

Hilb. space \(\mathcal{H}(S^2) \) is graded by

- elec & mag charges for this \(U(1)_e \)

\((m, e) \in \mathbb{Z} \times \mathbb{Z} \)

- spin \(J \in \frac{1}{2} \mathbb{Z} \) (weight for \(U(1)_J \))

- R-charge \(R \in \mathbb{Z} \) \((\phi, \psi) \rightarrow (\phi, e^{-i\theta} \psi) \)
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \]

3d SUSY thy: \(T[\Delta] \) has a \(U(1)_e \) symmetry

Hilb. space \(\mathcal{H}(S^2) \) is graded by

- elec & mag charges for this \(U(1)_e \)
 \((m, e) \in \mathbb{Z} \times \mathbb{Z} \)
- spin \(J \in \frac{1}{2} \mathbb{Z} \) (weight for \(U(1)_J \))
- R-charge \(R \in \mathbb{Z} \)
 \((\phi, \psi) \rightarrow (\phi, e^{-i\theta} \psi) \)

There’s a differential \(Q : \mathcal{H}(S^2) \rightarrow \mathcal{H}(S^2) \) (one of the SUSY generators)

preserves \(m, e, J + R/2 \); \(R \rightarrow R + 1 \)
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[
\mathcal{Z}_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta}
\]

\[
= \text{Tr}_{\mathcal{H}(S^2;m)} (-1)^R q^J + \frac{R}{2} \zeta^e
\]

or \[H^*[\mathcal{H}(S^2;m), Q] \]

3d SUSY thy: \[T[\Delta] \] has a \(U(1)_e \) symmetry

\[(\phi, \psi) \rightarrow (e^{i\theta} \phi, e^{i\theta} \psi) \]

Hilb. space \(\mathcal{H}(S^2) \) is graded by

- elec & mag charges for this \(U(1)_e \)
 \[(m, e) \in \mathbb{Z} \times \mathbb{Z} \]

- spin \(J \in \frac{1}{2} \mathbb{Z} \) (weight for \(U(1)_J \))

- R-charge \(R \in \mathbb{Z} \)
 \[(\phi, \psi) \rightarrow (\phi, e^{-i\theta} \psi) \]

There’s a differential \(Q : \mathcal{H}(S^2) \rightarrow \mathcal{H}(S^2) \) (one of the SUSY generators) preserves \(m, e, J+R/2; \) \(R \rightarrow R+1 \)
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1-\frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \]

\[= \text{Tr}_{\mathcal{H}(S^2; m)} (-1)^R q^{J+\frac{R}{2}} \zeta^e \]

(definition!)

or \(H^*[\mathcal{H}(S^2; m), Q] \)

3d SUSY thy: \(T[\Delta] \) has a \(U(1)_e \) symmetry

(\(\phi, \psi \) \(\rightarrow \) \(e^{i\theta} \phi, e^{i\theta} \psi \))

Hilb. space \(\mathcal{H}(S^2) \) is graded by

- elec & mag charges for this \(U(1)_e \)

(\(m, e \) \(\in \mathbb{Z} \times \mathbb{Z} \))

- spin \(J \in \frac{1}{2} \mathbb{Z} \) (weight for \(U(1)_J \))

- R-charge \(R \in \mathbb{Z} \)

(\(\phi, \psi \) \(\rightarrow \) \(\phi, e^{-i\theta} \psi \))

There's a differential \(Q : \mathcal{H}(S^2) \rightarrow \mathcal{H}(S^2) \) (one of the SUSY generators)

preserves \(m, e, J+R/2; \quad R \rightarrow R+1 \)
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{- \frac{m}{2}} \zeta} \]

\[= \text{Tr}_\mathcal{H}(S^2; m) (-1)^R q^J + \frac{R}{2} \zeta^e \quad \text{(definition!)} \]

or \[H^\bullet[\mathcal{H}(S^2; m), Q] \]

Categorical/homological invariant:

\[H^\bullet[\mathcal{H}(S^2), Q] \quad \text{itself} \]
The correspondence is effective

\[T[\Delta] = \text{single free chiral superfield} \]

E.g.

\[Z_{T[\Delta]}[S^2 \times S^1] = \prod_{r=0}^{\infty} \frac{1 - q^{1-m/2} \zeta^{-1}}{1 - q^{-m/2} \zeta} \]

modes of \(\psi \)

\[= \text{Tr} \mathcal{H}(S^2; m)(-1)^R q^J \frac{R}{2} \zeta^e \]

(definition!)

or \(H^\bullet[\mathcal{H}(S^2; m), Q] \)

Categorical/homological invariant: \(H^\bullet[\mathcal{H}(S^2), Q] \) itself

Free theory: easy

\[\text{Tr}_{H^\bullet[\mathcal{H}(S^2; m), Q]} t^R q^J \frac{R}{2} \zeta^e = \prod_{r=0}^{\infty} \frac{1 + t q^{1-m/2} \zeta^{-1}}{1 - q^{-m/2} \zeta} \]

That categorifies the volume of a hyperbolic tetrahedron.
The correspondence is effective

In general, glue

\[M = \bigcup_{i=1}^{N} \Delta_i \quad T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim \]

Categorical/homological invariant: \(H^\bullet[\mathcal{H}(S^2), Q] \) itself

Free theory: easy

\[\text{Tr}_{H^\bullet[\mathcal{H}(S^2;m), Q]} t^R q^j + \frac{R}{2} \zeta^e = \prod_{r=0}^{\infty} \frac{1 + tq^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \]

That categorifies the volume of a hyperbolic tetrahedron.
The correspondence is effective

In general, glue

\[M = \bigcup_{i=1}^{N} \Delta_i \quad \quad T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim \]

- gluing rules come from promoting Thurston’s gluing eqs (and symplectic properties found by [Neumann-Zagier ’82]) to the level of 3d SUSY gauge theories

Categorical/homological invariant: \[H^\bullet[\mathcal{H}(S^2), Q] \] itself

Free theory: easy

\[\text{Tr}_{H^\bullet[\mathcal{H}(S^2; m), Q]} t^R q^j + \frac{R}{2} \zeta^e = \prod_{r=0}^{\infty} \frac{1 + tq^{1 - \frac{m}{2}} \zeta^{-1}}{1 - q^{-\frac{m}{2}} \zeta} \]

That categorifies the volume of a hyperbolic tetrahedron.
The correspondence is effective

In general, \textit{glue}

\[
M = \bigcup_{i=1}^{N} \Delta_i \quad \quad T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim
\]

- gluing rules come from promoting Thurston’s gluing eqs (and symplectic properties found by [Neumann-Zagier ’82]) to the level of 3d SUSY gauge theories
- roughly, $T_{sl_2}[M]$ contains N chiral multiplets, with extra gauge fields and interactions to enforce the gluing.

Categorical/homological invariant: $H^\bullet[\mathcal{H}(S^2), Q]$ itself

Free theory: easy

\[
\Tr_{H^\bullet[\mathcal{H}(S^2; m), Q]} t^R q^j + \frac{R}{2} \zeta^e = \prod_{r=0}^{\infty} \frac{1 + tq^{1-m/2} \zeta^{-1}}{1 - q^{-m/2} \zeta}
\]

That categorifies the volume of a hyperbolic tetrahedron.
The correspondence is effective

In general, glue

\[M = \bigcup_{i=1}^{N} \Delta_i \quad T_g[M] = \left(\bigotimes_{i=1}^{N} T_g[\Delta_i] \right) / \sim \]

- gluing rules come from promoting Thurston’s gluing eqs (and symplectic properties found by [Neumann-Zagier ’82]) to the level of 3d SUSY gauge theories

- roughly, \(T_{sl_2}[M] \) contains \(N \) chiral multiplets, with extra gauge fields and interactions to enforce the gluing.

What’s in it for physics?
The correspondence is good for physics

Two examples:

1. A geometric interpretation (and prediction) of dualities in 3d SUSY theories

What’s in it for physics?
The correspondence is good for physics

Two examples:

1. A geometric interpretation (and prediction) of dualities in 3d SUSY theories

A 3-manifold may be glued together in many different ways

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]
The correspondence is good for physics

Two examples:

1. A geometric interpretation (and prediction) of dualities in 3d SUSY theories

A 3-manifold may be glued together in many different ways

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]

expect

\[T[M] = \bigotimes T[\Delta_i]/\sim = \bigotimes T[\Delta_j]/\sim \]

equivalent in the IR
The correspondence is good for physics

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]

expect

\[T[M] = \otimes T[\Delta_i]/\sim = \otimes T[\Delta_j]/\sim \]

equivalent in the IR
The correspondence is good for physics

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]

expect

\[T[M] = \bigotimes T[\Delta_i]/\sim = \bigotimes T[\Delta_j]/\sim \]

equivalent in the IR
The correspondence is good for physics

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]

expect

\[T[M] = \bigotimes T[\Delta_i] / \sim = \bigotimes T[\Delta_j] / \sim \]

equivalent in the IR
The correspondence is good for physics

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]

expect \[T[M] = \bigotimes T[\Delta_i]/\sim = \bigotimes T[\Delta_j]/\sim \]

equivalent in the IR
The correspondence is good for physics

\[T[M] = 3d \text{ SQED} \]

2 chiral multiplets \(\Phi_1, \Phi_2 \)

U(1) gauge sym. +1 -1

\[M = \bigcup_{i=1}^{N} \Delta_i = \bigcup_{j=1}^{N'} \Delta_j \]

expect
\[T[M] = \otimes T[\Delta_i]/\sim = \otimes T[\Delta_j]/\sim \]

equivalent in the IR
The correspondence is good for physics

\[T[M] = 3d \text{ SQED} \]

2 chiral multiplets \(\Phi_1, \Phi_2 \)
U(1) gauge sym. +1 -1

\[T[M] = \text{“XYZ model”} \]

3 chiral multiplets \(\Phi_1, \Phi_2, \Phi_3 \)
cubic superpotential \(W = \Phi_1 \Phi_2 \Phi_3 \)
i.e. \(\mathcal{L} = ... + \psi_1 \psi_2 \phi_3 + |\phi_1 \phi_2|^2 + ... \)
The correspondence is good for physics

$T[M] = 3d \text{ SQED}$

2 chiral multiplets Φ_1, Φ_2

U(1) gauge sym. $+1$ -1

$T[M] = \text{“XYZ model”}$

3 chiral multiplets Φ_1, Φ_2, Φ_3

cubic superpotential $W = \Phi_1 \Phi_2 \Phi_3$

i.e. $\mathcal{L} = \ldots + \psi_1 \psi_2 \phi_3 + |\phi_1 \phi_2|^2 + \ldots$

$3d \text{ SQED} = \text{“XYZ model”}$

[Aharony-Hanany-Intriligator-Seiberg-Strassler ’97]
The correspondence is good for physics

\[T[M] = 3d \text{ SQED} \]

2 chiral multiplets \(\Phi_1, \Phi_2 \)

U(1) gauge sym. \(+1\ -1\)

\[T[M] = \text{“XYZ model”} \]

3 chiral multiplets \(\Phi_1, \Phi_2, \Phi_3 \)

cubic superpotential \(W = \Phi_1 \Phi_2 \Phi_3 \)

i.e. \(\mathcal{L} = \ldots + \psi_1 \psi_2 \phi_3 + |\phi_1 \phi_2|^2 + \ldots \)

\[3d \text{ SQED} = \text{“XYZ model”} \]

[Aharony-Hanany-Intriligator-Seiberg-Strassler '97]

cf. classical \(\text{Li}_2(x) + \text{Li}_2(y) = \text{Li}_2\left(\frac{x}{1-y}\right) + \text{Li}_2\left(\frac{y}{1-x}\right) + \text{Li}_2\left(\frac{(1-x)(1-y)}{xy}\right) + \text{logs} \)
The correspondence is good for physics

Two examples:

2. 3d N=2 theories on interfaces in 4d get labelled by 3-manifolds, and gain systematic constructions

cf. classical \[\text{Li}_2(x) + \text{Li}_2(y) = \text{Li}_2\left(\frac{x}{1-y} \right) + \text{Li}_2\left(\frac{y}{1-x} \right) + \text{Li}_2\left(\frac{(1-x)(1-y)}{xy} \right) + \text{logs} \]
The correspondence is good for physics

Two examples:

2. 3d N=2 theories on interfaces in 4d
get labelled by 3-manifolds, and gain systematic constructions

E.g. electric-magnetic (S) duality in 4d maximally SUSY YM thy
The correspondence is good for physics

Two examples:

2. 3d N=2 theories on interfaces in 4d get labelled by 3-manifolds, and gain systematic constructions

E.g. electric-magnetic (S) duality in 4d maximally SUSY YM thy

\[M = S^3 \backslash (\text{Hopf network}) \]
The correspondence is good for physics

Two examples:

2. 3d N=2 theories on interfaces in 4d
 get labelled by 3-manifolds, and gain systematic constructions

E.g. electric-magnetic (S) duality in 4d maximally SUSY YM thy

\[M = S^3 \setminus \text{(Hopf network)} \]

\[g^2 \quad T[M] \]

\[g'^2 \sim 1/g^2 \]

\[\quad \rightarrow \quad 4 \text{ or } 5 \Delta's \]

\[\quad \rightarrow \quad T[M] \]
Moral

There is interesting structure to be discovered and developed,

\[M = S^3 \setminus \text{(Hopf network)} \rightarrow 4 \text{ or } 5 \triangle \text{'s} \rightarrow T[M] \]
Moral

There is interesting structure to be discovered and developed, both in physics and mathematics.

- SUSY QFT
- moduli spaces
- partition functions
- (SUSY) Hilbert spaces
- topological invariants
- categorification
- combinatorics of triangulations
Moral

There is interesting structure to be discovered and developed, both in physics and mathematics:
- SUSY QFT
- moduli spaces
- partition functions
- (SUSY) Hilbert spaces
- topological invariants
- categorification
- combinatorics of triangulations

Relations like the 3d-3d correspondence allow both kinds of structure to be developed in tandem, with double the power and intuition.
Moral

There is interesting structure to be discovered and developed, both in physics and mathematics

- SUSY QFT
- moduli spaces
- partition functions
- (SUSY) Hilbert spaces
- topological invariants
- categorification
- combinatorics of triangulations

Relations like the 3d-3d correspondence allow both kinds of structure to be developed in tandem, with double the power and intuition.

I hope this type of work will find a place here at Davis.