SEARCHING FOR ULTRA-LIGHT HIDDEN PHOTONS

with:

Peter Graham, Jeremy Mardon & Yue Zhao

and experimental collaborators:
Kent Irwin, Saptarshi Chaudhuri, Sami Tantawi, Vinod Bharadwaj
1. Ultra-light hidden photons: theory

2. Searching for ultra-light hidden photons

3. The importance of the longitudinal mode

4. Searching for hidden photon dark matter
ULTRA-LIGHT HIDDEN PHOTONS
“Ultra-light hidden photons”

Hidden Photons:
Kinetically-mixed, massive, $U(1)'$ gauge boson A':

\[
\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{A'} + \mathcal{L}_{\text{kin. mix}} \\
\quad (-\frac{1}{4} F'^2 + \frac{1}{2} m_{\gamma'}^2 A'_{\mu}^2)
\]

Kinetic mixing $\varepsilon \ll 1$

Ultra-light:
Macroscopic Compton wavelength

\[
\lambda_{\text{Compton}} = 1 \text{ m} \times (10^{-6} \text{ eV}/m_{\gamma'})
\]
A THOUGHT ON TINY MASSES

$$\lambda_{\text{Compton}} = 1 \text{ m} \times (10^{-6} \text{ eV}/m_{\gamma'})$$

How to generate $m_{\gamma'} \approx 10^{-6} \text{ eV}$?

Stuckelberg mass vs. Higgs mechanism

<table>
<thead>
<tr>
<th>$m_{\gamma'}$ generated at string scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\gamma'}$ generated dynamically</td>
</tr>
<tr>
<td>Constraints on light Higgs states</td>
</tr>
<tr>
<td>Higgs decouples as $g_D \to 0$</td>
</tr>
<tr>
<td>Assume light states decoupled</td>
</tr>
</tbody>
</table>

Surjeet Rajendran, UC Berkeley
What does this new field do?

Macroscopic, mixes with photon

\[\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{A'} + \mathcal{L}_{\text{kin. mix}} \]

\[(-\frac{1}{4} F'^2 + \frac{1}{2} m_{\gamma'}^2 A'_{\mu}^2) \]

\[-2\varepsilon F_{\mu\nu} F'_{\mu\nu} \]

Mass basis

- **massless** photon with coupling \(eA_\mu J^\mu \)
- **massive** hidden photon with coupling \(e\varepsilon A'_{\mu} J^\mu \)

Interaction basis

- **interacting** photon
- **non-interacting** hidden photon
- **mass mixing** \(\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} m_{\gamma'}^2 \)

Macroscopic, mixes with photon

\[\frac{1}{4} F'^2 + \frac{1}{2} m_{\gamma'}^2 A'_{\mu}^2 \]

\[-2\varepsilon F_{\mu\nu} F'_{\mu\nu} \]
2 Important Points

Important point 1

all effects decouple when $m_\gamma^2 \to 0$

Interaction basis

- **interacting** photon
- **non-interacting** hidden photon

- mass mixing $\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} m_\gamma^2$
ULTRA-LIGHT HIDDEN-PHOTON CONSTRAINTS

\[\lambda_{\text{Compton}} = \frac{2\pi}{m_{\gamma'}} \]

\(R_{\text{earth}} \) km m mm

\(\log_{10} \varepsilon \)

\(\log_{10} m_{\gamma'} \text{[eV]} \)

Jupiter Earth Coulomb CMB HB Sun

from 1002.0329, 1302.3884
DETECTING ULTRA-LIGHT HIDDEN PHOTONS
our motto: Fields leak through shields
DETECTING THE HIDDEN PHOTON

our motto: Fields leak through shields

Surjeet Rajendran, UC Berkeley
our motto: Fields leak through shields
Detecting the hidden photon

Signal size: first estimate

— Source fields \((E, B)_{source}\)
— \(\varepsilon\) to produce hidden photon
— \(\varepsilon\) for hidden photon to backreact on sensor

\[\rightarrow (E, B)_{detected} \sim \varepsilon^2 (E, B)_{source}\]
Detecting the hidden photon

Signal size: first estimate

- Source fields \((E, B)_{\text{source}}\)
- \(\varepsilon\) to produce hidden photon
- \(\varepsilon\) for hidden photon to backreact on sensor

\[\rightarrow (E, B)_{\text{detected}} \sim \varepsilon^2 (E, B)_{\text{source}}?\]

\[\rightarrow (E, B)_{\text{detected}} \sim \ldots \varepsilon^2 (E, B)_{\text{source}}\]

missing factor to give decoupling as \(m_\gamma \rightarrow 0\)
Detecting the hidden photon

Improve with resonance

Diagram:
- Source of field
- Wave $e^{i\omega t}$
- Shield (perfect conductor)
- Resonator tuned to frequency ω
- Field sensor
DETECTING THE HIDDEN PHOTON

Improve with resonance

Surjeet Rajendran, UC Berkeley
Detecting the hidden photon

Signal size: first estimate

- Source fields \((E, B)_{\text{source}}\)
- \(\varepsilon\) to produce hidden photon
- \(\varepsilon\) for hidden photon to backreact on sensor
- \(Q \gg 1\) resonant enhancement

\[\rightarrow (E, B)_{\text{detected}} \sim \varepsilon^2 (E, B)_{\text{source}} \]

\[\rightarrow (E, B)_{\text{detected}} \sim (...) Q \varepsilon^2 (E, B)_{\text{source}} \]

missing factor to give decoupling as \(m_\gamma \rightarrow 0\)
Signal Size Take 2

- **Interaction basis**
 - *interacting* photon
 - *non-interacting* hidden photon
- Mass mixing \(\left(\begin{array}{c} 0 \\ \varepsilon \\ 1 \end{array} \right) m_{\gamma'}^2 \)
Interaction basis

- *interacting* photon
- *non-interacting* hidden photon

mass mixing $\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} m_{\gamma'}^2$
Signal Size Take 2

Interaction basis

— interacting photon
— non-interacting hidden photon

mass mixing \((\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix}) m_{\gamma'}^2\)
\[(E, B)_{\text{detected}} \sim (m_\gamma A L^2/\omega^2) Q \varepsilon^2 (E, B)_{\text{source}} \]

“Light Shining through Walls” experiments
— The ALPs axion search uses this setup (+ static B-field)
— Can immediately repurpose for hidden photons
— Laser cavities: probes \(\mu \text{m} \) wavelengths

Ahlers et al 0706.2836
MICROWAVE CAVITIES

Microwave cavities are ideal

— amazing resonators: $Q \sim 10^{10}$
— 2 cavities can be tuned to same frequency
— cm-m wavelengths
— same signal scaling as above

Early-stage experiments

— Povey et al 1003.0964
— ADMX 1007.3766
— CROWS 1310.8098
CERN Resonant Weakly-Interacting Sub-eV Particle Search (CROWS)
THE IMPORTANCE OF THE LONGITUDINAL MODE
Signal size take 3: Longitudinal waves

Mass basis
- **massless** photon with coupling $eA_{\mu}J^{\mu}$
- **massive** hidden photon with coupling $eeA'_{\mu}J^{\mu}$

Interaction basis
- **interacting** photon
- **non-interacting** hidden photon
- mass mixing $\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} m_{\gamma'}^2$
Mass basis

- *massless* photon with coupling $eA_\mu J^\mu$
- *massive* hidden photon with coupling $eeA'_\mu J^\mu$

longitudinal mode A'_L

with coupling ee to electric charge
Signal Size Take 3: Longitudinal Waves

Mass basis

- **massless** photon

 with coupling $eA_\mu J^\mu$

- **massive** hidden photon

 with coupling $eeA'_\mu J^\mu$

longitudinal mode A'_L

with

coupling ee to electric charge
Signal size take 3: Longitudinal waves

\[A'_z \propto \varepsilon J_z \]

\[E'_z = -\partial_z A'_0 - \partial_0 A'_z \]

\[\partial_t A'_0 = -\partial_z A'_z \quad \text{(from of EoM for } A') \]

\[E'_z = (-i/\omega)(\omega^2 - k^2)A'_z \propto m_\gamma^2/\omega A'_z \]

\[\varepsilon E'_z \propto (\varepsilon^2 m_\gamma^2/\omega) J_z \]

Mass basis

- **massless photon** with coupling \(eA_\mu J^\mu \)
- **massive hidden photon** with coupling \(\varepsilon eA'_\mu J^\mu \)

longitudinal mode \(A'_L \)

with coupling \(\varepsilon e \) to electric charge

Surjeet Rajendran, UC Berkeley
Signal Size Take 3: Longitudinal Waves

\[\epsilon E'_z \propto (\epsilon^2 m_{\gamma'}^2/\omega) J_z \]

\[\rightarrow (E, B)_{\text{detected}} \sim (m_{\gamma'}^4 L^2/\omega^2) Q \epsilon^2 (E, B)_{\text{source}} \]

\[\rightarrow (E, B)_{\text{detected}} \sim (m_{\gamma'}^2/\omega^2) Q \epsilon^2 (E, B)_{\text{source}} \]
Microwave cavities are ideal

— amazing resonators: $Q \sim 10^{10}$
— 2 cavities can be tuned to same frequency
— self-shielding
— cm-m wavelengths
— same signal scaling as above

Improved from

$(m_\gamma^4/\omega^4) \varepsilon^2$

to

$(m_\gamma^2/\omega^2) \varepsilon^2$

Early-stage experiments

— Povey et al 1003.0964
— ADMX 1007.3766
— CROWS 1310.8098

Jaekel & Ringwald 0707.2063
CERN Resonant Weakly-Interacting Sub-eV Particle Search (CROWS)
\[\lambda_{\text{Compton}} = \frac{2\pi}{m_{\gamma'}} \]

Future experiments

Previous sensitivity projection

Future high-\(Q\) microwave cavity experiment

CMB

\(R_{\text{Earth}}\)

Coulomb

Jupiter

Earth

CMB

HB

Sun

ALPS II

\(\log_{10} \varepsilon\)

\(\log_{10} m_{\gamma'} \text{[eV]}\)
FUTURE EXPERIMENTS

Stage 1: $B_{em}=1 \text{T}$, size $\sim 10 \text{ cm}$, $Q=10^{10}$, $T=4\text{K}$, 1 month

Stage 2: $B_{em}=1 \text{T}$, size $\sim 1 \text{ m}$, $Q=10^{12}$, $T=0.1\text{K}$, 1 year
DM DETECTION WITH A RADIO INSIDE A FARADAY CAGE
Hidden-Photon DM is an oscillating E' field with

- $\rho_{DM} \approx E'^2$
- Random direction (Lorentz breaking, but hard to tell)
- Frequency $\omega = m_{\gamma'}$
- Coherence time $t \sim 1/(\sigma^2 \omega) \sim 10^6/\omega$

Cosmology

- Energy density dilutes as $1/a(t)^2$ when $H > m_{\gamma'}$
- Avoid this with non-minimal coupling $\mathcal{L} \supset (1/12) R A'_{\mu}^2$
 - Large mass from graviton loops?
 - Overproduced by inflationary perturbations if $R = 0.2$
- Is there a safe way to produce it? (I can’t answer that yet)
Like an electric field that penetrates conducting shields

\[- E' \approx \sqrt{\rho_{\text{DM}}} \approx 2000 \text{ V/m} \]

Has fixed frequency

\[- \omega = m_{\gamma'}, \ \delta\omega/\omega = 10^{-6} \]

Can excite an electromagnetic resonator

electromagnetic cavities

\[- \text{ADMX is automatically sensitive!} \]

Arias et al 1201.5902

\[- \text{restricted to } m_{\gamma'} \sim 10^{-4} - 10^{-6} \text{ eV} \]

(set by cavity size)
Hidden-Photons as Dark Matter

Like an electric field that penetrates conducting shields

\[E' \approx \sqrt{\rho_{DM}} \approx 2000 \text{ V/m} \]

Has fixed frequency

\[\omega = m_{\gamma'}, \quad \delta \omega / \omega = 10^{-6} \]

Can excite an electromagnetic resonator

Electromagnetic Cavities

- ADMX is automatically sensitive!

 Arias et al 1201.5902

- Restricted to \(m_{\gamma'} \sim 10^{-4} - 10^{-6} \text{ eV} \)

 (set by cavity size)

LC Circuits

- Resonators

- Much wider and lower frequency range than cavities

- Can probe much lower masses

S. Chaudhuri et al. 1411.7382
EXPERIMENTAL SETUP

oscillating E' field (dark matter)
EXPERIMENTAL SETUP

oscillating E' field (dark matter)

Metal box to shield backgrounds (Faraday cage)
THE SIGNAL INSIDE THE BOX

Metal box

oscillating E' field

conduction electrons in wall respond to E' field, generating E and B fields
The Signal Inside The Box

- Metal box
- Oscillating E'
- Conduction electrons in wall respond to generating
- Net effect is a B field inside the box

$$B \sim \varepsilon (m_{\gamma'} R) \times 10^{-5} \, \text{T}$$
oscillates at $\omega = m_{\gamma'}$
EXPERIMENTAL SETUP

- oscillating E' field (dark matter)
- Metal box to shield backgrounds (Faraday cage)
- Tunable resonant LC circuit (a radio)
EXPECTED REACH

Stage 1: size \sim50 cm, $T=4\text{K}$, $Q=10^6$, 1 year scan

Stage 2: size \sim1 m, $T=10\text{mK}$, $Q=10^6$, 1 year scan
EXPECTED REACH

Stage 1: size ~50 cm, $T = 4\text{K}$, $Q=10^6$, 1 year scan

Stage 2: size ~1 m, $T = 10\text{mK}$, $Q=10^6$, 1 year scan

Surjeet Rajendran, UC Berkeley