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Outline of the talk

1.  Introduction
...where the big questions which won’t be answered,

are introduced...

II.  Why are holographic theories gauge theories?
...where we say that the spectrum of the
gravity theory ought to be reasonable...

III.  Density of states bounds
...where we use properties of black holes and

phase transitions...

IV.  Other bounds and equivalences
...entanglement, bulk locality, and more may

enter the story...
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Which quantum field theories give rise to macroscopic
theories of gravity (via holography)?  Can we find

precise criteria?

1.  Introduction

Two (related) big questions:
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This question underlies theoretical particle physics.

Which spectra of elementary particles can arise in a UV 
complete theory including quantum gravity?
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Complete answers to these questions far outrun
present understanding.

One logical place to search for answers is in studying
2d CFTs and 3d gravity; the extra constraints due to 

Virasoro symmetry may simplify life.

The first obvious fact is that one needs to focus on
CFTs of large central charge to get a macroscopic

space-time:

c = 3
2
LAdS
G

Brown,
Henneaux
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But this is far from sufficient.  For instance, no one expects
a tensor product of ten million copies of the 2d Ising model

to have a weakly curved gravity dual.

So, what criteria should we impose, that go beyond
mere large central charge?
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Going beyond that basic element of the AdS/CFT map, we 
find:

But clearly this should not be a sufficient condition for
emergence of conventional gravity.  

Other simple elements of the AdS/CFT map include:In AdS/CFT,  basic elements of the duality map relate:

I.   Extremal CFTs and quantum gravity 

A fundamental role in our understanding of quantum
gravity is played by the holographic correspondence
between conformal field theories and AdS gravity.

In the basic dictionary between these subjects

conformal symmetry $ AdS isometries

primary field of dimension � $ bulk quantum field of mass m(�)

. . . . . .

Monday, August 10, 15

The full spectrum of quanntum fields shows up in the
CFT partition function:

The spectrum of pure 3d gravity would be just
the graviton multiplet and the associated multiparticle

states.

We can use the spectrum to read off the partition function
of the conjectural dual CFT:

You see that for eigenstates of the “Hamiltonian” it 
becomes obvious that this is just:

Tr e��H , � ⇠ 2⇡R

Now instead of a particle moving in imaginary time, 
consider a string:

There are now two parameters that fix the shape of
the torus, instead of just a radius.

Thursday, May 15, 14

Monday, August 10, 15

This means that the partition function we were
computing, that summarizes the spectrum of string

states, should behave well under SL(2,Z):

Z =
P

n cnq
n

cn = # of states at mass level n

These transformations are associated with the
group SL(2,Z).

q = e2⇡i⌧

Z(a⌧+b
c⌧+d ) ⇠ Z(⌧)

more properly,
should behave as

a modular function
or form....
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This has allowed various groups to suggest or prove
rather general facts about possible duals to AdS3

gravity (in tractable cases where the CFT is a 
symmetric orbifold, or where one can define a 

suitable holomorphic object).
c.f. Hartman, Keller, Stoica;

Belin, Keller, Maloney;
Benjamin, Cheng,

SK, Moore, Paquette;
...
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the lattice is generated
by complex numbers 

1, ⌧

Each torus is related to a 2d lattice.

But one can choose a different basis for the lattice,
and get the same torus.  This corresponds to acting

on the a,b cycles by a large diffeomorphism:

⌧ ! a⌧+b
c⌧+d

ad� bc = 1

Thursday, May 15, 14

Each torus is related to a 2d lattice:

But one can choose a different basis for the lattice, and
still get the same torus:

the lattice is generated
by complex numbers 

1, ⌧

Each torus is related to a 2d lattice.

But one can choose a different basis for the lattice,
and get the same torus.  This corresponds to acting

on the a,b cycles by a large diffeomorphism:

⌧ ! a⌧+b
c⌧+d

ad� bc = 1
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Because of this, we expect that the partition function
will be modular:

Brief divertimento on modular forms

So, string theory is a natural generator of modular forms.  
Modular functions or forms are functions on
the upper half-plane defined by the property:

f(a⌧+b
c⌧+d ) = (c⌧ + d)kf(⌧)

They map the
“fundamental domain”

to the complex #s

Thursday, May 15, 14

Brief divertimento on modular forms

So, string theory is a natural generator of modular forms.  
Modular functions or forms are functions on
the upper half-plane defined by the property:

f(a⌧+b
c⌧+d ) = (c⌧ + d)kf(⌧)

They map the
“fundamental domain”

to the complex #s
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Modular functions
map the “fundamental

domain” to the
complex #s
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We will heavily use modularity -- in particular, the
existence of the S-transformation

S : ⌧ ! � 1
⌧

in finding constraints on partition functions of 
2d quantum field theories which are to give

rise to emergent AdS3 gravity.

II.  Why are holographic theories gauge theories?

Before doing this, however, let us discuss a more
basic bound.

Thursday, December 3, 15



Suppose we want a CFT dual to a conventional gravity 
theory, compactified to AdS3:

Then we expect a discrete set of states in AdS, with
energies split by the compactification radius:

Thursday, December 3, 15



This means that we expect a finite number of CFT
operators with dimensions below dimension     :�⇤

P
�<�⇤

N(�) < 1

This is the dual to the statement that there are finitely
many KK modes beneath a given mass, in conventional

gravity theories.

Note that even in a low tension string
theory, we expect a finite (Hagedorn)

degeneracy 

N(�) ⇠ e�
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Now consider a theory at large central charge, or its
analogue in higher dimensions, large N.

Fields : �i, i = 1, · · · , N
Operators : Oi1. . . ik

k ⇠ �i1 . . .�ik

In a theory that isn’t a gauge theory but with N fields,
we’d expect            operators at dimension ~k.O(Nk)

This would be a disaster -- the spectrum doesn’t even
stabilize in the limit of large AdS radius,             .N ! 1
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The way out is clear.  

* d>2 field theories avoid this plethora of states by 
imposing a gauge constraint; gauge invariance restricts
the set of operators at dimenson ~k to a number that

doesn’t grow with N.

* Typical constructions that have been studied in 
AdS3/CFT2 work by a close relative of this:

Why?  

Partition functions are hard to calculate.  They are 
typically calculated (in this literature) for CFTs of

the form

(C)N/GN

GN ⇢ SN

A canonical concrete example:  the “seed” CFT is
the K3 sigma model, in the D1-D5 system.

Monday, October 12, 15

Symmetric orbifolds of 
“seed theory”      .C
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The precise condition one wants for stabilization of the 
spectrum is that:

⇢1(�) = O(c0) as c ! 1

Subgroups of the permutation group that accomplish 
this are called “oligomorphic groups,” and have been

recently studied in both the mathematics and the
physics literature. Cameron;

Haehl, Rangamani

Of course, this is still a relatively trivial kind of constraint.  
Lets try to get more physical...
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III.  Density of states bounds

Beyond a zeroth order reasonable spectrum of light
states, there is more that we expect of a gravity theory

in AdS3.

The basic object we’ll discuss will be a partition function:

Z(q) =
P

n cnq
n, q = exp(2⇡i⌧)

Two qualitative facts that we can turn into quantitative
bounds: c.f. Hartman,

Keller, Stoica
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1.   3d gravity has black holes. 

The Bekenstein-Hawking entropy should come out
“right” for the black hole states.   Cardy only guarantees

this for CFT states with

� � c

� ⇠ c .

But we expect in AdS3 gravity that this should work also
when 
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* 

2.  Known large radius models have a phase structure 
governed by a Hawking-Page transition:

Low temperatures dominated by “gas of particles,” high 
temperatures by black brane geometry.
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While one can try to impose these constraints on a 
CFT partition function, we chose instead to study an

index, the elliptic genus, of 2d SCFTs.

Why would one study an index of SCFTs when one could
instead study the partition function?

Why?  

Partition functions are hard to calculate.  They are 
typically calculated (in this literature) for CFTs of

the form

(C)N/GN

GN ⇢ SN

A canonical concrete example:  the “seed” CFT is
the K3 sigma model, in the D1-D5 system.

Monday, October 12, 15

Benjamin, Cheng, SK, 
Moore, Paquette
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But at such a symmetric orbifold point, any emergent
space-time is expected to be “stringy” at best, with

LAdS ⇠ lstring

This is borne out in calculations.   One can see that a
permutation orbifold has, basically, a Hagedorn density

of states beneath the mass where one forms
black holes: 

Keller;
Belin, Keller, Maloney⇢N (�) ⇠ e�, � ⌧ c

Monday, October 12, 15
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The index will let us get around this, and distinguish
between supergravity and stringy growth.  To see how,

let us first recall basic facts about indices.The canonical example is the Witten index.

Consider a supersymmetric quantum mechanics 
theory with a supercharge satisfying

Q2 = 0, {Q,Q†} = H

Assume the theory also has a fermion # symmetry,
and Q is odd.

Then one can easily prove two powerful statements:

Wednesday, February 18, 15
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From these facts, one can easily prove:

-- all states have non-negative energy

-- states at positive energy are paired by
the action of Q 

Mathieu Moonshine 

• The Witten index 

 
 
 
 
 
 
 
 
 

5 

 HF
FB

F

q

nn
Z

)1(Tr

)1(TrWitten






E3      B B B F F F 

E2      B F 

E1      B B F F 

0      B B B B F 

Bosons  
Fermions 

Now, one can define an index:
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(Note: I avoid here, and later, discussing subtleties that can arise when 
the spectrum is not discrete.  These are important in appearance of e.g. 

mock modular forms in physics.)

The Witten index is just a number.  A quantity with more
information -- an entire q-series -- is available in 

supersymmetric 2d QFTs.

We’ll mostly focus on theories with at least (2,2) 
supersymmetry. 

This means that each chirality has generators

T,G+, G�, J .

Wednesday, February 18, 15
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In any such theory we can define the elliptic genus:

AdS3 ⇥ S3 ⇥K3

Famous examples including Calabi-Yau sigma models,
and the Hilbert scheme of N points on a K3 surface, dual 

to                          gravity.

Unpacking the right-moving stuff, we
see it is a right-moving Witten index!

So - in theories with discrete spectrum - this will give
us a holomorphic modular object.

ZEG(⌧, z) = TrRR

⇣
(�1)J0+FRqL0yJ0 q̄L̄0

⌘

Wednesday, February 18, 15

It gives rise to a holomorphic modular object,
a sort of supersymmetric analogue of the

partition function.
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Technically speaking, the elliptic genus is a “weak Jacobi
form” associated to a moduli space of SCFTs: 

Consider, on the other hand, an index like the
elliptic genus.  Assume we have a (2,2) SCFT,

with left and right-moving U(1) charges.
In any such theory we can define the elliptic genus:

AdS3 ⇥ S3 ⇥K3

Famous examples including Calabi-Yau sigma models,
and the Hilbert scheme of N points on a K3 surface, dual 

to                          gravity.

Unpacking the right-moving stuff, we
see it is a right-moving Witten index!

So - in theories with discrete spectrum - this will give
us a holomorphic modular object.

ZEG(⌧, z) = TrRR

⇣
(�1)J0+FRqL0yJ0 q̄L̄0

⌘

Wednesday, February 18, 15

It is a “weak Jacobi form” associated to a moduli
space of SCFTs:
These invariances imply in particular that we may

expand the function as:
The invariance of �(⌧, z) under ⌧ ! ⌧ + 1 and z ! z + 1 implies a Fourier expansion

�(⌧, z) =
X

n,`2Z
c(n, `)qny`, (II.4)

and the transformation under ( �1 0

0 �1

) 2 SL
2

(Z) shows

c(n, `) = (�1)wc(n,�`). (II.5)

Moreover, the elliptic transformation (II.3) can be used to show that the coe�cients

c(n, `) = Cr(D(n, `)) , D(n, `) = `2 � 4mn

depend only on the so-called discriminant D(n, `) and r 2 Z/2mZ and r = ` (mod 2m).

Note that D(n, `) is negative the polarity, defined in [11] as 4mn� `2.

In other words, a Jacobi form admits the expansion

�(⌧, z) =
X

r (mod 2m)

hm,r(⌧)✓m,r(⌧, z) (II.6)

in terms of the index m theta functions,

✓m,r(⌧, z) =
X

k2Z
k=r mod 2m

qk
2/4myk. (II.7)

Explicitly, we have

hm,r(⌧) =
X

n

c(n, r)q�D(n,r)/4m.

Recall that the vector-valued function

✓m(�1

⌧
,�z

⌧
) =

p�i⌧ e

✓
mz2

⌧

◆
S ✓m(⌧, z), ✓m(⌧ + 1, z) = T ✓m(⌧, z), (II.8)

where S ,T are the 2m⇥ 2m unitary matrices with entries

Srr0 =
1p
2m

e

✓
rr0

2m

◆
, (II.9)

Trr0 = e

✓
r2

4m

◆
�r,r0 . (II.10)

From this we can see that h = (hm,r) is a 2m-component vector transforming as a weight

w � 1/2 modular form for SL
2

(Z). In particular, an elliptic genus with w = 0 of a theory

with central charge c = 6m can be written as

ZEG(⌧, z) =
X

r2Z/2mZ

Zr(⌧)✓m,r(⌧, z) (II.11)
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From this we can see that h = (hm,r) is a 2m-component vector transforming as a weight

w � 1/2 modular form for SL
2

(Z). In particular, an elliptic genus with w = 0 of a theory

with central charge c = 6m can be written as
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Zr(⌧)✓m,r(⌧, z) (II.11)

4

Define the polarity of a given term by:

D(n, `) = `2 � 4mn = �p(n, `)

This is useful for the following reasons:
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In fact, it is what is known as a weak Jacobi form of 
weight 0 and index c/6.  

going o↵ to infinite dimension, and simple product manifolds. As the latter two classes of

examples fail, we see that the bound does have teeth – there are simple examples of (2,2)

superconformal field theories at large central charge that violate it. In §5, we attempt to

quantify “the fraction of supersymmetric theories at large central charge which admit a

gravity dual,” using a natural metric on a relevant (suitably projectivized) space of weak

Jacobi forms.

II. MODULARITY PROPERTIES

We can define the following elliptic genus for any 2d SCFT with at least (0, 1) supersym-

metry. Denote by Ln, L̄n the left and right Virasoro generators, F̄ the right-moving fermion

number, and J
0

the left-moving U(1) charge operator, we define

ZEG(⌧, z) = TrH(�1)
¯F+J0qL0�c

L

/24q̄
¯L0�c

R

/24yJ0 . (II.1)

Here, q = e2⇡i⌧ and y = e2⇡iz and cL, cR denotes the left- and right-moving central charges

as usual .

In the cases of interest to us, the factor of (�1) ¯F which survives in (II.1) kills the anti-

holomorphic dependence, and the elliptic genus is a purely holomorphic function of ⌧ . In

fact, much more is true. Using standard modular invariance properties one can show that

the elliptic genus of a SCFT defined above transforms nicely under the group SL
2

(Z)nZ2.

In particular, it is a so-called weak Jacobi form of weight 0 and index cL/6. For instance,

supersymmetric sigma models for Calabi-Yau targets of complex dimension 2m have elliptic

genera that are weight 0 weak Jacobi form of index m.

A weak Jacobi form of index m 2 Z and weight w is a holomorphic function �(⌧, z) on

H⇥ C which first of all satisfies the condition
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�(⌧, z + `⌧ + `0) = e�2⇡im(`2⌧+2`z)�(⌧, z) , `, `0 2 Z . (II.3)

Apart from the modular transformation (II.2), a Jacobi form also satisfies the elliptic trans-

formation (II.3) which can be understood in terms of the spectral flow symmetry in the

presence of an N � 2 superconformal symmetry.

3

III.  Facts about weak Jacobi forms

A weak Jacobi form is a holomorphic function on
which satisfies:

       

H⇥ C

c.f. Dabholkar,
Murthy, Zagier
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Consider, on the other hand, an index like the
elliptic genus.  Assume we have a (2,2) SCFT,

with left and right-moving U(1) charges.
In any such theory we can define the elliptic genus:

AdS3 ⇥ S3 ⇥K3

Famous examples including Calabi-Yau sigma models,
and the Hilbert scheme of N points on a K3 surface, dual 

to                          gravity.

Unpacking the right-moving stuff, we
see it is a right-moving Witten index!

So - in theories with discrete spectrum - this will give
us a holomorphic modular object.

ZEG(⌧, z) = TrRR

⇣
(�1)J0+FRqL0yJ0 q̄L̄0

⌘
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It is a “weak Jacobi form” associated to a moduli
space of SCFTs:
These invariances imply in particular that we may

expand the function as:
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III.  Facts about weak Jacobi forms

A weak Jacobi form is a holomorphic function on
which satisfies:

       

H⇥ C

c.f. Dabholkar,
Murthy, Zagier
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It admits a q,y expansion:

We will be interested in bounding the coefficients.
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Defining the “polarity”

p(n, l) = 4mn� l2

one can in fact show that:

* States with p > 0 are (charged) black holes in AdS

* States with p < 0 are perturbative particles

We will bound the negative polarity coefficients.  Happily, 
these determine the full Jacobi form, by modularity.
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Importantly, the coefficients are constant on the
moduli space, and so are governed by points with

small numbers of states.

C.  Calabi-Yau spaces of high dimension  

It is natural to ask whether some simple Calabi-Yau 
manifolds of high dimension (but not symmetric products)

may satisfy the bound?  The simplest family to check
is given by hypersurfaces of dimension d in         . 

These spaces all admit a
soluble Landau-Ginzburg 

point in moduli space.

CPd+1
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If there is a “sugra point” with
small numbers of states, the index

must behave that way even at 
“stringy” points due to constancy

on the moduli space.

So we can try to find theories where our conditions
1 and 2 are satisfied, but where 

⇢(�) ⇠ e�
↵
,↵ < 1 sub-Hagedorn

growth

Monday, October 12, 15
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So, we will consider the elliptic genus of a 2d SCFT
with a gravity dual.  Lets start with the 
Bekenstein-Hawking entropy criterion.

The genus gets contributions from  extremal 
spinning black holes in the 3d bulk:

L̄0 = 0, L0 large

These BTZ black holes have:

r+ = r� = 2
p
GM, S = ⇡r+

2G
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As the Brown-Henneaux Virasoro algebra has 

c = 3
2G

S = 2⇡
q

cM
6

this entropy can be re-written as:

Corrections which are fractional powers of             are
absent, but there can be logs.  So we expect coefficients

in the elliptic genus that go as:

MPlanck

cn = e2⇡
p

cn
6 +O(log c)
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We could then estimate the elliptic genus, in the regime 
where black holes dominate, as being:

Z(⌧) =
R

dn e2⇡
p

cn
6 e2⇡i⌧n

Evaluating by saddle point would give:

This has been heuristic; we need to refine to include the
U(1) charge.  In the bulk, the U(1) symmetry corresponds

to a Chern-Simons gauge field:

F = �⇡2 m
�2 +O(log m)
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S

boundary

gauge

= � k
16⇡

R
@AdS d

2

x

p
gg

↵�
A↵A�

There can be Wilson lines around the non-contractible 
circle in the black-hole geometry.

The result, for theories with (2,2) supersymmetry, is then:

This can again be derived from a saddle point argument, 
using the entropy of the appropriate black holes.

F = �m⇡2

�2 �mµ2
+O(log m)

Thursday, December 3, 15



Now, using the S modular transformation, and requiring
that the transformed expression (dominated by a sum over

low energy states) reproduce the desired answer:

gives a constraint.  The basic answer should be  

logZ =

c
24�

and bounding the corrections leads to a constraint
on the growth rate of polar coefficients:

(� < 2⇡)

(� > 2⇡)

logZ = m⇡2

� +m�µ2
+O(log m)

Combining (III.26) and (III.27), we get

ZNS,R(⌧, z) = e�
2⇡imz2

⌧ e
i⇡m
2⌧ e�

2⇡izm
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X

r2Z/2mZ

X

Dr2

D=r2 mod 4m

X

k=r mod 2m

Cr(D)e
2⇡i
4m⌧ (D�m2�(k+m)

2
)e�

2⇡izk
⌧ (�1)k+m

= em�µ2
+

m⇡2

�

X

r2Z/2mZ

X

Dr2

D=r2 mod 4m

X

k=r mod 2m

Cr(D)e
⇡2

m� (D�m2�(k+m)

2
)e2⇡i(k+m)(µ+ 1

2 )

(III.28)

where in the last line we have used the substitutions ⌧ = i�
2⇡

and z = � i�µ
2⇡

.

Note that the prefactor in front of the sum in equation (III.28) gives the right hand side

of equation (III.25). Therefore

log

0

BB@
X

r2Z/2mZ

X

Dr2

D=r2 mod 4m

X

k=r mod 2m

Cr(D)e
⇡2

m� (D�m2�(k+m)

2
)e2⇡i(k+m)(µ+ 1

2 )

1

CCA ⇠ O(log(m)).

(III.29)

In order to turn this into a more useful statement we next introduce another physically

motivated hypothesis – the “non-cancellation hypothesis.” This hypothesis states that the

leading order large m asymptotics is not a↵ected if we replace the terms in the expansion

of ZNS,R above by their absolute values

50. Given the noncancellation hypothesis none of the

terms in the sum can get large, and hence we arrive at the necessary condition:

log

✓
|Cr(D)|e ⇡2

m� (D�m2�(k+m)

2
)

◆
= O(logm) for all � < 2⇡ and k = r mod 2m.

(III.30)

The strongest bound is obtained by taking the limit as � increases to 2⇡ from below,

yielding:

|Cr(D)|  e
2⇡
4m (m2�D+min {(k+m)

2|k=r(mod 2m)})+O(logm). (III.31)

We can write the bound simply in terms of coe�cients c(n, `) where 0  `  m; the rest of

the coe�cients will be determined from this subset via spectral flow and reflection of `. We

then get the bound

|c(n, `)|  e2⇡(n+
m
2 � |`|

2 )+O(logm). (III.32)
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We had also discussed the Hawking-Page criterion:
a good dual to conventional gravity, ought to have a 
partition function that exhibits a first order phase

transition at 

� = 2⇡

with known free energies (up to small corrections):

and finds:

Now, use the standard thermodynamic relations

The polar part of the elliptic genus then looks like

X

(n,`):D(n,`)>0

c(n, `)e��d(n,`)

= c(0,�m) e�d(0,�m)

X

(n,`):D(n,`)>0

c(n, `)

c(0,�m)
e��[d(n,`)�d(0,�m)] . (III.9)

The maximally polar state has n = 0, ` = �m and d(0,�m) = �m
4

= � c
24

, corresponding

to the NS vacuum. The other states have d(n, `) > d(0,�m). To avoid corrections which

violate the condition (III.6), we would like to have

log
�
1 +

X

(n,`):D(n,`)>0

c(n, `)

c(0,�m)
e��[d(n,`)�d(0,�m)]

�
= O(m0) (III.10)

at � > 2⇡. Translated into a condition on the coe�cients, we require that all polar terms

have

|c(n, `)/c(0,�m)|  e2⇡[d(n,`)�d(0,�m)] . (III.11)

This is our desired bound on the polar degeneracies.

Now we will examine the thermodynamical consequences of the bound. We will see that

this bound leads to the derivation of the microscopic black hole entropy (III.4) whenever the

central charge is large and Ered > c
24

. From the assumption that the ground state dominates

the (II.12) F Note: ground state dominates in what sense? strictly speaking we need the

stronger bound |c(n, `)/c(0,�m)|  e2⇡[�D(n,`)+D(0,�m)] F we have

Zr(⌧ = i
�

2⇡
) =

r
⌧

�i

r
2

m
(�1)r

⇣
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2m/� + . . .
⌘

, � < 2⇡ (III.12)

and hence

logZr(⌧ = i
�

2⇡
) = ⇡2m/� +O(logm). (III.13)

Note that the leading term is independent of the superselection sector labelled by r. Hence

we have in the canonical ensemble for all r

Ered(�) = �@� logZ = ⇡2m/�2 (III.14)

S(�) = �(1� �@�) logZ = 2⇡2m/�. (III.15)

Changing the ensemble, we get the microscopic Bekenstein-Hawking entropy (III.4), for

all Ered > c/24.

S(E) = 2⇡
p
mEred (III.16)
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logZ(⌧ = i �
2⇡ ) = ⇡2m

� + · · · , � < 2⇡ .
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These words can be turned into bounds as follows.

* The low-temperature elliptic genus satisfies:

• BTZ black hole states in 3d gravity are those states with 4mn� `2 > 0, and their entropy

is given by [14]

SBH = 2⇡
p
mEred = ⇡

p
4mn� `2 . (III.4)

So in fact, the supergravity modes contributing to the polar part are precisely the gravity

modes which are too light to form the smallest black holes in three dimensions. It is bounds

on the growth of the number of such modes as a function of the Lred

0

eigenvalue, that will

guarantee the phase structure we desire in a large radius gravity dual. This means that the

bound can be stated in terms of coe�cients of �P .

So, let us try to state a necessary condition for a superconformal field theory with elliptic

genus �(⌧, z) with polar part �P , to have a large radius gravity dual. As in [2], we want the

thermal ensemble for temperatures with � > 2⇡ to be governed by the ground state. We

can now reason as follows.

• In the NS sector for left-movers, the elliptic genus satisfies at the lowest temperatures

logZEG,NS(⌧ = i
�

2⇡
) =

cL
24

�, � � 2⇡ . (III.5)

To have a phase dominated by the ground state until temperatures parametrically close to

� = 2⇡ at large central charge cL = 6m, one requires22

logZEG,NS(⌧ = i
�

2⇡
) =

cL
24

� +O(1), � > 2⇡. (III.6)

• Now, we wish to translate this into constraints on the polar coe�cients. The NS sector

elliptic genus has a q-expansion of the form

ZEG,NS(⌧) = (�1)mq
m

4 ZEG

�
⌧,

⌧ + 1

2

�
=

X

n,`

(�1)m+`c(n, `) q
m

4 +n+ `

2 . (III.7)

Writing out the terms contributed by �P to the NS elliptic genus after spectral flow, one

sees that this amounts to the following requirement. First, rewriting the power of q in (III.7)

as

d(n, `) =
(m+ `)2

4m
� D(n, `)

4m
, (III.8)
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Turns out, this is implied by the Bekenstein-Hawking 
criterion.
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We have explored several classes of examples.  The main 
tool is the DMVV formula.

E.g. for the symmetric product orbifold of K3, the
partition function exhibits Hagedorn growth, but
you can prove sub-Hagedorn growth of the polar

coefficients in the elliptic genus.

One can try to find a more general story.  Recall that:

V.  Examples

We now discuss a few examples which satisfy/do not
satisfy the kind of bound we derived.

A.   Hilbert scheme of N points on K3

Elliptic genera of symmetric products were discussed
extensively in the mid 1990s. Dijkgraaf, Moore,

Verlinde, Verlinde

One can define a generating function for elliptic genera:

A. Symn(K3)

The first example is one which we expect to satisfy the bound, and serves as a test of

the bound. A system which historically played an important role in the development of

the AdS/CFT correspondence was the D1-D5 system on K3 [9], and the duality between

the �-model with target space (K3)n/Sn and supergravity in AdS
3

was the first example of

AdS
3

/CFT
2

duality [1]. See also [19] for a more detailed analysis.

The elliptic genus of the symmetric product CFT was discussed extensively in [15]. One

can define a generating function for elliptic genera

Z(p, ⌧, z) =
X

N�0

pNZEG(Sym
N(M); q, y) . (IV.1)

which is given by [15] as

Z(p, ⌧, z) =
Y

n>0,m�0,l

1

(1� pnqmyl)c(nm,l)
. (IV.2)

where the coe�cients c(m, l) are defined as the Fourier coe�cients of the original CFT M .

ZEG(M ; q, y) =
X

m�0,l

c(m, l)qmyl. (IV.3)

If we are interested in calculating the O(q0) piece of the elliptic genus of SymN(M), we

can set m = 0 in (IV.2), giving

Z(p, ⌧, z) =
Y

n>0,l

1

(1� pnyl)c(0,l)
+O(q) (IV.4)

The most polar term of SymN(M) is given by y�mN where m is the index of the elliptic

genus of M . This is the coe�cient of y�mNpN in (IV.2), which only gets contributions from

1

(1� py�m)c(0,�m)

(IV.5)

By calculating the coe�cient of pNy�Nm in (IV.5) we get

c
Sym

NM(0,�Nm) =

✓
c(0,�m) +N � 1

N

◆
. (IV.6)

In order to find the subleading polar piece for SymN(M), we calculate the coe�cient of

the pNy�Nm+1 in (IV.2). This has contributions from

1

(1� py�m)c(0,�m)

1

(1� py�m+1)c(0,�m+1)

1

(1� p2y�m)c(0,�m)

. (IV.7)
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c.f. de Boer, 
1998
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We can give some checks that this satisfies our bounds for 
K3.  Consider the terms in the elliptic genus that have 

vanishing power of q: 
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Dijkgraaf, Moore,
Verlinde, Verlinde

Monday, October 12, 15This allows determination of genera of symmetric
products, in terms of that of the “seed” CFT.
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*  For the CFT arising in the D1-D5 system, with 
target                , the growth is indeed sub-Hagedorn:

cn < eN
↵
, ↵ < 1 .

SymN (K3)

*  For the CFTs arising in “generic” symmetric products,
one finds Hagedorn behavior. 

* But, we have been able to find  “new”  cases where the
genus is consistent with sub-Hagedorn growth.

Benjamin, SK,
Keller, Paquette
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First class of examples:

It is useful to remember some facts about the space of 
weak of Jacobi forms.

To see how these theories might related to our present 
subject, we need to first review basic facts about Jacobi 

forms.

The ring of Jacobi forms of even weight is a polynomial
algebra with four generators:

For our purposes, it su�ces to know the following. A weak Jacobi form of index m 2 Z and

weight w is a function �(⌧, z) on H⇥ C, satisfying

�(
a⌧ + b

c⌧ + d
,

z

c⌧ + d
) = (c⌧ + d)we2⇡im

cz2

c⌧+d�(⌧, z)

0

@a b

c d

1

A 2 SL(2,Z)

�(⌧, z + `⌧ + `0) = e�2⇡im(`2⌧+2`z)�(⌧, z) `, `0 2 Z . (2.1)

The ring of weak Jacobi forms of even weight is a polynomial algebra in four generators.

These are the Eisenstein series E4

E4(⌧) = 1 + 240
1X

n=1

�3(n)q
n = 1 + 240q + 2160q2 + · · · (2.2)

and E6

E6(⌧) = 1� 504
1X

n=1

�5(n)q
n = 1� 504q � 16632q2 + · · · (2.3)

of weights 4 and 6 and index 0, as well as the Jacobi forms of (w,m) equal to (-2,1) and (0,1)

given by

'�2,1(⌧, z) =
✓1(⌧, z)2

⌘6(⌧)
(2.4)

and

'0,1(⌧, z) = 4

✓
✓2(⌧, z)2

✓2(⌧)2
+

✓3(⌧, z)2

✓3(⌧)2
+

✓4(⌧, z)2

✓4(⌧)2

◆
. (2.5)

In terms of these functions, we can write the extremal elliptic genera of [8] for low values of

m as:

Zm=1
EG = '0,1 (2.6)

Zm=2
EG =

1

6
'2
01, +

5

6
'2
�2,1E4 (2.7)

Zm=3
EG =

1

48
'3
0,1 +

7

16
'0,1'

2
�2,1E4 +

13

24
'3
�2,1E6 (2.8)

Zm=4
EG =

67

144
'4
�2,1E

2
4 +

11

27
'3
�2,1'0,1E6 +

1

8
'2
�2,1'

2
0,1E4 +

1

432
'4
0,1 . (2.9)

We note in passing that the m = 2 extremal elliptic genus arises as the chiral partition

function of the N = 2 theory discussed in §7 of [13]. Here, our focus will be on the m = 4

theory, which has not yet been constructed.

We now give a few more details about the would-be theory at m = 4.
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We’re interested in weight zero and index m = c/6.

Our first class of examples with sub-Hagedorn growth of 
the index is fairly trivial.  If one chooses a  “seed” CFT C

with

ZEG
NS (q) = q�

1
4 + · · ·

by tuning the polar pieces, the symmetric product will have
sub-Hagedorn growth:

High UV scale

Planck scale

index cancels here

slow growth

Bekenstein-Hawking growthE
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Second class of examples:

The second class of examples comes from adding a 
parameter to allow a tunable difference between the
string and Planck scales, visible in the DMVV formula.

Consider:

ab

b
supergravity

growth

Hagedorn
growth

�

Syma(Symb(C)) 1 ⌧ a ⌧ b
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“Data” confirming the saddle point analysis is 
easily generated.  For instance, for a seed theory

with genus      :'0,1

In Figure 2, we show a plot of the growth of states of Sym2(Sym40(�
0,1)),

where we see evidence of (82) in the di↵erent regimes2. This is all compatible

10 20 30 40 50
�

50

100

150

200

250

300

Log(c(�))
Sym2(Sym40(�0,1))

Figure 2: Growth of coe�cients in NS sector of Sym2(Sym40(�
0,1)). Note the

three very distinctive regions of a < � <

b
4

, b
4

< � <

ab
4

, and ab
4

< �. (The
region � < a is too small here to notice.)

with our initial observation about the existence of moduli in the twisted
sector: Symb(K3) does have moduli with which we can deform away from
the orbifold point. In this way we can move to a point in the moduli space
where the growth of states in the full partition function is as in (71). By the
previous analysis, Syma of this will then indeed be as in (82).

5 Discussion

The main focus of this paper was to provide examples where the elliptic
genus, a 2d supersymmetric index, could be a useful indicator of an emergent
macroscopic space-time geometry that is computable directly in quantum

2We compute this for �0,1 instead of the elliptic genus of K3; these di↵er by a factor
of 2. This is simply to avoid the large Ramond ground state degeneracy of the K3 case,
which shows up in the elliptic genus. One can achieve �0,1 as the elliptic genus of a known
manifold – the Enriques surface [15].

22
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We feel that the index and its refinements may provide a 
useful order parameter for emergence of macroscopic

space-time from an abstract (family of) 2d CFT(s).

IV.   Other bounds and equivalences   

But obviously, instead of bounds on the density of states,
one could try to use other physical observables as an
order parameter for the emergence of macroscopic

space-time.

Here, I mention two ideas:

Thursday, December 3, 15



i.  Entanglement entropy as an order parameter

Ryu and Takayanagi famously proposed that
the entanglement entropy between a region
A and its complement in the boundary QFT,
is given by the area of an appropriate bulk

minimal surface.

We could require that the CFT entanglement entropy
in an appropriate geometry, match the RT formula.

Thursday, December 3, 15



The entanglement entropy for a single segment of length l
in 2d CFT is universal at large c

SE =

c
3 log (l/a)

But for two strips, it becomes a sensitive probe of 
the theory:

The result when A is two disjoint intervals agrees with the CFT calculation above

[8]. We have two choices for how to draw the geodesics that end on the endpoints of

region A:

   



.

The configuration that gives the entropy is the one in which the geodesics have min-

imal total length. This is the disconnected one for small cross-ratio x and the con-

nected one for large x, with a sharp transition at x = 1
2 . Note that in any particular

channel, the answer decouples into a sum of single-interval entanglements. From the

CFT point of view, this reflects the decoupling of the di↵erent monodromies that must

be imposed to compute the semiclassical conformal block, when the singularities of

the di↵erential equation have vanishing weight as n ! 1.

The holographic entanglement entropy of a single interval gives the classic CFT

result mentioned in the introduction, Sij = c
3 log

� zi�zj
✏

�
. From the diagram, the

holographic result for two intervals is

SA = min (S12 + S34 , S14 + S23). (3.18)

This agrees with the CFT calculation, applied to the entire range 0 < x < 1. Assum-

ing the holographic formula is correct, this suggests that in these CFTs the leading

contribution to the Renyi entropy indeed always comes from the vacuum block in

some channel. A closely related conjecture about the classical Einstein action on

manifolds with a higher-genus boundary was made in [19].

The Renyi entropies S(n)
A given in (3.7) also agree with a holographic calculation,

performed in [12]. The match provides a very simple geometrical interpretation of the

semiclassical vacuum block f0 with external twist operators: it is the Einstein action

of a particular 3-manifold. We will review the gravity calculation briefly. See [12] for

details.

The Renyi entropy is the partition function on a singular Riemann surface M2 of

13

c.f. Cardy,
Calabrese
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In fact, in holographic systems, the two interval 
entanglement is governed by a phase transition between 

distinct minimal surfaces:
The result when A is two disjoint intervals agrees with the CFT calculation above

[8]. We have two choices for how to draw the geodesics that end on the endpoints of

region A:
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.
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ing the holographic formula is correct, this suggests that in these CFTs the leading

contribution to the Renyi entropy indeed always comes from the vacuum block in

some channel. A closely related conjecture about the classical Einstein action on

manifolds with a higher-genus boundary was made in [19].

The Renyi entropies S(n)
A given in (3.7) also agree with a holographic calculation,

performed in [12]. The match provides a very simple geometrical interpretation of the

semiclassical vacuum block f0 with external twist operators: it is the Einstein action

of a particular 3-manifold. We will review the gravity calculation briefly. See [12] for

details.

The Renyi entropy is the partition function on a singular Riemann surface M2 of

13

It was studied in some detail by Headrick and, later,
Hartman.  The requirement that the two interval

2nd Renyi entropy match gravity is essentially identical
to the density of states bound we have studied.

(Recall                        )

a simple and universal proposal [6]. For a single interval in two dimensions, it is

straightforward to check explicitly that the holographic formula agrees with the stan-

dard CFT result. In higher dimensions or with multiple intervals, the simple formula

is a surprise, but it has passed a number of nontrivial tests [7]. A partial derivation

exists for two intervals in two dimensions, for the first few orders in a series expansion

[8]. We extend this derivation to all orders and to any number of intervals.

The result also applies to problems related by a conformal mapping, including

the (possibly time dependent) entanglement entropy of a CFT at finite temperature

where it is very natural to consider multiple intervals [9, 10, 11].

The argument relies on a formula for the Virasoro conformal block at large c. This

formula is well known, but appears to have found few (if any) direct applications in

AdS/CFT. It is likely that other universal features of 3d gravity, or of 2d CFTs with

gravity duals, can be understood in a similar way.

The strategy to compute the entanglement entropy and the relevance of the con-

formal block are as follows. Divide a system, always taken to be in its groundstate,

into two parts A and B. The reduced density matrix of region A is obtained by

tracing out B, ⇢A = TrB⇢tot. This creates a mixed state, with entanglement entropy

SA = �Tr⇢A log ⇢A . (1.1)

One approach to compute this is the replica method. We define the Renyi entropies

S(n)
A =

1

1� n
log Tr⇢nA , (1.2)

for integer n � 2, then analytically continue n ! 1 to find the entanglement entropy

SA = S(1)
A . When A consists of N disjoint intervals, the Renyi entropy can be realized

as a 2N -point correlation function. We will expand this correlation function in con-

formal blocks, and show that the leading contribution to the Renyi entropy at large c

is captured entirely by the Virasoro block for the vacuum state. Other contributions

are exponentially suppressed. This statement is true to all orders in the OPE series

expansion, but fails non-perturbatively as di↵erent terms in the expansion exchange

dominance at large c. Note that unlike higher dimensions, the vacuum block in 2d

CFT is nontrivial, since it includes the stress tensor and an infinite number of other

2
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ii.  Hard scattering

Heemskerk,  Penedones, Polchinski and Sully studied:

Figure 1: Four-point correlator with wavepackets aligned to intersect in the bulk.

the arguments are (−π/2, ê), (−π/2,−ê), (+π/2, ê′), (+π/2,−ê′), and in all conformally

equivalent configurations.

This singularity is not present in general CFT’s, for example not in the weakly coupled

N = 4 theory (there is a weaker singularity at the same point). Rather, it emerges in the

strong-coupling limit. In Sec. 6 we will describe the singularity in more detail, and compare

it with what we find in the CFT. For now, the main lesson is that to study the bulk locality

properties we should look at the CFT four-point function. Note that the forms of the two-

and three-point functions are fully determined by conformal symmetry, but that of the four-

point function is not. In fact, in all dimensions it is determined by symmetry up to a function

of two real cross ratios. This function carries dynamical information, in particular regarding

the locality of the bulk theory.

2.3 Current understanding

AdS/CFT duality has been subjected to many tests. Indeed, every time we apply it in a

new way we have the possibility that it will lead to implausible or incorrect results, signaling

a failure of the duality. The tests are of many types, for example

5

Basic intuition:  in a local theory with sub-AdS scale 
geometry, one can do hard scattering.  
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This should translate into special singularities in correlation 
functions of CFTs dual to AdS gravity with a separation of 

scales between the AdS and string lengths.

Conjecture:  These singularities occur precisely for 
theories where

⇢1(�) ⇠ e�
↵
, ↵ < 1

Cleaning up proofs of the statements in this section, and 
extending to a discussion of the chaos bound, is work in

progress with Benjamin, Dyer, Zimet.
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