“Ugly Ducklings-Turned-Swans” in the Top Quark Sector

Doojin Kim

Joint Theory Seminar, University of California at Davis, Apr. 27, 2015

With Kaustubh Agashe, Roberto Franceschini, Sungwoo Hong, Kyoungchul Kong, Myeonghun Park, Markus Schulze, and Kyle Wardlow: 1209.0772; 1212.5230; 1309.4776; 1503.03836; 1503.03872 and Works in progress
1. Introduction

Ugly duckling = Swan

Before
1. Introduction

- Ugly duckling = Swan

Before

After
1. Introduction

- **LHC Run I**
 - Higgs discovery, SM precision measurement
 - SM having unexplained issues (e.g., neutrino mass, dark matter, gauge hierarchy puzzle etc)
 - Many new physics models: theory-motivated and phenomenology-motivated
 - No hint of new physics signature
1. Introduction

- **LHC Run II**

- LHC Run II will be marked by **precision studies** and searches for **small signals**

- Precision measurement by different approaches/methods

- New physics searches: searching for buried “Arkenstone” out of a tons of “treasure”

- New ideas/approaches
 - Providing different systematics
 - Facilitating discovery of new particles
1. Introduction

Ugly ducklings in physics

- “Ugly ducklings” in physics?
 - Some variables/approaches/techniques could be considered as problematic / not useful/not well under control (depending on the questions/channels at hand)
 - Likely to be avoided/disregarded/used with prescriptions to remove problematic issues in relevant analyses
1. Introduction

Ugly ducklings in physics

- “Ugly ducklings” in physics?
 - Some variables/approaches/techniques could be considered **as problematic /not useful/not well under control** (depending on the questions/channels at hand)
 - Likely to be avoided/disregarded/used with prescriptions to remove problematic issues in relevant analyses

With different points of view for them, such “Ugly Ducklings” in physics can be reborn as “**Beautiful Swans**” especially in the LHC era
Contents

1. Introduction
2. “Ugly Ducklings” in Top Sector
3. Energy Distribution
4. Extra Radiation
5. Mis-Bottom-Tagging
6. Summary
2. “Ugly Ducklings” in Top Sector

- Why top sector?

- LHC as a top quark factory: top pairs: 950,000 fb
2. “Ugly Ducklings” in Top Sector

Why top sector?

- Top properties well measured/studied since its discovery at TeVatron, e.g., LHC combined \(e\mu\),
 \[\sigma_{tt} = 240.6 \pm 1.4\text{(stat.)} \pm 5.7\text{(syst.)} \pm 6.2\text{(lumn.)}\]
 \[p\overline{b},\text{ CMS-PAS TOP-14-016, ATLAS-CONF-2014-054, } m_t = 173.34 \pm 1.4\text{(stat.)} \pm 5.7\text{(syst.)},\text{ World combination March 2014 (ATLAS, CDF, CMS, Do)}\]
2. “Ugly Ducklings” in Top Sector

Why top sector? (continued)

- Still rooms for NP to hide, e.g., $\Gamma_t = 2.0 \pm 0.5$ GeV, Particle Data Group (2012)
2. “Ugly Ducklings” in Top Sector

Why top sector? (continued)

- Still rooms for NP to hide, e.g., $\Gamma_t = 2.0 \pm 0.5$ GeV, Particle Data Group (2012)

- Largest quantum correction to higgs mass
 - Highly promising sector/window to new physics
2. “Ugly Ducklings” in Top Sector

Why top sector? (continued)

- Still rooms for NP to hide, e.g., $\Gamma_t = 2.0 \pm 0.5$ GeV, Particle Data Group (2012)
- Largest quantum correction to higgs mass
 - Highly promising sector/window to new physics
- New physics in the production level (faking tt signature)
 - Better constrained/ruled out in the relevant parameter space of the new physics models (e.g. Czakon, Mitov, Papucci, Ruderman and Weiler ’14)
- New physics in the decay level (via rare decays of top)
 - Better chance to have new physics signals
2. “Ugly Ducklings” in Top Sector

- “Ugly ducklings” in the top sector
 - Three ugly duckling siblings
 - Energy distribution
 - NOT Lorentz invariant vs. longitudinal boost-invariant transverse quantities at hadron colliders
2. “Ugly Ducklings” in Top Sector

- “Ugly ducklings” in the top sector

- Three ugly duckling siblings
- Energy distribution
 - NOT Lorentz invariant vs. longitudinal boost-invariant transverse quantities at hadron colliders
- Extra radiation (mostly via QCD)
 - NOT fully understood vs. tree-level process (cf. DM search)
2. “Ugly Ducklings” in Top Sector

“Ugly ducklings” in the top sector

- Three ugly duckling siblings
- Energy distribution
 - NOT Lorentz invariant vs. longitudinal boost-invariant transverse quantities at hadron colliders
- Extra radiation (mostly via QCD)
 - NOT fully understood vs. tree-level process (cf. DM search)
- Mis-bottom-tagging (mostly charm)
 - NOT easy to distinguish from bottom-initiated jets
Energy distribution
3. Energy Distribution

Motivation

- A simple 2-body decay of a heavy resonance B into A and massless visible a

- Energy of visible particle a is **mono-chromatic** and **simple** function of masses in the rest frame of particle B

$$E^* = \frac{m_A^2 - m_B^2}{2m_A}$$

- E^*: energy of visible particle measured in the rest frame of particle B

- E^* is measured, mass of A is known \rightarrow **mass of B can be measured!** and vice versa

- Great to be on this special frame!
3. Energy Distribution

- 2-body decay kinematics in the lab frame

- Energy (not a Lorentz-invariant) of particle a should be Lorentz-transformed

- Depending on m_A and m_B plus unknown boost factor $\gamma = 1/\sqrt{1 - \beta^2}$ and emission angle of particle a from the axis of $\vec{\beta}$

$$E = E^* \gamma (1 + \beta \cos \theta^*)$$

- No longer fixed energy of particle a in the lab frame, but a function of $\gamma, \theta^* \rightarrow$ becoming a distribution due to variation in them \rightarrow information loss?!

Peak of such an energy distribution $=$ rest-frame energy
3. Energy Distribution

Existence of energy peak – primer

- Lorentz transformation: \(E = E^* \gamma (1 + \beta \cos \theta^*) \)
- Unpolarized/scalar mother particles
 - \(\cos \theta^* \) becomes flat \(\rightarrow E \) is also flat (simple chain rule)

\[
E^* \frac{\sqrt{1 - \beta}}{\sqrt{1 + \beta}} \quad \text{Number of events}
\]

\[
\frac{1}{2E^* \beta \gamma} \quad E
\]
3. Energy Distribution

- Existence of energy peak – primer (continued)

- Lower bound (upper bound) smaller (bigger) than E^* (for any boost)
 - No other E gets larger contribution from a given boost than does $E = E^*$
 - No other E is contained in every rectangle

- Asymmetric on linear E (symmetric on logarithmic E)
3. Energy Distribution

Existence of energy peak – primer (continued)

- Distribution in E: summing up the contributions from all relevant boost factors
 - “Stacking up” rectangles weighted by boost distribution (Lebesque-type integral)
 - Energy distribution has a unique peak at $E = E^*$ (Agashe, Franceschini, and DK ’12, also Stecker ‘71)
- Details of the boost distribution (depending on production mechanism, PDFs, mother masses...) NOT matters
 1) rise-and-fall
 2) rise-and-fall with non-zero at $\gamma = 1$
 3) more crazy (?)
3. Energy Distribution

- “Stacking up” rectangles

- E^* must be the location of the peak!
3. Energy Distribution

- Bottom energy from top decay

- Bottom mass negligible: peak is expected **not** to shift

\[E_b^* = \frac{m_t^2 - m_W^2 - m_b^2}{2m_t} = 68 \text{ GeV} \]

- ... maybe an “accident”?!
3. Energy Distribution

Different CM energy colliders

- “Invariant” (under boost distributions) feature in non-invariant energy distribution holds even with colliders of different center-of-mass energies and types

- Shape can change, while peak does NOT change
3. Energy Distribution

- Example pseudo-experiment at detector level

- Proof of the concept using 100 pseudo experiments from MadGraph5+Pythia+Delphes (ATLAS-2012-097)
- Fit with blue dots
- consistent with the input value
- Fit **NOT** spoiled by cuts or detector effects!!

\[m_{\text{top}} = 173.1 \pm 2.5 \text{ GeV (stat.) with 5/fb LHC7} \]

- LO effects are well under control → **CMS at work!!!**
3. Energy Distribution

- Energy peak at production NLO
 - Recoil of the $t\bar{t}$ system by ISR
 - Top quark getting more boost → different boost distribution → change in width of distribution, but NO shift in the energy-peak!!

![Graph showing energy distribution](image-url)
3. Energy Distribution

- Energy peak at decay NLO
 - 3-body decay of top quark at decay NLO
 - Fraction of bottom energy carried away by final state radiation jet
 - Peak **shifts** to the lower energy regime!
3. Energy Distribution

- Energy peak in three-body decay
 - Energy of visible particle given by a distribution, **NOT** fixed unlike 2-body decay!
 - Each value of the rest-frame energy goes through similar argument in 2-body kinematics.

```
\[ E^*_1 \quad E^*_2 \quad \ldots \quad E^*_n \]
```
3. Energy Distribution

2 body vs. 3 body

- Peak position smaller than the maximum rest-frame energy (Agashe, Franceschini, DK, and Wardlow '12)
 - E_{peak}: model-dependent
 - Neglecting hard emission from a bottom quark, i.e., jet-veto
 - Safe from soft radiation off bottom (according to the detector-level simulation study)
 - (Typically) suppressed by $\frac{\alpha_s}{\pi}$, i.e., small perturbation in the LO phenomenon
3. Energy Distribution

Motivation to top mass measurement

- Beginning with an “example/test” to prove the principle
- Evolved into a “serious” measurement of top mass
- Why another method?!
 - (Theoretically) physical mass (like top mass measurement using the endpoints of kinematic variables) vs. Monte Carlo mass (like template method) etc.
 - (Experimentally) different systematics, independent measurement etc.

- Some doable challenges (Agashe, Franceschini, DK and Schulze, in progress)
 - 3-body decay due to FSR
 - Renormalization/factorization scale choice
 - Jet energy resolution/jet formation
3. Energy Distribution

- Production & decay NLO

- In real situation, jet definition is important; even ISR could affect the energy

- Large jet radius capturing more FSR jets, but more contaminated by ISR jets

- Small jet radius losing more FSR jets, but less contaminated by ISR jets
3. Energy Distribution

- Production & decay NLO: small R

 - Small R: \textit{R}=0.5 (anti-kt, MCFM)

 - Less contamination by ISR jets, but losing more FSR jets
 ✓ Energy peak shifts to the lower energy regime

 - Decay NLO sensitivity to the scale choice: ±1 GeV on the top mass
3. Energy Distribution

- Production & decay NLO: large R

- Large R: $R=1.0$ (anti-kt, MCFM)

- More contamination by ISR jets, but capturing more FSR jets
 - Energy peak shifts to the higher energy regime

- Decay NLO sensitivity to the scale choice: ± 1 GeV on the top mass
3. Energy Distribution

- Production & decay NLO: “decent” R

 - “Decent” R: R=0.7 (anti-kt, MCFM)

 - Decent contamination by ISR jets, and
capturing decent number of FSR jets
 ✓ Cancellation between the two effects?
 ✓ NO shift in the energy peak

 - Decay NLO sensitivity to the scale choice:
 ± 0.5 GeV on the top mass
3. Energy Distribution

- Mild corrections from NLO

- Top decay still as in SM
- Theoretical systematics based on \((\text{small})\) parameters
 - \(\delta_{\text{prod}}\): PDF uncertainty, new physics in the production level (still unpolarized top)
 - \(f_{\text{pol}}\): new physics contribution with polarized top
 - \(\epsilon_{FSR}\): NLO effect, jet-veto
- Bottom jet energy peak correction
 \[\frac{\delta E_b^*}{E_b^*} = f_{\text{pol}} + \epsilon_{FSR} \times \delta_{\text{prod}} \]
- \(\epsilon_{FSR}\) for QCD/SM production is \textbf{calculable} and has been being studied (Agashe, Franceschini, DK and Schulze, in progress)
 - Conventional methods \(\sim \delta_{\text{prod}}\) vs. energy-peak \(\sim \epsilon_{FSR} \times \delta_{\text{prod}}\)
Extra Radiation
4. Extra Radiation

Motivation

(For example,) separating tW from dominant $t\bar{t}$ background
4. Extra Radiation

Motivation

- (For example,) separating tW from dominant $t\bar{t}$ background

- Once a bottom is missed, they are
 - the same in the final state
 - kinematically very similar to each other

- Any “killer” kinematic variables to distinguish them from each other?
4. Extra Radiation

Quick review on M_T^2

- Stransverse mass (M_{T2}): a generalization of M_T
 (Lester and Summers '99; Barr, Lester, and Stephens '03; Cho, Choi, Kim and Park '07)
 - full usage of both decay sides
 - MET relating both decay sides
 - bounded above
 - M_{T2}^{max} as a simple function of mass parameters

$$M_{T2}^{max} = \frac{m_B^2 - m_A^2}{m_B}$$
4. Extra Radiation

- Subsystem M_{T2}

- More than one visible particle per decay side \rightarrow richer structure/more M_{T2} variables

- Various subsystems depending on particles whose mass is minimized and particles which are considered invisible (Burns, Kong, Matchev and Park '08)

- 3 symmetric subsystems and 3 asymmetric subsystems for $t\bar{t}$
4. Extra Radiation

- tW vs. $t\bar{t}$ at LO

- Requiring 1 bottom-tagged jet + 2 opposite signed leptons
- Observed bottoms and leptons coming from the decay of the same particles in both tW and $t\bar{t}$
 - ✓ Their typical momentum scale is similar
 - ✓ Any kinematic variables processed with visible 4 momenta are likely to develop similar distributions
- Impact of missing bottom jet
 - ✓ reshuffling of the distribution of overall initial state radiation
- No “killer” kinematic variables motivating machine learning procedure such as MVA or BDT
4. Extra Radiation

Results at LO

- Detector level simulation together with event selections of CMS collaboration
- Any kinematic variables seeming hopeless as expected
4. Extra Radiation

tW vs. $t\bar{t}$ at “NLO”

- Attaching an extra jet into the leading order diagram of tW process
 - Requiring 2 bottom-tagged jets + 2 opposite signed leptons or 1 bottom-tagged jet + 1 regular jet + 2 opposite signed leptons
- Additional jet requirement retrieving the leading order diagram of $t\bar{t}$
 - Relevant event topology well-defined \rightarrow distributions in kinematic variables upper-bounded
- Event topology for tW process ill-defined \rightarrow distributions can be stretched far beyond the $t\bar{t}$ endpoints; tW endpoints dictated by hardness of ISR jets (DK and Kong ’15)
4. Extra Radiation

- Results at “NLO”
 - Detector level simulation together with event selections of CMS collaboration
 - 2 bottom-tagged jets + 2 opposite signed leptons

- Large fraction of tW events found beyond the kinematic endpoints for $t\bar{t}$ (dashed lines)
4. Extra Radiation

- Results at “NLO”
 - ROC curves: background rejection vs. signal acceptance
 - First four variables show good performance, while the other two show decent performance
 - 99.5% (99%) background rejection vs. 5% (20%) signal acceptance
4. Extra Radiation

- Results at “NLO”

- Detector level simulation together with event selections of CMS collaboration

- 1 bottom-tagged jet + 1 regular jet + 2 opposite signed leptons

- Again large fraction of tW events found beyond the kinematic endpoints for $t\bar{t}$
4. Extra Radiation

- Results at “NLO”

- ROC curves: background rejection vs. signal acceptance

- First four variables show good performance, while the other two show decent performance
- More chance of accepting ISR jets in $t\bar{t}$: slightly worse performance than previous channel
4. Extra Radiation

Application to new physics

- Generically applicable to topology distinction between

\[A\bar{A} \rightarrow (Bb)(\bar{B}\bar{b}) \rightarrow (Ccb)(\bar{C}\bar{c}b) \] vs. \[A\bar{B} \rightarrow (Bb)(\bar{B}) \rightarrow (Ccb)(\bar{C}\bar{c}) \]

- New physics examples

1) \(\bar{\ell}\bar{\ell} \) vs. \(\bar{\ell}\tilde{\chi}_1^- \) (or \(\bar{\ell}\tilde{\chi}_1^+ \)) where \(\bar{\ell} \rightarrow \tilde{\chi}_1^+ b \rightarrow b\ell^+\bar{\nu} \) and similarly, \(\bar{\ell} \rightarrow \tilde{\chi}_1^- \bar{b} \rightarrow \bar{b}\ell^-\bar{\nu} \)

2) \(\bar{g}\bar{g} \) vs. \(\bar{g}\tilde{q} \) (or \(\bar{g}\tilde{q} \)) where \(\bar{g} \rightarrow q\bar{q} \rightarrow q\bar{q}\tilde{\chi}_1^0 \)
Mis-Bottom-Tagging
5. Mis-Bottom-Tagging

Motivation

- Given a signal process involving charm quark-induced jets in the final state, e.g., a rare decay process of top quark,

 $$pp \rightarrow t\bar{t} \rightarrow (bH^+)(bW^-) \rightarrow (bbc)(\bar{b}\ell^-\bar{\nu})$$

- its dominant background, i.e., semi-leptonic $t\bar{t}$

 $$pp \rightarrow t\bar{t} \rightarrow (bW^+)(bW^-) \rightarrow (bsc)(\bar{b}\ell^-\bar{\nu})$$

- typical event selection would be 3 bottom-tagged jets + 1 regular jet + 1 lepton + MET

- To increase the signal-over-background, 1 more bottom-tagged jet could be required based on the observation that (DK and Park, in progress)

 mis-tagging rate for charm quark > mis-tagging rate for light quarks
5. Mis-Bottom-Tagging

- Bottom-tagging efficiency

- Bottom-tagging efficiency (ϵ_b): ~70%, mis-tagging efficiency for charm quark (ϵ_c): ~20%, mis-tagging efficiency for light quarks (ϵ_s): ~1%

- (Very rough and optimistic) estimation: $\bar{b}c$ (signal) vs. $\bar{s}c$ (background)

\[
\frac{S}{B} \sim \frac{\epsilon_b (1-\epsilon_c)}{(1-\epsilon_s)\epsilon_c} \quad (3 \text{ b-jets}) \rightarrow \frac{S}{B} \sim \frac{\epsilon_b \epsilon_c}{\epsilon_s \epsilon_c} \quad (4 \text{ b-jets}): \text{increased by a factor of ~25}
\]
5. Mis-Bottom-Tagging

Issues

- Combinatorics, p_T and η dependence of tagging efficiency

- Charm-quark tagging? ... mis-c-tagging rate for bottom quark, simultaneous requirement of bottom and charm quark taggings, etc... In general, analysis would be quite involved

- Small mass gap between top and charged Higgs: too soft a bottom jet to be detected
6. Summary

Conclusions

- Seemingly NOT useful variables/techniques/approaches can be reinterpreted as useful (with careful study) in the context of precision study and discovery potential
- 3 topics were discussed with physics examples in the top sector
 - Energy distribution
 - Extra radition
 - Mis-bottom tagging
- More “ugly ducklings” can be reborn as “beautiful swans”
Thank you!
Plateau in energy distribution

If the distribution starts from $\gamma \neq 1$, then the relevant energy distribution will develop a plateau in the middle of it.
No “accident” in p_T

- Peak and shape change
Formal proof

- First derivative
\[f(E) = \int_{\frac{1}{2}(\frac{E}{E^*} + \frac{E^*}{E})}^{\infty} \frac{d\gamma}{2E^*\sqrt{\gamma^2 - 1}} g(\gamma) \]

\[f'(E) = \frac{\text{sgn} \left(\frac{E^* - E}{2EE^*} \right)}{2E^*} g \left(\frac{1}{2} \left(\frac{E}{E^*} + \frac{E^*}{E} \right) \right) \]

- Vanishing derivative gives the extrema → Here this is the same as solving \(g = 0 \).

- Remember last assumption: \(g(\gamma) \neq 0 \) near \(\gamma = 1 \)

 → This is typical for particles produced at colliders.

- Two possibilities: \(g(1) = 0 \) or \(g(1) \neq 0 \)

- \(g(1) = 0 : f'(E=E^*) \propto g(1) = 0 \rightarrow f \) has a unique extremum at \(E = E^* \).

- \(g(1) \neq 0 : f'(E) \) flips its sign at \(E = E^* \) due to the sign function (from + to -). → the distribution has a **cusp** at \(E = E^* \) which appears as a peak.
Fitting function: functional properties of generic $f(E)$

- f is a function with an argument of $\frac{1}{2} \left(\frac{E}{E^*} + \frac{E^*}{E} \right)$, i.e., even under $\frac{E}{E^*} \leftrightarrow \frac{E^*}{E}$ or $E \to \frac{E^*}{E}$.

 - clear from the expression of $f(E)$

\[
f(E) = \int_{\frac{1}{2} \left(\frac{E}{E^*} + \frac{E^*}{E} \right)}^{\infty} d\gamma \frac{g(\gamma)}{2E^* \sqrt{\gamma^2 - 1}}
\]

- f is maximized at $E=E^*$.

 - proven heuristically and formally

- f vanishes as E approaches 0 or ∞.

 - the integral expression of $f(E)$ becomes trivial in those limits.

- f becomes a δ-function in some limiting case.

 - if any of mother particles are NOT boosted, i.e., the rest frame, then f should return a δ-function-like distribution.
Fitting function: proposal of a “simple” ansatz

\[f(E) = \frac{1}{K_1(p)} \exp \left[\frac{p}{2} \left(\frac{E}{E^*} + \frac{E^*}{E} \right) \right] \]

- \(K_1(p) \) : modified Bessel function of the second kind of order 1
- \(p \) : fitting parameter which encodes the width of the peak
- \(E^* \) as a fitting parameter can be extracted by fitting!
- All four properties are satisfied. → for the last property, use the asymptotic behavior of \(K_1(p) \)

\[K_1(p) \xrightarrow{p \to \infty} \frac{e^{-p}}{\sqrt{p}} \left(1 + O \left(\frac{1}{p} \right) \right) \]

- Proposed ansatz does not develop a cusp so that it is more suitable for the case of \(g(1)=0 \), e.g., pair-production of mothers (cf. the case of \(g(1)\neq0 \), single production of mothers).
A brief look into the massive case

- Energy of the visible particle should be Lorentz-transformed in a modified way.
 \[E = E^*\gamma + p^*\sqrt{\gamma^2 - 1}\cos\theta^* \]

- Each rectangle’s coverage becomes shrunken.
 \[E \in [E^*\gamma - p^*\sqrt{\gamma^2 - 1}, E^*\gamma + p^*\sqrt{\gamma^2 - 1}] \]
 \[2E^*\sqrt{\gamma^2 - 1} \rightarrow 2p^*\sqrt{\gamma^2 - 1} \]

- One modification: the lower bound is NOT smaller than \(E^* \) for some boost factors! (while the upper bound is still greater than \(E^* \) for any boost factor)
 → Our argument is not applicable for such boost factors, and \(E^* \) cannot be the location of the peak. \(: E_{\text{peak}} \geq E^* \rightarrow \) The critical boost factor can be calculable.
 \[\gamma_{\text{cr}} = 2\gamma^* - 1 \text{ with } \gamma^* \text{ being the boost factor of the visible particle in the rest frame} \]
A brief look into the massive case

- For the top decay,
 \[\gamma^* \approx 15 \quad \rightarrow \quad \gamma_{\text{cr}}^{\text{top}} \approx 450 \]

 \[\rightarrow \] This value is not accessible given the current LHC-14TeV.

 \[\rightarrow \] The peak still stays at \(E=E^* \).

- Another modification : symmetry property w.r.t \(E=E^* \) does NOT hold!

- Such a symmetry property implies \(\frac{E_{l_b}E_{u_b}}{E^*^2} = 1 \) for any \(\gamma \).

 \[\rightarrow \] One possible estimator for deviation :
 \[\delta_m = \frac{E_{l_b}E_{u_b}}{E^*^2} - 1 = \frac{m_b^2}{E^*^2} (\gamma^2 - 1) = \frac{\gamma^2 - 1}{\gamma^*^2} \]

 \[\rightarrow \] \(\delta_m \) can be large for large \(m_b \) and \(\gamma \).

- For the top decay,
 \[\gamma^* \approx 15 \quad \text{and typical} \quad \gamma \quad \text{of top quarks is roughly 1.2-1.4} \]

 \[\rightarrow \] Violation of the symmetry property is negligible.
○ Production NLO: scale choice (preliminary)

- Very little sensitivity to the scale choice (less than 0.4 GeV on the top mass)
Mass measurement: general strategy

- Three unknowns: m_A, m_B, and $m_C \rightarrow$ three equations are needed.

$$E_{b \text{peak}} = \frac{m_C^2 - m_B^2}{2m_C}$$
$$E_{a \text{peak}} = \frac{m_B^2 - m_A^2}{2m_B}$$

$$m_{ab}^{\text{max}} = \sqrt{(m_C^2 - m_B^2)(m_B^2 - m_A^2)}$$

$$m_C = \frac{2 m_{ab}^{\text{max}}}{m_{ab}^{\text{max}} - 2 m_{ab}^{\text{max}} 4 E_{b \text{peak}}^2 - 16 E_{b \text{peak}}^2 E_{a \text{peak}} + 4 m_{ab}^{\text{max}} 4 E_{b \text{peak}}^2 E_{a \text{peak}}^2}$$

$$m_B = \frac{8 m_{ab}^{\text{max}}}{m_{ab}^{\text{max}} - 16 E_{b \text{peak}}^2 E_{a \text{peak}} + 4 m_{ab}^{\text{max}} 4 E_{b \text{peak}}^2 E_{a \text{peak}}^2}$$

$$m_A = \frac{4 m_{ab}^{\text{max}} E_{b \text{peak}} E_{a \text{peak}}}{m_{ab}^{\text{max}} - 16 E_{b \text{peak}}^2 E_{a \text{peak}} + 4 m_{ab}^{\text{max}} 4 E_{b \text{peak}}^2 E_{a \text{peak}}^2} \sqrt{4 m_{ab}^{\text{max}} 4 E_{b \text{peak}}^2 E_{a \text{peak}}^2 + 16 E_{b \text{peak}}^2 E_{a \text{peak}}^2 - m_{ab}^{\text{max}} 4}$$
New physics application: gluino decay

- Supersymmetry model
- Neutralino is our lightest stable particle (LSP) → R-parity conserving model.
- For the channel with the 1st and 2nd generation, the current bound on the gluino mass is too restricted (~1.5 TeV).
 → Production cross section of gluino might not be enough for mass measurement.
- 3rd generation is more motivated by naturalness.
 → The current bound is ~1 TeV (assuming 1st and 2nd generations are heavier than gluino).
Energy distribution in the lab frame

- Each value of the rest-frame energy goes through similar argument in 2-body kinematics.
- The peak value is lower than the maximum rest-frame energy. (cf. the peak value is the same as the fixed rest-frame energy in 2-body kinematics)
- Reference values (E^max_peak for 3-body vs. $E^\text{fixed}_\text{max}$ for 2-body) can be measured by other observables such as M_{T2}.
- **Peak = Reference value → 2-body decay → Z_2**
- **Peak < Reference value → 3-body decay → Z_3**
Difference in Z_2 and Z_3

- Two Z_2 charges: 0 or +1 ($\equiv -1$) vs. Three Z_3 charges: 0, +1 or +2 ($\equiv -1$)
- Under Z_3, a DM partner/mother can decay into 1DM or 2DM by Z_3 charge conservation.

\[
+1 = +1 + 0 + 0 + 0 + \ldots
\]

Present in **both** Z_2 and Z_3

\[
+1 = (-1) + (-1) + 0 + 0 + \ldots = -2 \equiv +1
\]

Present **only** in Z_3
Model consideration

- Decay of bottom partner into 1DM/2DM + bottom
- Major background: $Z(\rightarrow 2\nu) + 2b$
- Realistic cuts imposed
Sample result