BLACK HOLE ENTROPY IN LOOP QUANTUM GRAVITY

Daniele Pranzetti

Institute for Quantum Gravity
University Erlangen-Nürnberg

BLACK HOLE THERMODYNAMICS

[Bekenstein 72; Bardeen, Carter, Hawking 73; Hawking 74]
Black holes in their stationary phase behaves as thermodynamical systems:

$$
S \longleftrightarrow A /(8 \pi \alpha) \quad T \longleftrightarrow \alpha \varkappa
$$

But, in classical GR: $T=0$

Hawking radiation:
thermal emission of particles from a BH at

$$
T=\frac{\kappa \hbar}{2 \pi} \quad \longrightarrow \quad S=\frac{A}{4 \ell_{p}^{2}} \quad \begin{gathered}
\text { Semiclassical } \\
\text { result }
\end{gathered}
$$

Q
Statistical physics: entropy of any system is given by $S=\ln N$
$N=$ number of states of the system for the given macroscopic parameters
for a solar mass black hole

1) Microscopic origin of the entropy?

$$
N=e^{S} \sim 10^{10^{77}}
$$

2) Where do all these d.o.f. live?

Call for a quantum treatment of the gravitational dof

Weak holographic principle:
The entropy in the 1st law is the log of the number of states of the black hole that can affect the exterior
[Bekenstein; Sorkin; Smolin; Jacobson...]
\Rightarrow The horizon carries some kind of information with a density approximately 1 bit per unit area
"It from Bit"
[Wheeler]

What these bits of information represent depends on the deep structure of space-time
\diamond The finiteness of the BH entropy hints at discreteness of space-time at the Planck scale

OUTLINE

- Basic ingredients of LQG
> Quantization of an Isolated Horizon
> Entropy counting: results and open issues
> CFT/ gravity correspondence

The LQG APPROACH

Metric variables

Einstein-Hilbert action

$$
\begin{gathered}
I\left[g_{a b}\right]=\frac{1}{2 \kappa} \int d^{4} x \sqrt{-g} R \\
\kappa=8 \pi G
\end{gathered}
$$

upon foliation of spacetime in terms of space-like three dimensional surfaces Σ

$$
q_{a b}, \pi^{a b}=\frac{1}{\sqrt{q}}\left(K^{a b}-K q^{a b}\right)
$$

symplectic structure

$$
\left\{\pi^{a b}(x), q_{c d}(y)\right\}=2 \kappa \delta_{(c}^{a} \delta_{d)}^{b} \delta(x, y)
$$

Hamiltonian

$H\left(q_{a b}, \pi^{a b}, N_{a}, N\right)=N_{a} V^{a}\left(q_{a b}, \pi^{a b}\right)+N S\left(q_{a b}, \pi^{a b}\right)$
vanishes identically on solutions of the e.o.m.

Connection variables

$$
\text { Triad } \quad e_{a}^{i}, i=1,2,3 \quad s u(2) \text { indices }
$$

set of three 1 -forms defining a
frame at each point in Σ

$$
q_{a b}=e_{a}^{i} e_{b}^{j} \delta_{i j}
$$

densitized triad

$$
E_{i}^{a} \equiv \frac{1}{2} \epsilon^{a b c} \epsilon_{i j k} e_{b}^{j} e_{c}^{k} \quad K_{a}^{i} \equiv \frac{1}{\sqrt{\operatorname{det}(E)}} K_{a b} E_{j}^{b} \delta^{i j}
$$

symplectic structure

$$
\left\{E_{j}^{a}(x), K_{b}^{i}(y)\right\}=\kappa \delta_{b}^{a} \delta_{j}^{i} \delta(x, y)
$$

spin connection

$$
\partial_{[a} e_{b]}^{i}+\epsilon_{j k}^{i} \Gamma_{[a}^{j} e_{b]}^{k}=0
$$

Ashtekar-Barbero connection

$$
A_{a}^{i}=\Gamma_{a}^{i}+\gamma K_{a}^{i} \quad\left\{E_{j}^{a}(x), A_{b}^{i}(y)\right\}=\kappa \gamma \delta_{b}^{a} \delta_{j}^{i} \delta(x, y)
$$

Hamiltonian

$H=N_{a} V^{a}\left(E_{j}^{a}, A_{a}^{j}\right)+N S\left(E_{j}^{a}, A_{a}^{j}\right)+N^{i} G_{i}\left(E_{j}^{a}, A_{a}^{j}\right)$
$G R=$ background independent $S U(2)$ gauge theory (partly analogous to $S U(2)$ Yang-Mills theory)
$>$ Kinematical structure: holonomy along a path $\gamma \quad h_{\gamma}[A]=P \exp -\int_{\gamma} A$
Cylindrical functionals $\quad \Psi_{\Gamma, f}[A]=f\left(h_{\gamma_{1}}[A], \ldots, h_{\gamma_{N_{\ell}^{\Gamma}}}[A]\right)$

$$
\begin{aligned}
\left\langle\Psi_{\Gamma_{1}, f}, \Psi_{\Gamma_{2}, g}\right\rangle & \equiv \mu_{A L}\left(\overline{\Psi_{\Gamma_{1}, f}[A]} \Psi_{\Gamma_{2}, g}[A]\right) \\
& =\int \prod_{i=1}^{N_{\ell}^{\tilde{\Gamma}}} d h_{i} \tilde{f}\left(h_{\gamma_{1}}, \cdots, h_{\gamma_{N_{\ell}^{\tilde{\Gamma}}}} \tilde{g}\left(h_{\gamma_{1}}, \cdots, h_{\gamma_{N_{\ell}^{\tilde{\Gamma}}}}\right)\right.
\end{aligned}
$$

Spin network states basis: graphs colored with $\operatorname{SU}(2)$ spins

$$
\text { Peter-Weyl th. } \quad f(g)=\sum_{j} f_{j}^{m m^{\prime}} \Pi_{m m^{\prime}}^{j}(g)
$$

$\left|\Gamma, \boldsymbol{j}, v_{n}\right\rangle$

description of quantized geometries

Fluxes $\quad \hat{\Sigma}_{S}^{i}(x)=\epsilon_{j k}^{i} \int_{S} \hat{e}^{j}(x) \wedge \hat{e}^{k}(x)=\int_{S} n_{a} \hat{E}^{i a}(x)=8 \pi \gamma \ell_{P}^{2} \sum_{p \in \gamma \cap S} \delta\left(x, x_{p}\right) \hat{J}^{i}(p)$ with

* Area operator:

$$
\hat{A}_{S}|\Psi\rangle=\sqrt{\hat{E}_{i}^{a} n_{a} \hat{E}_{j}^{b} n_{b} \delta^{i j}}|\Psi\rangle=8 \pi \gamma \ell_{P}^{2} \sum_{p \in \gamma \cap S} \sqrt{j_{p}\left(j_{p}+1\right)}|\Psi\rangle
$$

$$
\begin{aligned}
& \text { Spectral analysis } \\
& \text { of geometrical operators }
\end{aligned}
$$

\Rightarrow
Planck scale discreteness

QUASI LOCAL DEFINITION OF BH
 Isolated Horizons

IH boundary conditions

- $\Delta=S^{2} \times \mathbb{R}$ null hyper-surface with vanishing expansion
- $\ell^{a}=$ normal future pointing null vector field with vanishing expansion within Δ
- Einstein's field equations hold at Δ
$\Rightarrow \underset{\underset{~ F}{i}}{\Longleftrightarrow}(A)=-\frac{\pi\left(1-\gamma^{2}\right)}{a_{H}} \underset{a b}{\sum_{a b}^{i}}$

$$
p=(\Sigma, A) \in \Gamma \quad \delta=(\delta \Sigma, \delta A) \in \mathrm{T}_{\mathrm{p}}(\Gamma)
$$

for the pull back of fields on the horizon $\delta=$ linear combinations of $\operatorname{SU}(2)$ gauge transformations and diffeomorphisms preserving the preferred foliation of Δ
The presymplectic structure

$$
\begin{aligned}
\kappa \Omega_{M}\left(\delta_{1}, \delta_{2}\right) & =\int_{M} 2 \delta_{[1} \Sigma_{i} \wedge \delta_{2]} K^{i} \quad \begin{array}{c}
\text { is preserved in the presence of an IH } \\
\text { (no boundary term needed) }
\end{array} \\
& =\frac{1}{\gamma} \int_{M} 2 \delta_{[1} \Sigma^{i} \wedge \delta_{2]} A_{i}-\underbrace{\frac{a_{H}}{\pi \gamma\left(1-\gamma^{2}\right)} \int_{H} \delta_{1} A_{i} \wedge \delta_{2} A^{i}}_{\text {boundary term given by an } \operatorname{SU}(2) \text { Chern-Simons presymplectic structure }}
\end{aligned}
$$

The single intertwiner BH model

\diamond Bulk theory: LQG Hilbert space associated to a fixed graph $\gamma \subset M$ with end points p s on H

$$
\hat{a}_{H}\left|\left\{j_{p}, m_{p}\right\}_{1}^{n} ; \ldots\right\rangle=8 \pi \gamma \ell_{p}^{2} \sum_{p=1}^{n} \sqrt{j_{p}\left(j_{p}+1\right)}\left|\left\{j_{p}, m_{p}\right\}_{1}^{n} ; \ldots\right\rangle
$$

spin network states
boundary condition

$$
-\frac{a_{H}}{\pi\left(1-\gamma^{2}\right)} \epsilon^{a b} \hat{F}_{a b}^{i}=16 \pi G \gamma \sum_{p \in \gamma \cap H} \delta\left(x, x_{p}\right) \hat{J}^{i}(p)
$$

\diamond Boundary theory: SU(2) Chern-Simons with punctures

$$
\begin{aligned}
S_{C S}+S_{i n t} & =\frac{k}{4 \pi} \int_{D \times \mathbb{R}} \operatorname{tr}\left[A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right] \\
& +\lambda_{j} \int_{c} \operatorname{tr}\left[\tau_{3}\left(\Lambda^{-1} d \Lambda+\Lambda^{-1} A \Lambda\right)\right]
\end{aligned}
$$

Poisson brackets:

$$
\begin{aligned}
& \left\{A_{a}^{i}(x), A_{b}^{j}(y)\right\}=\delta_{i j} \epsilon_{a b} \frac{2 \pi}{k} \delta^{2}(x-y), \quad a, b=1,2 ; x^{0}=y^{0} \\
& \left\{S^{i}, \Lambda\right\}=-\tau^{i} \Lambda, \quad\left\{S^{i}, S^{j}\right\}=i \epsilon^{i j}{ }_{k} S^{k}
\end{aligned}
$$

$\Lambda \in S U(2) \quad$ particle d.o.f.
$S^{i} \in \mathfrak{s u}(2) \quad$ momentum conjugate to Λ
E.O.M. $\quad \epsilon^{a b} F_{a b}^{i}(A(x))=-\frac{2 \pi}{k} S^{i} \delta^{2}(x-p)$
> Combinatorial quantization:

$$
\Leftrightarrow \quad k \leftrightarrow a_{H} /\left(4 \pi \ell_{P}^{2} \gamma\left(1-\gamma^{2}\right)\right), \quad S^{i} \leftrightarrow J^{i}, \quad \mathscr{H}_{k i n}^{C S}\left(j_{1} \ldots j_{n}\right) \leftrightarrow \operatorname{Inv}\left(\otimes_{p} j_{p}\right)
$$

Quantum BH dof described by a Chern-Simons
theory on a punctured 2-sphere H
[Ashtekar, Baez, Corichi, Krasnov 99]
[Engle, Noui, Perez, DP 11]

$$
\operatorname{dim}\left[\mathscr{H}^{\mathrm{CS}}\left(\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{n}}\right)\right]=\operatorname{dim}\left[\operatorname{Inv}\left(\mathrm{j}_{1} \otimes \cdots \otimes \mathrm{j}_{\mathrm{n}}\right)\right]
$$

we can model the IH by a single $S U(2)$ intertwiner

$\Rightarrow \quad S=\ln \sum_{j_{1}, \ldots, j_{n}} \operatorname{dim}\left[\mathscr{H}^{C S}\left(j_{1} \ldots j_{n}\right)\right]=\frac{a_{H}}{4 \ell_{P}^{2}} \frac{\gamma_{0}}{\gamma}-\frac{3}{2} \log a_{H}$
Bekenstein-Hawking formula for $\gamma=\gamma_{0}$, with $\gamma_{0}=0.274067 \ldots$
[Kaul, Majumdar 98]
[Agullo, Barbero, Diaz-Polo, Fernandez-Borja, Villasenor 08]
[Ghosh, Mitra 05]
[Livine, Terno 05]
[Engle, Noui, Perez, DP 11]

Semiclassical limit of the $S U(2)$ intertwiner quantum geometry: tesselated surfaces
[Livine, Terno 05; Bianchi 10]

BH microstates \Longleftrightarrow horizon quantum shapes

QUANTUM IH TEMPERATURE [DP 13]

[Frodden, Ghosh, Perez 11]: important role of the Unruh temp for a preferred family of stationary local observers at a proper fixed distance from the IH

KMS-states $=$ physical extension of Gibbs equilibrium thermal states to infinite dimensional quantum systems

$$
\mathscr{H}_{I H} \subset \bigotimes_{p}\left|j_{p}\right\rangle: \text { the horizon state } \Omega=\bigotimes_{p}\left|j_{p}\right\rangle\left\langle j_{p}\right| \text { on which to impose } \quad F^{i}(A)=-\frac{2 \pi}{k} \Sigma^{i}
$$

$$
\text { ol }\left|j_{p}\right\rangle=\sum_{m_{p}=-j_{p}}^{+j_{p}}\left|j_{p}, m_{p}\right\rangle_{I} \otimes\left|j_{p}, m_{p}\right\rangle_{0} \quad \text { tracing over the internal dof }|j, m\rangle_{I}
$$

$$
\Leftrightarrow \hat{\rho}=\frac{1}{Z} \bigotimes_{p=1}^{N} P_{O}^{j_{p}} \underbrace{e^{i\left(\frac{2 \pi}{k}-2 \pi\right) \hat{\Sigma}_{p}}}_{\text {Boltzmann-like factor }} P_{O}^{j_{p}} \quad \text { where }\left\{\begin{array}{c}
\text { projector } \\
P_{o}^{j_{p}}=\sum_{\substack{m_{p}=-j_{p}}}^{+j_{p}}\left|j_{p}, m_{p}\right\rangle_{o o}\left\langle j_{p}, m_{p}\right| \\
Z=\operatorname{tr}\left(\bigotimes_{p=1}^{N} P_{O}^{j_{p}} e^{i\left(\frac{2 \pi}{k}-2 \pi\right) \hat{L}_{p}} P_{O}^{j_{p}}\right)
\end{array}\right.
$$ on each puncture partition function

(KMS-condition: given the complex correlation function $f_{A B}(z)=\hat{\rho}\left(\alpha_{z}(A) B\right)$ with $z \in \mathbb{C}$ $\alpha_{z}=$ one-parameter algebra automorphism generated by the boost operator (local horizon generator)

$$
\begin{gathered}
f_{A B}(-i \beta)=\hat{\rho}\left(\alpha_{-i \beta}(A) B\right)=\hat{\rho}\left(B \alpha_{0}(A)\right)=f_{B A}(0) \quad \Rightarrow \quad \text { geometrical notion of temperature } \\
\beta=2 \pi\left(1-\frac{1}{k}\right) \quad \text { and } \quad \gamma=i \quad \text { [Frodden, Geiller, Noui, Perez 12] }
\end{gathered}
$$

$$
S_{\text {Bol }}=-\beta^{2} \frac{\partial}{\partial \beta}\left(\frac{1}{\beta} \ln Z\right) \quad \text { Boltzmann ent. = entanglement ent. } \quad S_{\text {ent }}=-\operatorname{tr}(\hat{\rho} \ln \hat{\rho})
$$

$$
\begin{gathered}
\qquad=\frac{a_{H}}{4 \ell_{P}^{2}+\mu N} \quad \begin{array}{c}
\text { quantum hair argued to be associated to } \\
\text { a new horizon microscopic observable } \\
\text { [Ghosh, Perez 11] }
\end{array} \\
\text { chemical potential } \log _{j}\left[\sum_{j}(2 j+1) e^{-2 \pi i\left(1-\frac{1}{k}\right) j}\right] \\
\text { (call for a GFT description) }
\end{gathered}
$$

Carlip's proposal

$>2+1$ gravity acquires new degrees of freedom in presence of a boundary (broken gauge invariance)
$>$ In the Chern-Simons formulation, these are described by WZW theory
$>$ new, dynamical "would-be gauge" d.o.f. can account for the BH entropy

> attempt to describe the microphysics of BH in terms of a
> "dual" 2-dim Conformal Field Theory

Powerful method However, several open questions:
Cardy formula:

$$
S=2 \pi \sqrt{\frac{c L_{0}}{6}}
$$

* what is the microscopic nature of the d.o.f.?
* where do the d.o.f. live?
* extension to higher dimensions?

Universality problem: (hidden) CFT symmetry underlying different microscopic approaches to BH entropy?

BH Entropy in LQG

$$
S_{L Q G}=\frac{A}{4 \ell_{p}^{2}}+\mu N
$$

Main open questions:

$>$ Can inclusion of matter d.o.f. on the IH give the Bekenstein-Hawking formula? (see e.g. proposal of [Ghosh, Noui, Perez 13]: extra degeneracy due to entanglement entropy of matter)
> Is there a CFT lurking somewhere?
(does LQG belongs to Carlip's `universality class'?)
$>$ Are the previous two questions related??

CFT/GRAVITY CORRESPONDENCE ON THE ISOLATED HORIZON

in collaboration with Amit Ghosh

Nucl. Phys. B (in press), e-print: gr-qc/1405.7056

KAC-MOODY Algebra

IH boundary conditions $\Rightarrow \mathrm{SU}(2) \mathrm{CS}$ theory with punctures on the horizon 2-sphere

$$
\begin{aligned}
S_{C S}+S_{i n t} & =\frac{k}{4 \pi} \int_{D \times \mathbb{R}} \operatorname{tr}\left[A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right] \\
& +\lambda_{j} \int_{c} \operatorname{tr}\left[\tau_{3}\left(\Lambda^{-1} d \Lambda+\Lambda^{-1} A \Lambda\right)\right]
\end{aligned}
$$

$\Lambda \in S U(2)$ particle d.o.f.
$S^{i} \in \mathfrak{s u}(2)$ momentum conjugate to Λ
Poisson brackets:

$$
\begin{aligned}
& \left\{A_{a}^{i}(x), A_{b}^{j}(y)\right\}=\delta_{i j} \epsilon_{a b} \frac{2 \pi}{k} \delta^{2}(x-y), \quad a, b=1,2 ; x^{0}=y^{0} \\
& \left\{S^{i}, \Lambda\right\}=-\tau^{i} \Lambda, \quad\left\{S^{i}, S^{j}\right\}=i \epsilon^{i j}{ }_{k} S^{k}
\end{aligned}
$$

E.O.M. $\quad F_{12}^{i}(A(x))=-\frac{2 \pi}{k} S^{i} \delta^{2}(x-p)$
need of regularization
[Witten 89]
[Guadagnini, Martellini, Mintchev 89]
[Ashtekar, Baez, Krasnov 00]
[Noui, Perez 04]

[Balachandran, Bimonte, Gupta, Stern 92] [Banados 96]
The algebra of gauge constraints leads to a set of charges at the boundaries whose Poisson bracket algebra is a classical Kac-Moody algebra.
(equivalent to the charges obtained by a reduction of the Chern-Simons theory to a boundary WZW theory)

The presence of the two boundaries ∂D and ∂H induces the presence of two families of observables, each localized on one boundary

- 2 sets of test functions:

$$
\begin{array}{ll}
\left.\xi_{N}^{(D) i}(\theta)\right|_{\partial D}=e^{-i N \theta} \tau^{i},\left.\quad \xi_{N}^{(D) i}(\theta)\right|_{\partial H}=0 \\
\left.\xi_{N}^{(H) i}(\theta)\right|_{\partial H}=e^{i N \theta} \tau^{i},\left.\quad \xi_{N}^{(H) i}(\theta)\right|_{\partial D}=0
\end{array}
$$

\downarrow Kac-Moody generators: $\quad q\left(\xi^{(B)}\right)=\frac{k}{\pi} \int_{D / H} \operatorname{tr}\left[d \xi^{(B)} A-\xi^{(B)} A \wedge A\right], \quad B=D, H$
commutation relations of the quantum operators associated with these observables:

$$
\left[\hat{q}_{N}^{i}, \hat{q}_{M}^{j}\right]=i \epsilon_{i j k} \hat{q}_{N+M}^{k}+N \frac{k}{2} \delta_{N+M, 0} \delta_{i j}
$$

Kac-Moody algebra

The currents $q_{N}^{(B) i}$ correspond to the modes of the holomorphic field $A^{i}(z)$

$$
\text { conformal map: } \quad z=e^{w}, w=t_{\boldsymbol{J}}+i \theta
$$

light-cone coordinate in Euclidean space
conformal primary field of weight 1

$$
A^{i}(z)=\frac{1}{k} \sum_{N \in \mathbb{Z}} z^{-N-1} q_{N}^{(H) i}
$$

the holomorphic Chern-Simons gauge connection can be identified with an affine current satisfying
the Kac-Moody algebra

Virasoro Algebra

Holomorphic stress-energy tensor (SET): $\quad \hat{T}(z)=\frac{1}{(k+2)} \sum_{i}\left(\hat{q}^{i} \hat{q}^{i}\right)(z)$

SET Laurent expansion: $\quad \hat{T}(z)=\sum_{N \in \mathbb{Z}} \hat{L}_{N} z^{-N-2} \quad \begin{array}{r}\text { SET conformal } \\ \text { dimension } h=2\end{array}$
Virasoro generators: $\quad \hat{L}_{N}=\frac{1}{(k+2)} \sum_{i} \sum_{M \in \mathbb{Z}}: \hat{q}_{M}^{i} \hat{q}_{N-M}^{i}: \quad: \cdots: \begin{gathered}\downarrow \\ \begin{array}{c}\text { normal ordering } \\ \text { finite energy values in a } \\ \text { highest weight representation }\end{array}\end{gathered}$
the \hat{L}_{N} 's perform diffeos of the boundaries $\partial D, \partial H$ and they fulfill the Virasoro algebra

$$
\begin{gathered}
{\left[\hat{L}_{N}, \hat{L}_{M}\right]=(N-M) \hat{L}_{N+M}+\frac{c}{12} N\left(N^{2}-1\right) \delta_{N+M, 0}, \quad N, M \in \mathbb{Z}} \\
c=\text { central charge: } \quad\left[c, \hat{L}_{N}\right]=0 \forall N \in \mathbb{Z}, \quad \text { for su(2) } \quad c=\frac{3 k}{k+2}
\end{gathered}
$$

+ Energy operator: $\quad \hat{L}_{0}=\frac{1}{(k+2)}\left(\hat{q}_{0}^{i} \hat{q}_{0}^{i}+2 \sum_{M>0} \hat{q}_{-M}^{i} \hat{q}_{M}^{i}\right)$
$H \propto \hat{L}_{0}+\hat{\bar{L}}_{0} \quad$ generator of dilations in the z-plane \rightarrow time translation in the cylinder
\Rightarrow Fields in a CFT can be grouped into families $\left.\left[\phi_{n}\right] \quad \begin{array}{c}\text { a single primary field } \phi_{n} \\ \text { an infinite set of secondary fields } \\ \text { (descendants) }\end{array}\right\} \begin{gathered}\text { Irreps of the conformal group } \\ \text { (primary field = highest weight) }\end{gathered}$

In any given highest weight representation the spectrum of \hat{L}_{0} is bounded from below and there is only one highest weight state $\left|v_{j}\right\rangle$ s.t.

$$
\hat{L}_{0}\left|v_{j}\right\rangle=\underset{\substack{x \\ \text { conformal dimension }}}{\Delta_{j}}\left|v_{j}\right\rangle, \quad \hat{L}_{N}\left|v_{j}\right\rangle=0 \quad N>0
$$

All the other states in the given highest weight representation $\left(c, \Delta_{j}\right)$ can be constructed by repeated application of $\hat{L}_{-N}, N>0$ on $\left|v_{j}\right\rangle$
unitary representations: $\quad c \geq 1, \Delta_{j} \geq 0$
$c=\frac{3 k}{k+2} \underset{\text { large } k}{\rightarrow} 3$

Vertex Operators

The highest weight state $\left|v_{j}\right\rangle$ can be obtained from an 'absolute' vacuum $|0\rangle$ by application of a vertex operator

$$
\begin{gathered}
\qquad\left|v_{j}\right\rangle=\hat{V}_{j}|0\rangle \\
\quad \text { regularity of } \hat{T}(z)|0\rangle \text { at } z=0 \text { implies } \hat{L}_{N}|0\rangle=0, \quad N \geqslant-1 \\
\Rightarrow \underbrace{\hat{L}_{-1}, \hat{L}_{0}, \hat{L}_{1}}_{\text {global conformal group }}|0\rangle=0 \text { the vacuum state is } S L(2, \mathbb{C}) \text { invariant }
\end{gathered}
$$

> The vertex operator \hat{V}_{j} can be interpreted as a Wilson line
[Balachandran, Bimonte, Gupta, Stern 92]

The Wilson line along e creates an highest weight state of τ_{3} charge $j_{3} \Rightarrow$ holonomy $=$ primary field
natural environment for spin network states
via the Sugarawa construction, the action of primary fields \hat{V}_{j} on the vacuum $|0\rangle$ generates highest weight states for the representation of both Kac-Moody and Virasoro algebras
\downarrow In the case of the affine algebra:
$F_{12}^{i}(A(x))=-\frac{2 \pi}{k} S^{i} \delta^{2}(x-p) \rightarrow \oint_{\partial H} A^{i}=-\frac{2 \pi}{k} S^{i} \quad \Rightarrow \quad q_{0}^{(B) i}=-\frac{k}{2 \pi} \oint_{\partial B} A^{i}=S^{i}$.
CS boundary condition
Stokes th.

The zero modes $q_{0}^{(B) i}$ constitutes an $\operatorname{SU}(2)$ Lie algebra
The full infinite set of $q_{N}^{(B) i}$'s provides a so-called 'affinization' of this finite dim subalgebra

$$
q_{0}^{(B) i}\left|v_{j}\right\rangle=\tau_{(j)}^{i}\left|v_{j}\right\rangle, \quad \text { with } \quad q_{N}^{(B) i}\left|v_{j}\right\rangle=0(N>0)
$$

$\mathrm{su}(2)$ generators in the spin-j representation
$>$ Identifying the operator \hat{S}^{i} at the source p with the LQG flux operator $\hat{J}^{i}(p)$

Highest weight states \Leftrightarrow Spin network states

zero modes $=$ gravitational d.o.f. higher modes $=$ new d.o.f. (matter)

Energy operator spectrum:

$$
\hat{L}_{0}\left|v_{j}\right\rangle=\frac{1}{k+2} \tau_{(j)}^{i} \tau_{(j)}^{i}\left|v_{j}\right\rangle=\frac{1}{k+2} j(j+1)\left|v_{j}\right\rangle
$$

Free Field Representation

The Wakimoto free $\quad=\quad$ affine extension of the monomial representation
of the su(2) finite Lie algebra
su(2) generators in the Chevalley basis $\left\{h_{0}, e_{0}, f_{0}\right\} \quad \rightarrow \quad$ bosonic fields (affine generators)

Sugawara SET in terms $=$ SET of a free-bosonic field with a non-zero background of these currents $\quad=\quad$ charge $-1 / 2 \sqrt{k+2}$ (plus the ghost fields term)
correct SU(2) Kac-Moody OPE at level k

Affine extension:
$\left\{h_{0}, e_{0}, f_{0}\right\}=$ zero modes of appropriate free

Liouville theory??
also the central charge $c=\frac{3 k}{k+2}$ can be recovered by summing up all the contributions
$q_{0}^{(B) i}=-\frac{k}{2 \pi} \oint_{\partial B} A^{i}=J^{i} \rightarrow$ gravitational d.o.f. $\quad q_{N}^{(B) i}, N>0 \rightarrow \underset{\text { (associated to the bosonic modes) }}{\rightarrow}$

CFT PARTITION FUNCTION

\downarrow Back to the cylinder, on to the torus: $z \rightarrow w=i t_{E}+x \rightarrow$ identify 2 periods
a torus on the complex w-plane

Hamiltonian (time translation)

$$
\hat{H}=\hat{L}_{0}+\hat{\bar{L}}_{0}-\frac{c}{12}
$$

Momentum (space translation)

$$
\hat{P}=i\left(\hat{L}_{0}-\hat{\bar{L}}_{0}\right)
$$

CFT properties depend only on the modular parameter: $\tau=\frac{w_{2}}{w_{1}}$

$$
Z_{p}(\tau)=\operatorname{tr} e^{2 \pi i \tau\left(\hat{L}_{0}-\frac{c}{24}\right)} e^{-2 \pi i \bar{\tau}\left(\hat{\bar{L}}_{0}-\frac{c}{24}\right)}
$$

via appropriate boundary conditions, $q_{N}^{(D) i} \rightarrow 0$ keep only holomorphic part to avoid over counting
$>$ due to modular invariance: $\tau \rightarrow-1 / \tau \quad$ notion of inverse temperature β associated to
same torus
the periodicity of the rotational symmetry
[DP 13]
system on a circle of circumference L
with inverse temperature β
system on a circle of circumference β with inverse temperature L

$$
\begin{aligned}
& \text { characters of the Kac-Moody representations } j^{\prime} \text { 's } \\
& \text { modular invariance } \Rightarrow Z=\prod_{p=1} \sum_{j_{p}=0}{\underset{\chi}{j_{p}}}_{k}^{k}(\tau) \\
& \text { account for extra Lie } \\
& \text { algebra symmetry } \\
& \chi_{j}^{k}(\tau)=\operatorname{tr}_{j, k}[q^{\hat{L}_{0}-\frac{c}{24}} \overbrace{e^{2 \pi i \hat{H}_{0}^{3}}}] \\
& =\frac{q^{\frac{j(j+1)}{2(k+2)}} \sum_{m \in \mathbb{Z}}(-)^{2 j+m(k+2)}(2 j+1+(k+2) m) q^{(k+2) m^{2}+(2 j+1) m}}{\prod_{m=1}^{\infty}\left(1-q^{m}\right)^{3}} \\
& Z=\prod_{p=1}^{N} \sum_{j_{p}=0}^{k / 2}\left(2 j_{p}+1\right) e^{2 \pi i \tau \Delta_{j_{p}}} e^{2 \pi i j_{p}} \begin{array}{c}
\begin{array}{c}
\text { semi-classical limit } \\
\epsilon_{p} \rightarrow 0 \\
k \rightarrow \infty
\end{array} \\
\left.\Downarrow \begin{array}{l}
\\
\end{array}\right]
\end{array} \\
& Z=\prod_{p=1}^{N} \sum_{j_{p}=0}^{k / 2}\left(2 j_{p}+1\right) e^{2 \pi i \tau \Delta_{j p}} e^{2 \pi i j_{p}} \\
& Z=\prod_{p=1}^{N} \sum_{j_{p}=0}^{k / 2}\left(2 j_{p}+1\right) e^{2 \pi i \tau \Delta_{j p}} e^{2 \pi i j_{p}} \\
& \text { [Goddard, Kent, Olive 86] } \\
& q \equiv e^{2 \pi i \tau} \\
& \tau=i \beta \\
& \Delta_{j}=\frac{j(j+1)}{k+2}
\end{aligned}
$$

in general, $\operatorname{tr}\left[q^{L_{0}}\right]=\sum_{j} \rho(j) q^{\Delta_{j}}$ characterize the number of states $\rho(j)$ that occur at a given level Δ_{j}

Holographic bound

$$
\Rightarrow \quad \rho\left(j_{p}\right)=\exp \left(a_{p} / 4 \ell_{P}^{2}\right) \quad \text { with } \quad \begin{gathered}
\gamma=i \\
\left(a_{p}=8 \pi \ell_{P}^{2} \gamma j_{p}\right)
\end{gathered}
$$

> Regularization procedure introduces a new boundary at each puncture
> Infinite set of charges satisfying a Kac-Moody algebra (diffeos on the circle)
> Due to central extension would-be-gauge d.o.f. become physical
$>\mathrm{IH}$ boundary conditions $\rightarrow \mathrm{CFT} /$ gravity correspondence

dynamics induced by $L 0$ particles self-interactions

[Frodden, Geiller, Noui, Perez 12]

Speculation:

If we see each spin network intertwiner as a micro-BH (see e.g. [Krasnov, Rovelli 09]), then this new regularization can provide an alternative way to couple matter dof in LQG
\Rightarrow Unified CFT description of qravity and matter at the Planck scale
\diamond Fundamental conformal invariance (as an alternative to lack of new physics at LHC)??
SM valid up to the Planck scale [Froggatt, Nielsen 95]:
top quark and Higgs masses predicted from the "Multiple Point Principle" assumption,
i.e. the Standard Model effective Higgs potential should have two degenerate minima (vacua), one of which should be at the Planck scale, where it vanishes!

Scenario supported by the recent NNLO calculation of [Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia 13].

Nature started at the Planck level at a very distinguished point: free scalar theory in a new vacuum (Higgs scalars are actually Goldstones of spontaneously broken conformal symmetry)
[Gorsky, Mironov, Morozov, Tomaras 14]

