
Daniele Pranzetti

Institute for Quantum Gravity
University Erlangen-Nürnberg

Black hole entropy in 
loop quantum gravity



Black hole thermodynamics

Black holes in their stationary phase behaves 
as thermodynamical systems:

S         A/(8πα) T        ακ

But, in classical GR: T=0

Hawking radiation: 
thermal emission of particles from a BH at  

Semiclassical 
result 

[Bekenstein 72; Bardeen, Carter, Hawking 73; Hawking 74]

Questions:☞

1) Microscopic origin of the entropy?
2) Where do all these d.o.f. live?

T =
~
2⇡

S =
A

4`2p

Statistical physics: entropy of any system is given by S = ln N
N = number of states of the system for the given macroscopic parameters

N = eS ⇠ 1010
77

for a solar mass black hole



☞  Call for a quantum treatment of the gravitational dof

Weak holographic principle:

The entropy in the 1st law is the log of the number of states of the black hole 
that can affect the exterior

➥  The horizon carries some kind of information with a density of 
      approximately 1 bit per unit area

What these bits of information represent depends on the 
deep structure of space-time

[Bekenstein; Sorkin; Smolin; Jacobson…]

✧ The finiteness of the BH entropy hints at discreteness of space-time at the Planck scale

“It from Bit” [Wheeler]



Outline

➣  Basic ingredients of LQG

➣  Quantization of an Isolated Horizon

➣  Entropy counting: results and open issues

➣  CFT/gravity correspondence  



The LQG approach

Metric variables

GR = background independent SU(2) gauge theory
(partly analogous to SU(2) Yang-Mills theory)

Connection variables
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(Kab �Kqab)

upon foliation of spacetime in terms of 
space-like three dimensional surfaces Σ

Einstein-Hilbert action
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vanishes identically on solutions of the e.o.m.
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✶ Area operator:

Spectral analysis 
of geometrical operators 

Planck scale 
discreteness ➥

“Atoms” of quantum space    = polymer-like excitations 
of the gravitational field

➢ Kinematical structure: holonomy along a path γ

Spin network states basis: graphs colored with SU(2) spins
description of quantized geometries

Fluxes
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Quasi local definition of BH 
Isolated Horizons
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FIG. 1: The characteristic data for a (vacuum) spherically symmetric isolated horizon corresponds to Reissner-Nordstrom data
on ∆, and free radiation data on the transversal null surface with suitable fall-off conditions. For each mass, charge, and
radiation data in the transverse null surface there is a unique solution of Einstein-Maxwell equations locally in a portion of the
past domain of dependence of the null surfaces. This defines the phase space of Type I isolated horizons in Einstein-Maxwell
theory. The picture shows two Cauchy surfaces M1 and M2 “meeting” at space-like infinity i0. A portion of I

+ and I
− are

shown; however, no reference to future time-like infinity i
+ is made as the isolated horizon need not to coincide with the black

hole event horizon.

III. SOME EXTRA DETAILS FOR TYPE I ISOLATED HORIZONS

In this section we first list the main equations satisfied by fields at an isolated horizon of Type I. The equations
presented here can be directly derived from the IH boundary conditions implied by the definition of Type I isolated
horizons given above. Most of the equations presented here can be found in [14]. For completeness we prove these
equations at the end of this section. As we shall see in Subsection III B, some of the coefficients entering the form of
these equations depend on the representative chosen among the equivalence class of null generators [ℓ]. Throughout
this paper we shall fix an null generator ℓ ∈ [ℓ] by the requirement that the surface gravity ℓ!ω = κ matches the
one corresponding to the stationary black hole with the same macroscopic parameters as the Type I isolated horizon
under consideration. This choice makes the first law of IH take the form of the usual first law of stationary black
holes (see Section VI).

A. The main equations

When written in connection variables, the isolated horizon boundary condition implies the following relationship
between the curvature of the Ashtekar connection Ai

+ = Γi + iKi at the horizon and the 2-form Σi = ϵijke
j ∧ ek (in

the time gauge)

⇐Fab
i(A+) = −

2π

aH ⇐Σab
i, (3)

where aH is the area of the IH, the double arrows denote the pull-back to H = ∆∩M with M a Cauchy surface with
normal τa = (ℓa + na)/

√
2 at H , and na null and normalized according to n · ℓ = −1. Notice that the imaginary part

of the previous equation implies that

⇐dΓK
i = 0 (4)

Another important equation is

ϵijk⇐K
j ∧⇐K

k =
2π

aH ⇐Σ
i. (5)

The previous equations follow from equations (3.12) and (B.7) of reference [14]. Nevertheless, they also follow from the
abstract definition given in the introduction. From the previous equations, only equation (5) is not explicitly proven
from the definition of IH in the literature. Therefore, we give here an explicit prove at the end of this section. For
concreteness, as we think it is helpful for some readers to have a concrete less abstract treatment, another derivation
using directly the Schwarzschild geometry is given in Appendix A. The previous equations imply in turn that

⇐Fab
i(Aβ) = −

π(1− β2)

aH ⇐Σab
i, (6)

� = S2 ⇥ R null hyper-surface with vanishing expansion

`a = normal future pointing null vector field with 
vanishing expansion within ∆

Einstein’s field equations hold at ∆

●

●

●

IH boundary conditions

p = (⌃, A) 2 � � = (�⌃, �A) 2 Tp(�)

for the pull back of fields on the horizon δ = linear combinations of SU(2) gauge 
transformations and diffeomorphisms preserving the preferred foliation of ∆

➥
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Z

M
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The presymplectic structure

is preserved in the presence of an IH
(no boundary term needed)
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The single intertwiner BH model

✧ Bulk theory:  LQG Hilbert space associated to a fixed graph γ ⊂ M with end points ps on H

spin network states
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boundary 
condition

✧ Boundary theory:  SU(2) Chern-Simons with punctures
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kin(j1···jn) $ Inv(⌦pjp)➥

➢  Combinatorial quantization: 



dim[H CS(j1 . . . jn)] = dim[Inv(j1 ⌦ · · ·⌦ jn)]

we can model the IH by a single SU(2) intertwiner

BH entropy d.o.f.   = polymer-like excitations 
of the gravitational field

➯

Quantum BH dof described by a Chern-Simons 
theory on a punctured 2-sphere H

[Ashtekar, Baez, Corichi, Krasnov 99] 
[Engle, Noui, Perez, DP 11]

Bekenstein-Hawking formula for
� = �0 , with �0 = 0.274067 . . .➥ S = ln

X

j1,...,jn

dim[H CS
(j1···jn)] =

aH

4`2P

�0
�

� 3

2

log aH

[Kaul, Majumdar 98]
[Agullo, Barbero, Diaz-Polo, Fernandez-Borja, Villasenor 08] 

[Ghosh, Mitra 05]
[Livine, Terno 05]

[Engle, Noui, Perez, DP 11]

BH microstates   ⟺  horizon quantum shapes

Semiclassical limit of the SU(2) 
intertwiner quantum geometry:

tesselated surfaces
[Livine, Terno 05; Bianchi 10]



Quantum IH Temperature [DP 13]

KMS-states = physical extension of Gibbs equilibrium thermal states to infinite dimensional quantum systems

Kubo-Martin-Schwinger [Haag, Winnink, Hugenholtz]
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partition function

projector

Boltzmann-like factor 
on each puncture
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and � = i

quantum correction

� = 2⇡(1�1

k
) [Frodden, Geiller, Noui, Perez 12] 

✪ KMS-condition: given the complex correlation function

one-parameter algebra automorphism generated by the boost operator (local horizon generator)

fAB(z) = ⇢̂(↵z(A)B) with z 2 C

↵z =

fAB(�i�) = ⇢̂(↵�i�(A)B) = ⇢̂(B↵0(A)) = fBA(0) ) geometrical notion of temperature

{

[Frodden, Ghosh, Perez 11]: important role of the Unruh temp for a preferred family of stationary local 
observers at a proper fixed distance from the IH



S =
aH

4`2P
+µN

[DP 13]

Sent = �tr(⇢̂ ln ⇢̂)S
Bol

= ��2 @

@�

✓
1

�
lnZ

◆
Boltzmann ent. = entanglement ent.

quantum hair argued to be associated to 
a new horizon microscopic observable

[Ghosh, Perez 11]

(call for a GFT description)

➥

Intertwiner structure
encoding

Correlations of 
quantum geometry dof 

across the horizonW = number of horizon 
`quantum shapes’

➯ ➯

Thermality of the density matrix associated to the horizon quantum state originates 
from the entanglement between internal and external horizon dof☞

µ ⌘ log [

X

j

(2j + 1)e�2⇡i(1� 1
k )j

]

chemical potential



➣  2+1 gravity acquires new degrees of freedom in presence of a boundary
       (broken gauge invariance)

➣  In the Chern-Simons formulation, these are described by WZW theory

➣  new, dynamical “would-be gauge” d.o.f. can account for the BH entropy

Carlip’s proposal 

attempt to describe the microphysics of BH in terms of a 
“dual” 2-dim Conformal Field Theory

☞  Universality problem: 

              (hidden) CFT symmetry underlying different microscopic approaches to BH entropy?

Powerful method However, several open questions:

    ✽ what is the microscopic nature of the d.o.f.?

    ✽ where do the d.o.f. live?

    ✽ extension to higher dimensions?

Cardy formula:

S = 2⇡

r
cL0

6



BH Entropy in LQG

➣  Can inclusion of matter d.o.f. on the IH give the Bekenstein-Hawking formula? 
       (see e.g. proposal of [Ghosh, Noui, Perez 13]: extra degeneracy due to entanglement entropy of matter)

Main open questions:

➣  Are the previous two questions related??

➣  Is there a CFT lurking somewhere?
       (does LQG belongs to Carlip’s `universality class’?)

SLQG =
A

4`2p
+µN



in collaboration with Amit Ghosh 

 Nucl. Phys. B (in press), e–print: gr-qc/1405.7056 

CFT/Gravity correspondence 
on the isolated horizon



Kac-Moody Algebra

IH boundary conditions    ➯    SU(2) CS theory with punctures on the horizon 2-sphere
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FIG. 1: The characteristic data for a (vacuum) spherically symmetric isolated horizon corresponds to Reissner-Nordstrom data
on ∆, and free radiation data on the transversal null surface with suitable fall-off conditions. For each mass, charge, and
radiation data in the transverse null surface there is a unique solution of Einstein-Maxwell equations locally in a portion of the
past domain of dependence of the null surfaces. This defines the phase space of Type I isolated horizons in Einstein-Maxwell
theory. The picture shows two Cauchy surfaces M1 and M2 “meeting” at space-like infinity i0. A portion of I

+ and I
− are

shown; however, no reference to future time-like infinity i
+ is made as the isolated horizon need not to coincide with the black

hole event horizon.

III. SOME EXTRA DETAILS FOR TYPE I ISOLATED HORIZONS

In this section we first list the main equations satisfied by fields at an isolated horizon of Type I. The equations
presented here can be directly derived from the IH boundary conditions implied by the definition of Type I isolated
horizons given above. Most of the equations presented here can be found in [14]. For completeness we prove these
equations at the end of this section. As we shall see in Subsection III B, some of the coefficients entering the form of
these equations depend on the representative chosen among the equivalence class of null generators [ℓ]. Throughout
this paper we shall fix an null generator ℓ ∈ [ℓ] by the requirement that the surface gravity ℓ!ω = κ matches the
one corresponding to the stationary black hole with the same macroscopic parameters as the Type I isolated horizon
under consideration. This choice makes the first law of IH take the form of the usual first law of stationary black
holes (see Section VI).

A. The main equations

When written in connection variables, the isolated horizon boundary condition implies the following relationship
between the curvature of the Ashtekar connection Ai

+ = Γi + iKi at the horizon and the 2-form Σi = ϵijke
j ∧ ek (in

the time gauge)

⇐Fab
i(A+) = −

2π

aH ⇐Σab
i, (3)

where aH is the area of the IH, the double arrows denote the pull-back to H = ∆∩M with M a Cauchy surface with
normal τa = (ℓa + na)/

√
2 at H , and na null and normalized according to n · ℓ = −1. Notice that the imaginary part

of the previous equation implies that

⇐dΓK
i = 0 (4)

Another important equation is

ϵijk⇐K
j ∧⇐K

k =
2π

aH ⇐Σ
i. (5)

The previous equations follow from equations (3.12) and (B.7) of reference [14]. Nevertheless, they also follow from the
abstract definition given in the introduction. From the previous equations, only equation (5) is not explicitly proven
from the definition of IH in the literature. Therefore, we give here an explicit prove at the end of this section. For
concreteness, as we think it is helpful for some readers to have a concrete less abstract treatment, another derivation
using directly the Schwarzschild geometry is given in Appendix A. The previous equations imply in turn that

⇐Fab
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aH ⇐Σab
i, (6)
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need of regularization

H D
p

[Guadagnini, Martellini, Mintchev 89]

The algebra of gauge constraints leads to a set of charges at the boundaries whose Poisson bracket algebra is 
a classical Kac-Moody algebra. 

[Balachandran, Bimonte, Gupta, Stern 92] [Banados 96]

{Si,⇤} = �⌧ i⇤ , {Si, Sj} = i✏ijkS
k

(equivalent to the charges obtained by a reduction of the Chern-Simons theory to a boundary WZW theory)

[Witten 89]

[Noui, Perez 04]
[Ashtekar, Baez, Krasnov 00]



The presence of the two boundaries ∂D and ∂H induces the presence of two families 
of observables, each localized on one boundary

✦  2 sets of test functions:
⇠(D)i
N (✓)|@D = e�iN✓⌧ i , ⇠(D)i

N (✓)|@H = 0

⇠(H)i
N (✓)|@H = eiN✓⌧ i , ⇠(H)i

N (✓)|@D = 0

✦  Kac-Moody generators:

θ (mod 2π) is an angular coordinate on the two boundaries

The currents           correspond to the modes of the holomorphic field             

conformal map: z = ew, w = tE + i✓

light-cone coordinate in Euclidean space

Ai(z)q(B)i
N

H D
p

q(⇠(B)) = k

⇡
�
D�H tr[d⇠(B)A − ⇠(B)A ∧A] , B =D,H

[q̂iN , q̂
j
M ] = i✏ijkq̂

k
N+M +N

k

2
�N+M,0�ij

commutation relations of the quantum operators associated with these observables:

Kac-Moody algebra

Ai(z) =
1

k

X

N2Z
z�N�1q(H)i

N

the holomorphic Chern-Simons 
gauge connection can be identified 

with an affine current satisfying 
the Kac-Moody algebra

conformal primary field of weight 1



Virasoro Algebra

Kac-Moody 
algebra 

Virasoro 
algebra 

Sugawara 
construction

➩

Holomorphic stress-energy tensor (SET):

SET Laurent expansion: SET conformal 
dimension h = 2

Virasoro generators:

normal ordering 

finite energy values in a 
highest weight representation

: · · · :

the         ‘s  perform diffeos of the boundaries ∂D, ∂H and they fulfill the Virasoro algebraL̂N

[L̂N , L̂M ] = (N �M)L̂N+M +
c

12
N(N2 � 1)�N+M,0 , N,M 2 Z

c = central charge: for su(2)[c, L̂N ] = 0 8N 2 Z , c =
3k

k + 2

L̂N = 1

(k + 2)�i �M∈Z ∶ q̂
i
M q̂iN−M ∶

T̂ (z) = 1

(k + 2)�i (q̂
iq̂i)(z)

T̂ (z) = �
N∈Z

L̂Nz−N−2



➣  Fields in a CFT can be grouped into families [φn]

a single primary field φn

an infinite set of secondary fields
(descendants)

} Irreps of the conformal group
(primary field = highest weight)

✦  Energy operator:

H / L̂0 +
ˆ̄L0

generator of dilations in the z-plane → time translation in the cylinder 

In any given highest weight representation the spectrum of          is 
bounded from below and there is only one highest weight  state         s.t.

L̂0
|vji

L̂0|vji = �j |vji , L̂N |vji = 0 N > 0
conformal dimension

All the other states in the given highest weight representation (c, Δj) 
can be constructed by repeated application of                            onL̂�N , N > 0 |vji

unitary representations: c � 1, �j � 0 c =
3k

k + 2
! 3

large k ✓

L̂0 = 1

(k + 2)(q̂i0q̂i0 + 2 �M>0 q̂
i−M q̂iM)



Vertex Operators

The highest weight state          can be obtained from an 'absolute' vacuum        by application of a vertex operator|vji |0i

|vji = V̂j |0i

regularity of T̂ (z)|0i z = 0at implies L̂N |0i = 0, N > �1

➯ the vacuum state is SL(2,C) invariantL̂�1, L̂0, L̂1| {z } |0i = 0

global conformal  group

➣  The vertex operator        can be interpreted as a Wilson lineV̂j

[Balachandran, Bimonte, Gupta, Stern 92]
epD

H

The Wilson line along e creates an highest weight state of τ3 charge j3    ➯     holonomy = primary field  

natural environment for spin network states

via the Sugarawa construction, the action of primary fields        on the vacuum        generates 
highest weight states for the representation of both Kac-Moody and Virasoro algebras

V̂j |0i



✦  In the case of the affine algebra:

F

i
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k

S
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CS boundary condition Stokes th.

➯ q(B)i
0 = � k

2⇡

I

@B
Ai = Si

 The zero modes            constitutes an SU(2) Lie algebraq(B)i
0

The full  infinite set of           's provides a so-called 'affinization' of this finite dim subalgebraq(B)i
N

➣  Identifying the operator        at the source p with the LQG flux operatorŜi Ĵ i(p)

Highest weight states                Spin network states, zero modes = gravitational d.o.f.
higher modes = new d.o.f. (matter) 

Energy operator spectrum:

q(B)i
0 |vji = ⌧ i(j)|vji, with q(B)i

N |vji = 0 (N > 0)

su(2) generators in the spin-j representation

L̂0�vj� = 1

k + 2⌧ i(j)⌧ i(j)�vj� =
1

k + 2j(j + 1)�vj�



Free Field Representation

affine extension of the monomial representation 
of the su(2) finite Lie algebra

The Wakimoto free 
field representation =

 Affine extension:
{h0, e0, f0} =  zero modes of appropriate free

bosonic fields (affine generators)
su(2) generators in the  

Chevalley basis {h0, e0, f0}
correct SU(2) Kac-Moody OPE at level k

Sugawara SET in terms 
of these currents = SET of a free-bosonic field with a non-zero background 

charge                          (plus the ghost fields term)�1/2
p
k + 2

c =
3k

k + 2
also the central charge can be recovered by summing up all the contributions

Liouville theory??

q(B)i
0 = � k

2⇡

I

@B
Ai = J i gravitational d.o.f. q(B)i

N , N > 0 new matter d.o.f.
(associated to the bosonic modes)

`Affinization’ of the gravitational SU(2) finite Lie algebra   ➥   Infinite tower of new d.o.f.



CFT Partition Function

✦  Back to the cylinder, on to the torus: identify 2 periods

a torus on the complex w-plane Imw

Reww1

w2

CFT properties depend only on

the modular parameter: 

H D
p

⌧ = i/✏p

Hamiltonian (time translation)

Ĥ = L̂0 +
ˆ̄L0 �

c

12

Momentum (space translation)

Zp(⌧) = tr e2⇡i⌧(L̂0� c
24 )e�2⇡i⌧̄( ˆ̄L0� c

24 )

via appropriate boundary conditions, q(D)i
N ! 0 keep only holomorphic part  to avoid over counting

P̂ = i(L̂0 � ˆ̄L0)

➣  due to modular invariance: ⌧ ! � 1/⌧

same torus
➥

notion of inverse temperature β associated to 
the periodicity of the rotational symmetry

system on a circle of circumference β 
with inverse temperature L

system on a circle of circumference L 
with inverse temperature β ,

[DP 13]

⌧ =
w2

w1

≻

z ! w = itE + x !



✏p ! 0

k ! 1

semi-classical limit

Z =
NY

p=1

k/2X

jp=0

(2jp + 1)e2⇡i⌧�jp e2⇡ijp

+

⇢(jp) = exp (ap/4`
2
P )

tr[qL0 ] =
X

j

⇢(j)q�jin general, characterize the number of states           that occur at a given level ⇢(j) �j

➯ with

[Goddard, Kent, Olive 86]

=
q

j(j+1)
2(k+2)

P
m2Z (�)2j+m(k+2)(2j + 1 + (k + 2)m)q(k+2)m2+(2j+1)m

Q1
m=1(1� qm)3

account for extra Lie 
algebra symmetry

�k
j (⌧) = trj,k[q

L̂0� c
24

z }| {
e2⇡iĤ

3
0 ]

q ⌘ e2⇡i⌧

⌧ = i�

Z =
NY

p=1

k/2X

jp=0

�k
jp(⌧)modular invariance )

characters of the Kac-Moody representations j’s

�j = j(j + 1)
k + 2

Holographic bound

(ap = 8⇡`2P�jp)

� = i



Local conformal symmetry  
at each puncture on the horizon  

Extra (matter) d.o.f.

holographic degeneracy factor in Z in agreement 
with Bekenstein-Hawking formula

#
� = i

ultimately related to 
the horizon thermality

[DP 13]
[Frodden, Geiller, Noui, Perez 12] 

!

dynamics induced by L0

particles self-interactions
=

➣  Regularization procedure introduces a new boundary at each puncture

➣  Infinite set of charges satisfying a Kac-Moody algebra (diffeos on the circle)

➣  Due to central extension would-be-gauge d.o.f. become physical

➣  IH boundary conditions           CFT/gravity correspondence  

⌃̂ q̂0 q̂N



Speculation:


If we see each spin network intertwiner as a micro-BH (see e.g. [Krasnov, Rovelli 09]), then 

this new regularization can provide an alternative way to couple matter dof in LQG



➯   Unified CFT description of gravity and matter at the Planck scale

✧ Fundamental conformal invariance (as an alternative to lack of new physics at LHC)??



     SM valid up to the Planck scale [Froggatt, Nielsen 95]: 


top quark and Higgs masses predicted from the “Multiple Point Principle” assumption,



i.e. the Standard Model effective Higgs potential should have two degenerate minima (vacua), 


one of which should be at the Planck scale, where it vanishes!



Scenario supported by the recent NNLO calculation of 


[Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia 13].

Implications for inflation??

Nature started at the Planck level at a very distinguished point: free scalar theory in a new vacuum


(Higgs scalars are actually Goldstones of spontaneously broken conformal symmetry)

[Gorsky, Mironov, Morozov, Tomaras 14]


