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Outline

Fluid dynamics from EFT 
perspective

Spontaneously broken 
space-time symmetries

1)

2)



Inspiration for fluids

Nuclear scales (Quark Gluon Plasma)


Human scales (glass of water, superfluid He)


Terrestrial scales (geophysics, atmospheric 
dynamics)


Cosmological scales (density perturbations)

Fluids are everywhere



symmetries manifest


QM: direct road to quantization


CLASSICAL: Well adapted for perturbation 
theory (Ex: W. Goldberger, I. Rothstein 
arXiv:hep-th/0409156)


ask model independent questions (vs 
Kinetic Theory)

Historically described by EOM--> 
Lagrangian description/EFT

Outstanding problems
viscosity/entropy bound


turbulence

⌘
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Punchline
Lagrangian description exists* which you 
can take seriously as an EFT (symmetries, 
s.s.b. pattern, etc.)—not necessarily news


Well defined quantum theory @ T=0?**


Systematic classical perturbation theory: 
vortex-sound coupling

*S. Dubovsky, T. Gregoire, A. Nicolis & R. Rattazzi (hep-th/0512260)

**S. E., A. Nicolis, R. Rattazzi, J. Wang (hep-th/1011.6396)

Perfect fluid

Dissipation
Some foundational steps made



Lagrangian for fluid 
dynamics

   Navier-Stokes     EFT

1) Degrees of freedom?


2) Symmetries


3) Construct the most general 
possible Lagrangian w/ 1) & 2)-> 
derivative expansion



Perfect (dissipative effects higher order 
in derivatives)--work in the far IR


Fully Relativistic


Vortices in low energy theory (not a 
super fluid) 

Qualifications



compressional 
(sound) modes

compressional 
(sound) modes

transverse (vortex) 
modes are heavy*

transverse (vortex) 
modes are light

*Rotons are tricky

Super fluid Perfect fluid



Long wavelength/low 
energy limit-> fluid 
elements

�I = �I(⇥x, t), I = 1, 2, 3

Degrees of Freedom



Long wavelength/low 
energy limit-> fluid 
elements

choose 
coordinate 

system
�I = �I(⇥x, t), I = 1, 2, 3 �I = xI

Degrees of Freedom



Space-time: Poincaré (scalars)

Internal symmetries: 

Crystal or “jelly”

Shift �I ! �I + aI

Rotation �I ! OI
J�

I

Volume-preserving diff

with�I ! ⇠I(�J) det

✓
@⇠I

@�J

◆

Symmetries



Shift -> derivative


Poincaré ->  


Rotation -> SO(3) invar functions of 


Vol-pres diffs -> 

BIJ = ⇥µ�
I⇥µ�J

B = det(BIJ)

BIJ

S =

Z
d

4
x F (B)

Lagrangian



Our action: Correct classical dynamics provided


uµ =
1

6
p
B
�µ�⇥⇤�IJK⇤�⇥

I⇤J
⇥⇥⇤⇤⇥

K

� = �F (B)

p = F (B)� 2F 0(B)B

�(p)

�µTµ� = 0

Relativistic perfect fluids:


Stress tensor:


EOM:


EOS:


!

Tµ� = (⇥+ P )uµu� + p�µ�

Is this fluid dynamics?



Transverse = vortices
Longitudinal = sound

! = 0

� = csk

Very Funny

c2s =
2F 00(B)B + F 0(B)

F 0(B)

����
B=1

=
dp

d�

����
B=1

L ⇥ ˙⇤�2 � c2s(⇥I�
I
)

2
+ interactions

At a given p: �I = xI+⇡I Goldstones

Meet the Goldstones!



Incompressibility:

measure of the pressure 
gradient needed to sustain 
a given density gradient, i.e.

incompressibility is a 
dynamical regime 

dp

d�
= c2s

incompressible limit () lim cs ! 1

v
flow

⌧ cs

Only vortex dofs

Why is fluid dynamics different/ 
vortices tricky?



Incompressible limit:

continuity equation: 

Euler equation:

~! = ~r⇥ ~v~r · ~v = 0

@

@t
~! = ~r⇥ (~v ⇥ ~!)

Linear regime? NO DYNAMICS!

i.e. the dynamics are completely NL



Now that we have the 
Lagrangian we can do 3 things

Use it

Improve it

Extend it



Vortex-Sound Interactions

A systematic expansion that 
incorporates compression

What we are after:

Incompressible

given vortex flow

An expansion around:
v
flow

cs
⌧ 1

vortex + sound

Not-so incompressible



Inserting into S: S = Svn + S(⇤⇥)m + Svn,(⇤�)m

S� vn = w0

Z
d3xdt (vi⇥t�

i + vi(v ·⇥)�i � c2sv
2[⇥�]

2c2
+ ...)

For instance:

Relativistic corrections! c2s
c2

⇠ 1

Svn = w0

Z
d

3
xdt

✓
�c

2 +
v

2

2
+

(c2 � c

2
s)v

4

8c4
+O(v6)

◆

Expand around ⇤x(⇤�, t) = ⇤x0(⇤�, t) + ⇤⇥(⇤�, t)

~r0 ⇥ ~ = 0Longitudinal:



vm

vn
. . .

Sint = S(⇥�)2 + S(⇥�)3 + ...+ S⇥�,vn + S(⇥�)2,vn + S(⇥�)3,vn + ...

Pictorially



Sound emitted 
by a turbulent 
source:

Lighthill (‘52) w/ rel. corr.

power given by 
quadrupole like formula

Sound 
scattered off 
a turbulent 
source:

Lund & Rojas (’89) w/ rel. corr.

cross section given in 
terms of correlation 
functions of vorticity 

Potential 
between 
vortices:

Known?

(w/ William Irvine to detect 
effect in vortex rings)

V ⇠ l3

r3
v2

c2s
Ekin

Powerful formalism, what can we do with it?



Dissipation: the general idea*
Local action, non-dissipative by construction:

S[�,⇥] = S0[�] + S�[⇥] + Sint[�,⇥]

DOF we are 
keeping track of

DOF we will not 
keep track of

Observables of    only will detect `dissipative’ 
effects corresponding to exciting the     modes

�
�

*S. E, A. Nicolis, R. Porto and J. Wang (hep-th/1211.6461)



S[�,⇥] = S0[�] + S�[⇥] + Sint[�,⇥]

can be strong weakly coupled

as dictated 
by symmetry

Observables of     are mediated by correlation 
functions of the     ‘sO

�

Sint =

Z
d

4
x

X

n,m

@

n
�

m(x)On,m(x)



or diagrammatically

Simple Example: Lint = ��O

⇥⇥(p)⇥(�p)⇤ = ⇥⇥(p)⇥(�p)⇤0 + �2 ⇥⇥(p)⇥(�p)⇤20 ⇥O(p)O(�p)⇤+ ...

T-order (vac to vac) 2-pt function:



More general correlation functions (thermalized    
state) we need work with the In-In formalism

�

double the path (+,-) 
with (thermal) density 
matrix             for 
initial conditions

�(⇥+
0 ,⇥

�
0 )

Z
D�+D��

�[�+,��]
��[⇥+,⇥�]

�⇥+(x)

����
�+=��=h�i

= 0

�S2

�⇤
+ i⇥2 ⇥OO⇤R � ⇤ = 0 matches the 

standard LR result



all the d.o.f. that propagate over long 
distances and times (hydrodynamic modes) 

�

�

�
in the absence of external perturbations, 
thermalized, and have no long distance or late 
time correlations (fall off faster than any power) 
but gapless   

�O(x)O(x0)⇥ G(�,⇥k) = FT �O(x)O(x0)⇥

admits a Taylor Series exp. about origin

Properties of the 
hydrodynamic     sector



Focus on retarded 2-pt function
GR(⇥x, t) � �(t) ⇥[O(⇥x, t),O(0)]⇤

Im
�
iGR

�
Re

�
iGR

�
is odd, is even

standard spectral representation arguments =>

Im
�
iGR(⇤,⌅k )

�
= ⇥(⇤,⌅k ) ⇤ A ⇤ � � · · · � , ⇤, k ⇥ 0

Extra time derivative!



turn on small perturbations about the background:

⇥I(x) = xI + �I(x)

⇥I
0

�
⇤x
�
! ⇥I(⇤x, t) = ⇥I

0

�
⇤x+ ⇤�(⇤x, t)

�

equivalent to performing a small, 
modulated, spacial translation 

Sint

Live in the fluid, i.e. they undergo the 
same spacial translation

�

S�[⇥] ! S�[⇥]�
Z

d4x ⇤µ�
i Tµi

�

How do our hydrodynamic modes 
couple to this sector?



w0

�
⇥2 �i � c2sk

ikj �j
�
+ iGij

R(⇥,
⇤k)�j = 0

Gij
R(�,

⇥k) = kµk�
⌦
Tµi
⇥ T �j

⇥

↵

EOM:

Im
�
iGij

R

�
' � k2

⇥
(A0 +

4

3
A2)P

ij
L +A2 P

ij
T

⇤

putting this all back in the equations of motion

��L ' �i
(A0 +

4
3A2)

2w0
k2 ��T ' �i

A2

w0
k2

Rediscovering Kubo’s relations:



which precisely matches the standard results provided 

� = A0 , ⇥ = A2

⇥ =
1

9
�ij�kl lim

�!0

h 1
⇤

lim
⇥k!0

�
i ·

⌦
T ijT kl

↵�i Kubo’s 
formula

or, expressed using a funny limit (and similarly for    )⌘

But…… when we generalize there are problems…



Spontaneous breaking of 
space-time symmetries 

Broken internal 
symmetry (PI)

Goldstone’s 
Theorem: massless 
mode, stable

Mechanism independent

Broken s-t (and 
internal) symmetry

Less constrained: 
gap?, redundant dof?

Mechanism dependent 
(sort of)



Fluids spontaneously break 
space-time symmetries:

At a given p: �I = xI+⇡I Goldstones

Step back: fluids as a test case

Is there a way to construct the theory for 
the Goldstones based on the symmetry 
breaking pattern alone?

Almost!*

*V. I. Ogievetsky 1970’s



*Nicolis, Penco, Rosen hep-th/1307.0517

1) Identify symmetry breaking pattern:

unbroken =

8
<

:

¯Pt ⌘ Pt time translations

¯Pi ⌘ Pi +Qi spatial translations

¯Jij ⌘ Jij + Lij spatial rotations

9
=

;

broken =

8
<

:

Ki boosts

Qi internal shifts

Mij internal SL(3)

9
=

;

Goldstones associated with each broken sym… TOO MANY!

G ! H

Fluids from broken symmetries alone:

Coset construction*



*Nicolis, Penco, Rosen hep-th/1307.0517

2) Construct objects that transform covariantly


(this is the coset construction):

⌦(x) = e

ix

µ
P̄µ

e

i⌘

i(x)Ki
e

i⇡

i(x)Qi
e

i↵

ij(x)Mij

⌦(x)�1
d⌦(x) = ie

µ
↵(P̄µ + !

ij
µ J̄ij +Dµ⌘

i
Ki +Dµ⇡

i
Qi +Dµ↵

ij
Mij)dx

↵

cov derivatives of Goldstonesconst. inv metric

used to couple to “matter” fields



*Nicolis, Penco, Rosen hep-th/1307.0517

3) Eliminate some Goldstones (inverse Higgs):

rule of thumb: [P̄ , Ti] = Tj + ...

US: 

D0⇡i = 0
Di⇡j � 1

d�
j
iDk⇡k = 0 ↵ij(⇡i)

⌘i(⇡i)

Left with only D1⇡
1 + higher derivative terms

Z
d

d
xG(D1⇡

1) ⌘
Z

d

d
xF (B) w/

�

I = x

I + ⇡

I

[P̄0,Ki] = �i(P̄i �Qi)
[P̄k,Mij ] = �i

�
�ikQj � 1

d�ijQk

�



What about other space-time 
breaking theories?

Many symmetry breaking patterns==> 
many different physical systems

Some known…… some (seemingly) not

Do we have to impose it? (NO)


Are there systems where it is natural to NOT impose it? (YES)


Over-counting interpretation? (NOT ALWAYS)


New technology ==> new (strongly coupled) systems

What is this “inverse-Higgs constraint”?

 Nicolis, Penco, Piazza, and Rosen (1306.1240)


S. E., Nicolis, and Penco (1311.6491)




Conclusions
New language <==> New questions<==> New effects 
<==> New measurements!


Still much work to be done (NL coupling to 
dissipative sector)


A great deal of possible applications: cosmology, 
plasma physics, exotic condensed matter states, 
shocks?, all in a model independent fashion


Interesting from a purely field-theoretic point of 
view: what can fluids teach us about QFT?


Clarifying how to deal with SB s-t symmetries  ==> 
tools to deal with rich systems beyond fluids



What I didn’t mention:
Other, fluid like, systems: superfluids, both 3 
and 4


Solid Inflation (cosmology application of this 
formalism)


Vortex lines (in superfluids and fluids) + rotons


SUSY


How our understanding of dissipation has 
(slightly) improved…

 Nicolis (1108.2513)


 w/ A. Nicolis, and J. Wang (hep-th/1210.0569)


+ w/ Nicolis, and Penco (pending)


 C. Hoyos, B. Keren-Zur, Y. Oz (1206.2958)






QM of perfect fluids
Why are there no perfect 
fluids at T=0 in nature?

Fluid

T �! 0

Superfluid

Solid

Supersolid

Etc.

Theory inconsistent?



How can we show that the theory is 
inconsistent? Investigate strong coupling scale 

Trick: 
cT 6= 0

cT ! 0�TT!TT ⇠ 1

k2

✓
k4

w0cT

◆
consider transverse 

2->2 scattering

strong coupling scale -> 0

Also prove “Coleman-like” theorem: quantum 
fluctuations disrupt the semi-classical vacuum 

�I = xI no good



Expansion is most clear in 
the comoving coordinates

Expanding around
v
flow

cs
⌧ 1

⇥x(⇥�, t)

We can write:

J i
j =

⇥xi

⇥�j ⇤v = ⇥t⇤x(⇤�, t)where and

L = �w0f(
⇥
B) f 0(1) = 1 f 00(1) =

c2s
c2

S = �w0c
2

Z
d3�dt det J f((det J�1)

p
1� v2/c2)



at fixed time 
is a v.p.d., i.e.
det J0 = 1

Why is this a useful starting point for our expansion?

Expand around ⇤x(⇤�, t) = ⇤x0(⇤�, t) + ⇤⇥(⇤�, t)

longitudinal as a 
function of    , i.e.�x0

r0 ⇥ ~ = 0

Expanding:

=⇥ det J = 1 +⇤0 · ⇥� +
1

2

h
(⇤0 · ⇥�)2 � (⇤i

0�
j)2

i
+ ...

=� ⇤v = ⇤v0 +
D

Dt
⇤� = ⇤v0 + (⇥t + (⇤v0 ·⇥0)) ⇤�(⇤x0, t)

S = Sv + S⇥ + Svn,(⇤�)m



Problems with dissipation:
When we include conserved charge (need additional 
scalar), it is no longer clear that we know what we are 
doing:

same 
arguments Sint

?' �
Z

d4x
⇥
⇥µ�

i Tµi
� + y0 ⇥µ�

0 jµ�
⇤

Kubo formula for heat conductivity

FAILS



However...

If we consider instead the ``symmetry inspired’’ coupling:

Sint ' �
Z

d4x
⇥
⇥j�

i T ji
� +B ⇥i�

0 ji� + C ⇥0�
i ji�

⇤

calculate using the Kubo formula for heat 
conductivity

Im i · �jijj⇥K = ⇤T
� n

⇥+ p

�2
⌅ · �ij

match

B = �C = �y0w0

b0Fb
=

µ(�+ p)

sT

simple answer, can 
we understand 
better?


