Evidence for a New Particle on the
 Worldsheet of the QCD Flux Tube

Sergei Dubousky
CCPP, NYU \& ICTP, Trieste

Three parts to the story: * Dynamics of QCD flux tubes

SD, Victor Gorbenko, Mehrdad Mirbabayi
1305.6939

Why would one care about QCD ?

Reasons not to care:
\checkmark We completely know the theory.
\checkmark No room for surprises.
\checkmark All "easy" results are already known.
Need to work hard, and the progress will be only incremental.

Why would one care about QCD ?

Reasons to care:
\checkmark We completely know the theory! \checkmark There is a 50 years old surprise, which is not quite understood yet.
\checkmark There are "easy" qualitative results, still waiting to be discovered.
\checkmark As an extra benefit we may learn something about gravity.

QCD is a theory of strings

Bissey et al, hep-lat/o606016
What can we say about this string theory?

Remarkable recent progress from top-down

\checkmark Planar $N=4$ SYM string is integrable
\checkmark Exact solution for the spectrum
Next Steps:
\checkmark OPE coefficients
\checkmark Is there a confining theory with an integrable string?

This talk: bottom up (EFT) approach:

If you quack like a duck, you should be a perturbed duck

What is being measured?
all the data from the papers by

$$
\mathcal{O}=P \exp \{i \oint A\}
$$ Athenodorou, Bringoltz and Teper

$$
\text { SPACE: } S^{\prime} \times R^{2}
$$

Puzzle \#1: Remarkable agreement with a theory

Puzzle \#2: The theory is known to be wrong

Dashed --- light cone quantized bosonic string Solid --- standard ℓ_{s} / R effective field theory expansion

Puzzle \#3: More is going on

Dashed --- light cone quantized bosonic string Solid --- standard ℓ_{s} / R effective field theory expansion

Nambu-Goto Spectrum

"Light Cone" or GGRT

$$
E_{L C}(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

Comes from quantization in the light cone gauge Goddard, Goldstone, Rebbi, Thorn'73 + winding

Crucial property: no splittings between different SO(D-2) multiplets

Consistent with target space Lorentz symmetry only at $\mathrm{D}=26$. What it has to do with $\mathrm{D}=4$ spectrum?

(Long) String as seen by an Effective Field Theorist

Theory of Goldstone Bosons

$$
I S O(1, D-1) \rightarrow I S O(1,1) \times S O(D-2)
$$

$$
\delta_{\epsilon}^{\alpha i} X^{j}=-\epsilon\left(\delta^{i j} \sigma^{\alpha}+X^{i} \partial^{\alpha} X^{j}\right)
$$

CCWZ construction

$$
\begin{gathered}
X^{\mu}=\left(\sigma^{\alpha}, X^{i}(\sigma)\right) \quad h_{\alpha \beta}=\partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} \\
S_{\text {string }}=-\int d^{2} \sigma \sqrt{-\operatorname{det} h_{\alpha \beta}}\left(\ell_{s}^{-2}+\frac{1}{\alpha_{0}}\left(K_{\alpha \beta}^{i}\right)^{2}+\ldots\right)
\end{gathered}
$$

Perturbatively:

Nambu-Goto rigidity

$$
S_{\text {string }}=-\ell_{s}^{-2} \int d^{2} \sigma \frac{1}{2}\left(\partial_{\alpha} X^{i}\right)^{2}+c_{2}\left(\partial_{\alpha} X^{i}\right)^{4}+c_{3}\left(\partial_{\alpha} X^{i} \partial_{\beta} X^{j}\right)^{2}+\ldots
$$

$$
c_{2}=-\frac{1}{8} \quad c_{3}=\frac{1}{4}
$$

Interacting, in fact non-renormalizable, healthy effective field theory with cutoff ℓ_{s}

Why $\mathrm{D}=26$ is special?

Theory is renormalizable (in some sense)

General SO(D-2) invariant amplitude:

$$
\mathcal{M}_{i j, k l}=A \delta_{i j} \delta_{k l}+B \delta_{i k} \delta_{j l}+C \delta_{i l} \delta_{j k}
$$

annihilation

$$
A(s, t, u)=A(s, u, t)=B(t, s, u)=C(u, t, s)
$$

Tree level:

$$
\mathcal{M}_{i j, k l}=-\frac{\ell_{s}^{2}}{2}\left(\delta^{i k} \delta^{j l} s u+\delta^{i l} \delta^{j k} s t\right)
$$

One-loop:

Finite part:
~ 18 diagrams

$$
\begin{gathered}
\mathcal{M}_{i j, k l}=-4_{s}^{4} \frac{D-26}{192 \pi}\left(s^{3} \delta_{i j} \delta_{k l}+t^{3} \delta_{i k} \delta_{j l}+u^{3} \delta_{i l} \delta_{j k}\right) \\
+ \\
-\frac{\ell_{s}^{4}}{16 \pi}\left(\left(s^{2} u \log \frac{t}{s}+s u^{2} \log \frac{t}{u}\right) \delta_{i k} \delta_{j l}+\left(s^{2} t \log \frac{u}{s}+s t^{2} \log \frac{u}{t}\right) \delta_{i l} \delta_{j k}\right)
\end{gathered}
$$

Polchinski-Strominger interaction gives rise to annihilations!

R^{-5} splittings in $\mathrm{SO}(\mathrm{D}-2)$ multiplets
$\mathcal{L}_{Q C D \text { string }}=\mathcal{L}_{\text {light cone }}-\frac{D-26}{192 \pi} \partial_{\alpha} \partial_{\beta} X^{i} \partial^{\alpha} \partial^{\beta} X^{i} \partial_{\gamma} X^{j} \partial^{\gamma} X^{j}+\ldots$

Explains the ground state data

$$
E_{0}(R)=\frac{R}{\ell_{s}^{2}}-\frac{(D-2) \pi}{6 R}-\frac{(D-2)^{2} \pi^{2} \ell_{s}^{2}}{72 R^{3}}-\frac{(D-2)^{3} \pi^{3} \ell_{s}^{4}}{432 R^{5}} \text { classical non-universal terms }
$$

Need to work harder for excited states!

GGRT spectrum:

$$
E_{L C}(N, \tilde{N})=\sqrt{\frac{\left.4 \pi^{2}\right)(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

ℓ_{s} / R expansion breaks down for excited states

 because 2π is a large number!for excited states:

$$
E=\ell_{s}^{-1} \mathcal{E}\left(p_{i} \ell_{s}, \ell_{s} / R\right)
$$

Let's try to disentagle these two expansions

Finite volume spectrum in two steps:

1) Find infinite volume S-matrix
2) Extract finite volume spectrum from the S-matrix
3) is a standard perturbative expansion in $p \ell_{s}$
4) perturbatively in massive theories (Luscher) exactly in integrable 2d theories through TBA

Relativistic string is neither massive nor integrable... But approaches integrable GGRT theory at low energies!

GGRT S-matrix:

$$
e^{2 i \delta_{G G R T}(s)}=e^{i s \ell_{s}^{2} / 4}
$$

*Polynomially bounded on the physical sheet *No poles anywhere. A cut all the way to infinity with an infinite number of broad resonances
*One can reconstruct the entire finite volume spectrum using Thermodynamic Bethe Ansatz

$$
E(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell^{4}}+\frac{4 \pi}{\ell^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

* Does not go to a constant at infinity!

Integrable QG rather than QFT

Gravitational shock waves:

Dray,'t Hooft '85
Amati, Ciafaloni,Veneziano '88

$$
\begin{aligned}
S & >M_{p e}^{2} \\
b & >R_{S}
\end{aligned}
$$

Eikonal phase shift:

$$
e^{i 2 \delta_{e i k}(s)}=e^{i \ell^{2} s / 4}
$$

$$
\ell^{2} \propto G_{N} b^{4-d}
$$

Free string spectrum circa 2012

Thermodynamic Bethe Ansatz

in thermodynamic (large L) limit

$$
Z(T, L)=e^{-L E_{0}(1 / T)}=e^{-L f(T) / T}
$$

Asymptotic Bethe Ansatz

$$
p_{k R}^{(i)} L+\sum_{i=1}^{D-2} \int_{0}^{\infty} 2 \delta\left(p_{k R}^{(i)}, p\right) \rho_{1 L}^{i}(p) d p=2 \pi n_{k R}^{(i)}
$$

Asymptotic Bethe Ansatz

$$
\left.\Psi\left(x_{1}, x_{2}\right)=\langle 0| X^{i}\left(x_{1}\right) X^{j}\left(x_{2}\right)\left|p_{L}^{(i)}, p_{R}^{(j)}\right|\right\rangle
$$

$$
x_{1}>x_{2} \quad \Psi\left(x_{1}, x_{2}\right)=e^{-i p_{L} x_{1}} e^{i p_{R} x_{2}}
$$

$$
x_{1}>x_{2} \quad \Psi\left(x_{1}, x_{2}\right)=e^{-i p_{L} x_{1}} e^{i p_{R} x_{2}} e^{2 i \delta\left(p_{L}, p_{R}\right)}
$$

periodicity: $\quad e^{-i p_{L, R}}=e^{2 i \delta\left(p_{L}, p_{R}\right)}$

$$
p_{L}+2 \delta\left(p_{L}, p_{R}\right)=2 \pi n_{R}
$$

NB: particles are getting softer!
after taking the continuum limit minimization of the free energy results in

$$
\epsilon_{L}^{i}(p)=p\left[1+\frac{\ell_{s}^{2} T}{2 \pi} \sum_{j=1}^{D-2} \int_{0}^{\infty} d p^{\prime} \ln \left(1-e^{-\epsilon_{R}^{j}\left(p^{\prime}\right) / T}\right)\right]
$$

$$
f=\frac{T}{2 \pi} \sum_{j=1}^{D-2} \int_{0}^{\infty} d p^{\prime} \ln \left(1-e^{-\epsilon_{L}^{j}\left(p^{\prime}\right) / T}\right)+(L \rightarrow R)
$$

reproduces the correct ground state energy

$$
f(T)=\frac{1}{\ell_{s}^{2}}\left(\sqrt{1-T^{2} / T_{H}^{2}}-1\right)
$$

$$
T_{H}=\frac{1}{\ell_{s}} \sqrt{\frac{3}{\pi(D-2)}}
$$

Excited States TBA

 general idea: excited states can be obtained by analytic continuation of the ground statefinite size corrections

+right-movers

Exactly reproduces all of the light cone spectrum

The strategy is to incorporate corrections to the S-matrix into TBA equations.

Hard to do in full generality, but turns out possible at one-loop level with Polchinski-Strominger phase shift taken into account

Pure left-moving states

Dashed --- light cone quantized bosonic string Solid --- standard ℓ_{s} / R effective field theory expansion Dotted --- free theory (=ABA in this case)

Colliding left- and right-movers

A new massive state appearing as a resonance in the antisymmetric channel!

> see also arXiv:1007.4720

Athenodorou, Bringoltz, Teper

How do we include this massive state?
Contributes to scattering of Goldstones and changes the phase shifts. In particular, it appears as a resonance in the antisymmetric channel. We can calculate contributions from

$$
S=\int d^{2} \sigma \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi-\frac{1}{2} m^{2} \phi^{2}+\frac{\alpha}{8 \pi} \phi \epsilon^{\alpha \beta} \epsilon_{i j} K_{\alpha \gamma}^{i} K_{\beta}^{j \gamma}
$$

Full Calculation:

$c \hat{p} R+2 \delta_{P S}+2 \delta_{\text {res }}=2 \pi$

$$
c=1+\ell_{s}^{2} \frac{\hat{p}}{R}-\frac{\pi \ell_{s}^{2}}{6 R^{2} c}
$$

$$
2 \delta_{r e s}=\sigma_{1} \frac{\alpha^{2} \ell_{s}^{4} \hat{p}^{6}}{8 \pi^{2}\left(4 \hat{p}^{2}+m^{2}\right)}+2 \sigma_{2} \tan ^{-1}\left(\frac{\alpha^{2} \ell_{s}^{4} \hat{p}^{6}}{8 \pi^{2}\left(m^{2}-4 \hat{p}^{2}\right)}\right)
$$

$$
2 \delta_{P S}= \pm \frac{11 \ell_{s}^{4}}{12 \pi} \hat{p}^{4}
$$

$$
E=2 \hat{p}-\frac{\pi}{3 R c}
$$

- Equation (7) and unnumbered equation after equation (9)

```
ln[1]:= \deltaPS [P1_, Pr_, s_] = s 11/12/Pi (pl pr) ^2;
    \deltares[p1_, pr_, s1_, s2_, a_, m_] =
```


- Solution of quadratic equation (5)
$\ln [3]:=\mathbf{c}\left[P_{-}, R_{-}\right]=\frac{3 \mathrm{R}(\mathrm{p}+\mathrm{R})+\sqrt{3} \sqrt{\mathrm{R}^{2}\left(-2 \pi+3(\mathrm{p}+\mathrm{R})^{2}\right)}}{6 \mathrm{R}^{2}} ;$
- Solution of equation (9) for $0-, 0++$, and $2++$ channels

 psol2pp[a_? Number Q, m_{-}? Number Q, R_{-}? Number $\left.Q\right]:=p / . F i n d R o o t[c[p, R] p R+\delta P S[p, p,-1]+\delta r e s[p, p, 1,0, a, m]=2 P i,\{p, m / 2-.1\}] ;$
- Equation (6)
$\ln [7]=\mathrm{WE}\left[p_{-}, R_{-}\right]:=-\mathbf{P i} / 3 / R / \mathbf{C}[P, R]$
- Equation (1)

In[8]:= EOmm [a_?NumberQ, m_?NumberQ, R_?NumberQ] := $\mathbf{2}$ psol0mm $[a, m, R]+$ WE [psol0mm $[a, m, R], R]$ EOpp [a_?NumberQ, m_?NumberQ, R_?NumberQ] := $2 \operatorname{psolOpp}[a, m, R]+$ WE [psol0pp $[a, m, R], R]$ E2pp [a_?NumberQ, m_?NumberQ, R_?NumberQ] := $2 \operatorname{psol2pp}[a, m, R]+$ WE [psol2pp $[a, m, R], R]$

- Solid lines shown in Figure 2

How do we include this massive state?
Contributes to scattering of Goldstone's and changes the phase shifts. In particular, it appears as a resonance in the antisymmetric channel. We can calculate contributions from

$$
S=\int d^{2} \sigma \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi-\frac{1}{2} m^{2} \phi^{2}+\frac{\alpha}{8 \pi} \phi \epsilon^{\alpha \beta} \epsilon_{i j} K_{\alpha \gamma}^{i} K_{\beta}^{j \gamma}
$$

Including the resonant s-channel contribution

$$
\delta(s)=\arctan \left(\frac{m \Gamma(s / m)^{3}}{m^{2}-s}\right)
$$

$$
m \sim 1.85 \ell_{s}^{-1} \quad \Gamma \sim 0.4 \ell_{s}^{-1}
$$

as well as perturbative non-resonant contributions in crossed channels

Reverting the logic: S-matrix from finite volume spectrum

More states:

3D Yang-Mills

3D Yang-Mills

$$
2 \delta=2 \delta_{G G R T}+\frac{0.7 l_{s}^{6}}{(2 \pi)^{2}} s^{3}
$$

3A string in 3D SU(6) Yang-Mills

In 4 D is this the lightest massive state, or there is a hidden valley?

A massive particle contributes into the Casimir energy

$$
\Delta E(R)=-\frac{m}{\pi} \sum_{n} K_{1}(m n R)
$$

$\Delta \chi^{2} \approx 21$ for one new parameter. Remains to be seen whether this is due to "new physics" or systematics

Conclusions

* Even though the flux tubes studied on the lattice are not very long, at least some of their energy levels are under theoretical control.
*More to be understood about pseudoscalar state.
*Good chances to learn more about the worldsheet theory of the QCD string very soon.
*This is not unique to closed strings. One can extend this to open strings and make predictions for hybrid meson spectra (work in progress).

