Testing effective conformal dominance in 2D-QCD with an adjoint fermion
 Yiming Xu
 Boston University

w/ E. Katz, G. Marques Tavares
hep-th/I308.4980

Outline

- Motivation
- decoupling of operators in a broken CFT
- Our laboratory
- the 2d QCD model with an adjoint fermion
- The basis of conformal quasi-primary operators
- Results
- The single particle

Exponential convergence of the spectrum

- The continuum

An expansion parameter : $e^{-\Delta_{\max }}$

- Conclusions

Motivation

Decoupling of higher-dim operators from the lightest states happens in systems with a large gap in op dim.
$\mathcal{O}_{\Delta}(\lambda x)=\lambda^{-\Delta} \mathcal{O}(x)$

in SUGRA background dual to a confining gauge theory e.g. hep-th/0007191, hep-th/0003136

Motivation

Decoupling of higher-dim operators from the lightest states happens in systems with a large gap in op dim.

$$
\mathcal{O}_{\Delta}(\lambda x)=\lambda^{-\Delta} \mathcal{O}(x) \quad \Delta \uparrow
$$

string tension \longrightarrow dual to stringy modes
create lightest states $\longrightarrow \xlongequal{=} T^{\mu \nu}$ dual to SUGRA dual to a confining gauge theory e.g. hep-th/000719, hep-th/0003136

Motivation

Can the decoupling be exponential?

Fitzpatrick, Kaplan, Katz, Randall, hep-th/I 304.3448

In the presence of a mass gap

$$
\left\langle\mathcal{O}_{2}(r) \mathcal{O}_{1}(0)\right\rangle \approx f\left(\Delta_{1}, \Delta_{2}\right) \frac{e^{-m r}}{r^{d-2}}
$$

In many cases, the decoupling is exponential

$$
\text { If } \Delta=\Delta_{2} \gg \Delta_{1} \quad f_{\Delta_{1}}(\Delta) \sim \exp \left[-\lambda \Delta^{p}\right]
$$

Motivation

AdS/CFT: Fitzpatrick, Kaplan, Katz, Randall, hep-th/I304.3448

In a CFT broken by a single scale, high dimensional operators can decouple from the lightest states exponentially fast, $e^{-\Delta}$.

Motivation

Can there be an exponential decoupling if there is a mild / no gap?

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=\mathcal{O}_{\Delta_{1}}|\Omega\rangle \\
& \langle\Omega| \mathcal{O}_{\Delta}\left|\psi_{0}\right\rangle \sim \exp \left(-\lambda \Delta^{p}\right)
\end{aligned}
$$

Motivation

Can there be an exponential decoupling if there is a mild / no gap?

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=\mathcal{O}_{\Delta_{1}}|\Omega\rangle \\
& \langle\Omega| \mathcal{O}_{\Delta}\left|\psi_{0}\right\rangle \sim \exp \left(-\lambda \Delta^{p}\right)
\end{aligned}
$$

Yes, e.g. in 2d QCD at large N

2d QCD models

't Hooft Model Nucl. Phys. B75 (1974) 461

Simple : gluons have no dof, use light-cone gauge.

Large N : planar diagrams

2d QCD models

't Hooft Model

Decoupling of high-dim op from lightest states

$$
\langle\Omega| \bar{q} \partial^{k} q\left|\psi_{0}\right\rangle \sim \exp (-k)
$$

$$
\langle\Omega| \mathcal{O}_{\Delta}\left|\psi_{0}\right\rangle \sim \exp \left(-\lambda \Delta^{p}\right)
$$

However, at large N, reduces to QM , no particle \# violation (fundamental fermions).

2d QCD models

2d QCD with an adjoint fermion

e.g. Dalley, Klebanov, hep-th/9209049

$$
S_{\mathrm{f}}=\int d^{2} x \operatorname{Tr}\left[i \Psi^{T} \gamma^{0} \gamma^{\alpha} D_{\alpha} \Psi-m \Psi^{T} \gamma^{0} \Psi-\frac{1}{4 g^{2}} F_{\alpha \beta} F^{\alpha \beta}\right]
$$

at large N - planar, has particle \# violation. more like real QCD.

No analytic control, numerical results obtained from Discrete Light-cone Quantization (DLCQ) method.

Effective conformal dominance

Suppose

$$
\langle\Omega| \mathcal{O}_{\Delta}\left|\psi_{0}\right\rangle \sim \exp \left(-\lambda \Delta^{p}\right)
$$

then taking a basis $\left|\psi_{\Delta}\right\rangle \equiv \mathcal{O}_{\Delta}|\Omega\rangle$
with

$$
\Delta<\Delta_{\max }
$$

one expects accuracy

$$
\delta M^{2} \sim \exp \left(-\lambda^{\prime} \Delta_{\max }\right)
$$

This suggests an expansion parameter: $\Delta_{\max }$

Effective conformal dominance

Although motivated by holography, this method is entirely field theoretic.

Construct the basis $\mathcal{O}_{\Delta_{i}} \rightarrow\left|\psi_{\Delta_{i}}\right\rangle \equiv \mathcal{O}_{\Delta_{i}}|\Omega\rangle$
to calculate the spectrum $\left\langle\psi_{\Delta_{i}}\right| M^{2}\left|\psi_{\Delta_{j}}\right\rangle \equiv M_{i, j}^{2}$.

$$
\begin{aligned}
\left\langle p_{1}, p_{2}, \ldots \mid \psi_{\Delta}\right\rangle & \sim \text { poly. in } p_{i} \text { 's } \\
\Delta & \sim \text { degree of poly. }
\end{aligned}
$$

Decoupling
Low-lying parton
wavefunction dominated by low-degree poly.

2d QCD with an adjoint fermion

light cone coord.

$$
x^{ \pm}=\left(x^{0} \pm x^{1}\right) / \sqrt{2}
$$

$$
\begin{aligned}
P^{+} & =\int d x^{-} \operatorname{Tr}\left(i \psi \partial_{-} \psi\right) \\
P^{-} & =\int d x^{-} \operatorname{Tr}\left(-2 g^{2} \psi^{2} \frac{1}{\partial_{-}^{2}} \psi^{2}\right)
\end{aligned}
$$

$$
\left[P^{+}, P^{-}\right]=0
$$

$$
M^{2}=2 P^{+} P^{-}
$$

$$
\begin{aligned}
& S=\int d x^{+} d x^{-} \operatorname{Tr}\left(i \psi \partial_{+} \psi+i \chi \partial_{-} \chi+\frac{1}{2 g^{2}}\left(\partial_{-} A_{+}\right)^{2}+2 A_{+} \psi \psi\right)
\end{aligned}
$$

2d QCD with an adjoint fermion

$$
S=\int d^{2} x \operatorname{Tr}\left(i \Psi^{T} \gamma^{0} \gamma^{\alpha} D_{\alpha} \Psi-m \Psi^{T} \gamma^{0} \Psi-\frac{1}{4 g^{2}} F_{\alpha \beta} F^{\alpha \beta}\right)
$$

Non-dynamical

$$
S=\int d x^{+} d x^{-} \operatorname{Tr}\left(i \psi \partial_{+} \psi+i \chi \partial_{-} \chi+\frac{1}{2 g^{2}}\left(\partial_{-} A_{+}\right)^{2}+2 A_{+} \psi \psi\right)
$$

left mover and right mover do not mix (like left/right handed fermions in 4D)
light cone coord.

$$
x^{ \pm}=\left(x^{0} \pm x^{1}\right) / \sqrt{2}
$$

$$
P^{+}=\int d x^{-} \operatorname{Tr}\left(i \psi \partial_{-} \psi\right)
$$

$$
P^{-}=\int d x^{-} \operatorname{Tr}\left(-2 g^{2} \psi^{2} \frac{1}{\partial_{-}^{2}} \psi^{2}\right)
$$

$$
\left[P^{+}, P^{-}\right]=0
$$

$$
M^{2}=2 P^{+} P^{-}
$$

2d QCD with an adjoint fermion

$$
S=\int d^{2} x \operatorname{Tr}\left(i \Psi^{T} \gamma^{0} \gamma^{\alpha} D_{\alpha} \Psi-m \Psi^{T} \gamma^{0} \Psi-\frac{1}{4 g^{2}} F_{\alpha \beta} F^{\alpha \beta}\right)
$$

Non-dynamical

$$
S=\int d x^{+} d x^{-} \operatorname{Tr}\left(i \psi \partial_{+} \psi+i \chi \partial_{-} \chi+\frac{1}{2 g^{2}}\left(\partial_{-} A_{+}\right)^{2}+2 A_{+} \psi \psi\right)
$$

left mover and right mover do not mix (like left/right handed fermions in 4D)

$$
\begin{aligned}
P^{+} & =\int d x^{-} \operatorname{Tr}\left(i \psi \partial_{-} \psi\right) \\
P^{-} & =\int d x^{-} \operatorname{Tr}\left(-2 g^{2} \psi^{2} \frac{1}{\partial_{-}^{2}} \psi^{2}\right) \\
M^{2} & =2 P^{+} P^{-} \stackrel{\longleftarrow}{\longleftarrow}
\end{aligned}
$$

light cone coord.

$$
x^{ \pm}=\left(x^{0} \pm x^{1}\right) / \sqrt{2}
$$

$$
\left[P^{+}, P^{-}\right]=0
$$

$$
\sqrt{V}
$$

eigenfunctions of

$$
P^{+} \text {and } P^{-}
$$

2d QCD with an adjoint fermion

Eigenfunction $\psi_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left\langle p_{1}, p_{2}, \ldots, p_{k} \mid \psi\right\rangle$

$$
x_{i}=p_{i} / \sum p_{j}
$$

2d QCD with an adjoint fermion

Eigenfunction $\psi_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left\langle p_{1}, p_{2}, \ldots, p_{k} \mid \psi\right\rangle$ $x_{i}=p_{i} / \sum p_{j}$

$$
\begin{aligned}
& \left\langle p_{1}, p_{2}, \ldots, p_{k}\right| 2 P^{+} P^{-}|\psi\rangle=\frac{g^{2} N}{\pi\left(x_{1}+x_{2}\right)^{2}} \int_{0}^{x_{1}+x_{2}} d y \psi_{k}\left(y, x_{1}+x_{2}-y, x_{3}, \ldots, x_{k}\right) \\
& \quad+\frac{g^{2} N}{\pi} \int_{0}^{x_{1}+x_{2}} \frac{d y}{\left(x_{1}-y\right)^{2}}\left[\psi_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right)-\psi_{k}\left(y, x_{1}+x_{2}-y, x_{3}, \ldots, x_{k}\right)\right] \\
& \quad+\frac{g^{2} N}{\pi} \int_{0}^{x_{1}} d y \int_{0}^{x_{1}-y} d z \psi_{k+2}\left(y, z, x_{1}-y-z, x 2, \ldots, x_{k}\right)\left[\frac{1}{(y+z)^{2}}-\frac{1}{\left(x_{1}-y\right)^{2}}\right] \\
& \quad+\frac{g^{2} N}{\pi} \psi_{k-2}\left(x_{1}+x_{2}+x_{3}, x_{4}, \ldots, x_{k}\right)\left[\frac{1}{\left(x_{1}+x_{2}\right)^{2}}-\frac{1}{\left(x_{2}+x_{3}\right)^{2}}\right] \\
& \quad \pm \text { cyclic permutations of }\left(x_{1}, x_{2}, \ldots, x_{k}\right)
\end{aligned}
$$

2d QCD with an adjoint fermion

Eigenfunction $\psi_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left\langle p_{1}, p_{2}, \ldots, p_{k} \mid \psi\right\rangle$ $x_{i}=p_{i} / \sum p_{j}$

$$
\left\langle p_{1}, p_{2}, \ldots, p_{k}\right| 2 P^{+} P^{-}|\psi\rangle=\frac{g^{2} N}{\pi\left(x_{1}+x_{2}\right)^{2}} \int_{0}^{x_{1}+x_{2}} d y \psi_{k}\left(y, x_{1}+x_{2}-y, x_{3}, \ldots, x_{k}\right)
$$

$$
+\frac{g^{2} N}{\pi} \int_{0}^{x_{1}+x_{2}} \frac{d y}{\left(x_{1}-y\right)^{2}}\left[\psi_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right)-\psi_{k}\left(y, x_{1}+x_{2}-y, x_{3}, \ldots, x_{k}\right)\right]
$$

$$
\binom{\text { parton \#}}{\text { changed }} \longrightarrow+\frac{g^{2} N}{\pi} \int_{a^{2} N}^{x_{1}} d y \int_{0}^{x_{1}-y} d z \psi_{k+2}\left(y, z, x_{1}-y-z, x 2, \ldots, x_{k}\right)\left[\frac{1}{(y+z)^{2}}-\frac{1}{\left(x_{1}-y\right)^{2}}\right]
$$

$$
\begin{aligned}
& \text { hanged } \\
& \text { by } 2
\end{aligned} \longrightarrow+\frac{g^{2} N}{\pi} \psi_{k-2}\left(x_{1}+x_{2}+x_{3}, x_{4}, \ldots, x_{k}\right)\left[\frac{1}{\left(x_{1}+x_{2}\right)^{2}}-\frac{1}{\left(x_{2}+x_{3}\right)^{2}}\right]
$$

\pm cyclic permutations of $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$

2d QCD with an adjoint fermion

Spectrum

Single-particle states (eigenstates of parton \#) Linear spectrum, not Regge

The basis - primary operators

Construct the basis:

$$
\left|\psi_{\Delta}\right\rangle=\mathcal{O}_{\Delta}\left(x^{-}, x^{+}=0\right)|\Omega\rangle
$$

Define primary operators in the UV:

$$
\mathcal{O}_{n+k / 2} \equiv \frac{1}{N^{k / 2}} \sum_{\sum s_{i}=n} c_{s_{1}, s_{2}, \ldots, s_{k}} \operatorname{Tr}\left(\partial_{-}^{s_{1}} \psi_{1} \partial_{-}^{s_{2}} \psi_{2} \ldots \partial_{-}^{s_{k}} \psi_{k}\right)
$$

Gauge singlet

satisfying the Killing equation:

$$
\left[K^{-}, \mathcal{O}_{n+k / 2}\left(x^{-}\right)\right]=i\left(\left(x^{-}\right)^{2} \partial_{-}+x^{-}(2 n+k)\right) \mathcal{O}_{n+k / 2}\left(x^{-}\right)
$$

The basis - primary operators

Construct the basis:

$$
\left|\psi_{\Delta}\right\rangle=\mathcal{O}_{\Delta}\left(x^{-}, x^{+}=0\right)|\Omega\rangle
$$

Define primary operators in the UV:

$$
\mathcal{O}_{n+k / 2} \equiv \frac{1}{N^{k / 2}} \sum_{\sum_{s_{i}=n}} c_{s_{1}, s_{2}, \ldots, s_{k}} \operatorname{Tr}\left(\partial_{-}^{s_{1}} \psi_{1} \partial_{-}^{s_{2}} \psi_{2} \ldots \partial_{-}^{s_{k}} \psi_{k}\right)
$$

Gauge singlet
satisfying the Killing equation:

$$
\left[K^{-}, \mathcal{O}_{n+k / 2}\left(x^{-}\right)\right]=i\left(\left(x^{-}\right)^{2} \partial_{-}+x^{-}(2 n+k)\right) \mathcal{O}_{n+k / 2}\left(x^{-}\right)
$$

constraints on the coefficients:
orthonormal and cyclicity

The basis - technicality

$$
\mathcal{O}_{n+k / 2} \equiv \frac{1}{N^{k / 2}} \sum_{\sum s_{i}=n} c_{s_{1}, s_{2}, \ldots, s_{k}} \operatorname{Tr}\left(\partial_{-}^{s_{1}} \psi_{1} \partial_{-}^{s_{2}} \psi_{2} \ldots \partial_{-}^{s_{k}} \psi_{k}\right)
$$

Quantization of the fermion at constant "time" x^{+}:

$$
\begin{aligned}
& \psi_{i j}=\frac{1}{2 \sqrt{\pi}} \int_{0}^{\infty} d p^{+}\left(b_{i j}\left(p^{+}\right) e^{-i p^{+} x^{-}}+b_{j i}^{\dagger}\left(p^{+}\right) e^{i p^{+} x^{-}}\right) \\
& f\left(p_{1}, p_{2}, \ldots, p_{k}\right)=\left\langle p_{1}, p_{2}, \ldots, p_{k}\right| \tilde{\mathcal{O}}_{n+k / 2}|0\rangle
\end{aligned}
$$

Killing eq. \longrightarrow differential eq. of the poly. $f\left(p_{1}, p_{2}, \ldots, p_{k}\right)$

The basis - technicality

$$
\mathcal{O}_{n+k / 2} \equiv \frac{1}{N^{k / 2}} \sum_{\sum s_{i}=n} c_{s_{1}, s_{2}, \ldots, s_{k}} \operatorname{Tr}\left(\partial_{-}^{s_{1}} \psi_{1} \partial_{-}^{s_{2}} \psi_{2} \ldots \partial_{-}^{s_{k}} \psi_{k}\right)
$$

Quantization of the fermion at constant "time" x^{+}:

$$
\begin{aligned}
& \psi_{i j}=\frac{1}{2 \sqrt{\pi}} \int_{0}^{\infty} d p^{+}\left(b_{i j}\left(p^{+}\right) e^{-i p^{+} x^{-}}+b_{j i}^{\dagger}\left(p^{+}\right) e^{i p^{+} x^{-}}\right) \\
& f\left(p_{1}, p_{2}, \ldots, p_{k}\right)=\left\langle p_{1}, p_{2}, \ldots, p_{k}\right| \tilde{\mathcal{O}}_{n+k / 2}|0\rangle
\end{aligned}
$$

Killing eq. \longrightarrow differential eq. of the poly. $f\left(p_{1}, p_{2}, \ldots, p_{k}\right)$

$$
\stackrel{\downarrow}{\mathcal{O}_{n+k / 2}}
$$

The basis - primary operators

T sym $\psi_{i j} \rightarrow \psi_{j i}$
Hilbert space
(T - even / T - odd) \otimes (Bosons / Fermions)

T - even sector, the lowest 5 operators:

$$
\begin{aligned}
\mathcal{O}_{1} & \sim \operatorname{Tr}((\partial \psi) \psi-\psi \partial \psi), \\
\mathcal{O}_{2} & \sim \operatorname{Tr}\left(\left(\partial^{3} \psi\right) \psi-9\left(\partial^{2} \psi\right) \partial \psi\right) \pm \ldots \\
\mathcal{O}_{3} & \sim \operatorname{Tr}((\partial \psi)(\partial \psi) \psi \psi) \pm \ldots \\
\mathcal{O}_{4} & \sim \operatorname{Tr}((\partial \psi) \psi \psi \psi \psi \psi) \pm \ldots \\
\mathcal{O}_{5} & \sim \operatorname{Tr}\left(\left(\partial^{2} \psi\right) \psi \psi \psi \psi \psi-2(\partial \psi) \psi(\partial \psi) \psi \psi \psi\right) \pm \ldots
\end{aligned}
$$

$$
\partial: \partial_{-}
$$

The mass matrix

$$
\delta\left(P-P^{\prime}\right) M_{i, j}^{2}=\int d x d y e^{i P x-i P^{\prime} y}\left\langle\mathcal{O}_{i}(x)\right| 2 P^{+} P^{-}\left|\mathcal{O}_{j}(y)\right\rangle
$$

For previous example, the mass matrix (T-even) has a basis of the lowest 5 operators.

$$
\begin{aligned}
& \left.M_{i, j}^{2}=\left(\begin{array}{ccccc}
12 . & 3.05 & 4.83 & 0 & 0 \\
3.05 & 51.3 & -7.38 & 0 & 0 \\
4.83 & -7.38 & 44.3 & 0 & 0 \\
0 & 0 & 0 & 56 . & 0 \\
0 & 0 & 0 & 0 & 72 .
\end{array}\right)\right\} \Delta_{\max }=5 \\
& \downarrow
\end{aligned}
$$

Eigenstates w/ $M^{2}\left(\Delta_{\max }=5\right)$

The size of the basis

Bosonic sector

$\Delta_{\max }$	2	3	4	5	6	7	8	9
T-even	1	1	4	5	16	27	75	153
T-odd	0	1	2	6	12	31	66	165

Fermionic sector

$\Delta_{\max }$	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
T-even	0	1	1	5	7	22	42	111	235
T-odd	1	1	3	4	11	18	51	99	257

DLCQ: ~ 6700 states
(hep-th/97I0240)

Results - single particle states

bosons: up to $\Delta_{\max }=9$
fermions: up to $\Delta_{\max }=9.5$

Results - single particle states

bosons: up to $\Delta_{\max }=9$
fermions: up to $\Delta_{\max }=9.5$

Results - single particle states

Exponential decoupling: $\delta M^{2} \sim \exp \left(-\lambda^{\prime} \Delta_{\max }\right)$?

Results - effective conformal dominance

convergence: $M^{2}-M_{\text {asym }}^{2}=e^{-\Delta_{\max }}$ perturbation in e^{-1} to power of $\Delta_{\max }$

Results - effective conformal dominance

$$
|\Psi\rangle=c_{2}\left|\tilde{\mathcal{O}}_{\Delta=2}\right\rangle+c_{3}\left|\tilde{\mathcal{O}}_{\Delta=3}\right\rangle+c_{4}\left|\tilde{\mathcal{O}}_{\Delta=4}\right\rangle+\ldots
$$

$$
\sum_{i} c_{\Delta, i}^{2} \sim \exp (-\lambda \Delta)
$$

Results - effective conformal dominance

$$
\sum_{i} c_{\Delta}^{2} \sim \exp (-\lambda \Delta)
$$

BI

Four-parton state

B2

Five-parton state

Results

Analytic ground states parton wavefunction :

BI $\quad \operatorname{Tr}(\psi \overleftrightarrow{\partial} \psi)$

$$
\begin{aligned}
& \left.\langle 2 \text { - parton }| M^{2} \mid 2 \text { - parton }\right\rangle \\
& =\frac{g^{2} N}{\pi} \int_{0}^{1} d x_{1} d x_{2} \delta\left(x_{1}+x_{2}-1\right) \int_{0}^{1} d y \frac{6\left(\left(x_{2}-x_{1}\right)-(1-2 y)\right)^{2}}{2\left(x_{1}-y\right)^{2}} \\
& =12 \times \frac{g^{2} N}{\pi}
\end{aligned}
$$

FI $\quad \operatorname{Tr}(\psi \psi \psi)$

$$
\begin{aligned}
& \left.\langle 3 \text { - parton }| M^{2} \mid 3 \text { - parton }\right\rangle \\
& =\frac{g^{2} N}{\pi} \int d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right)(\sqrt{6})^{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2}} \int_{0}^{x_{1}+x_{2}} d y \\
& =6 \times \frac{g^{2} N}{\pi}
\end{aligned}
$$

The spectrum is approximated with the lowest operators to <l5\% accuracy.

Results

Analytic ground states parton wavefunction :

BI $\quad \operatorname{Tr}(\psi \overleftrightarrow{\partial} \psi)$

$$
\begin{aligned}
& \left.\langle 2 \text { - parton }| M^{2} \mid 2 \text { - parton }\right\rangle \\
& =\frac{g^{2} N}{\pi} \int_{0}^{1} d x_{1} d x_{2} \delta\left(x_{1}+x_{2}-1\right) \int_{0}^{1} d y \frac{6\left(\left(x_{2}-x_{1}\right)-(1-2 y)\right)^{2}}{2\left(x_{1}-y\right)^{2}} \\
& =12 \times \frac{g^{2} N}{\pi} . \\
& \quad \text { compared to } 11.3 \times \frac{g^{2} N}{\pi}
\end{aligned}
$$

FI $\quad \operatorname{Tr}(\psi \psi \psi)$

$$
\begin{aligned}
& \left.\langle 3 \text { - parton }| M^{2} \mid 3 \text { - parton }\right\rangle \\
& =\frac{g^{2} N}{\pi} \int d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right)(\sqrt{6})^{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2}} \int_{0}^{x_{1}+x_{2}} d y \\
& =6 \times \frac{g^{2} N}{\pi}
\end{aligned}
$$

The spectrum is approximated with the lowest operators to <l5\% accuracy.

Results

Analytic ground states parton wavefunction :

BI $\quad \operatorname{Tr}(\psi \overleftrightarrow{\partial} \psi)$

$$
\begin{aligned}
& \left.\langle 2 \text { - parton }| M^{2} \mid 2 \text { - parton }\right\rangle \\
& =\frac{g^{2} N}{\pi} \int_{0}^{1} d x_{1} d x_{2} \delta\left(x_{1}+x_{2}-1\right) \int_{0}^{1} d y \frac{6\left(\left(x_{2}-x_{1}\right)-(1-2 y)\right)^{2}}{2\left(x_{1}-y\right)^{2}} \\
& =12 \times \frac{g^{2} N}{\pi} . \\
& \quad \text { compared to } 11.3 \times \frac{g^{2} N}{\pi}
\end{aligned}
$$

FI $\quad \operatorname{Tr}(\psi \psi \psi)$

$$
\begin{aligned}
& \left.\langle 3 \text { - parton }| M^{2} \mid 3 \text { - parton }\right\rangle \\
& =\frac{g^{2} N}{\pi} \int d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right)(\sqrt{6})^{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2}} \int_{0}^{x_{1}+x_{2}} d y \\
& =6 \times \frac{g^{2} N}{\pi}, \quad \text { compared to } 5.7 \times \frac{g^{2} N}{\pi}
\end{aligned}
$$

The spectrum is approximated with the lowest operators to <15\% accuracy.

Results - the continuum

Two-particle threshold discovered by previous studies
hep-th/97I0240
hep-th/0II0058
Two-free-particle states of single-particle

$$
\begin{array}{ll}
\text { e.g. } & \left|F_{1}\right\rangle \otimes\left|F_{1}\right\rangle \\
& \left|F_{1}\right\rangle \otimes\left|F_{2}\right\rangle
\end{array}
$$

Results - approximate the continuum

Using $\Delta_{\max }$ as a matching parameter, we can approx. the continuum with the discrete spectrum in the truncated, finite Hilbert space.

Real theory - QCD w/ an adjoint fermion

Two-particle free theory

Results - the truncated free theory

Free two - particle state

$$
\begin{array}{rlr}
M^{2} & =2 P^{+} P^{-} \\
& =2 P^{+}\left(\frac{m_{1}^{2}}{2 P_{1}^{+}}+\frac{m_{2}^{2}}{2 P_{2}^{+}}\right) & \\
& =\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x} & x \equiv \frac{P_{1}^{+}}{P^{+}}
\end{array}
$$

Results - the truncated free theory

Free two - particle state

$$
M^{2}=2 P^{+} P^{-}
$$

$$
=2 P^{+}\left(\frac{m_{1}^{2}}{2 P_{1}^{+}}+\frac{m_{2}^{2}}{2 P_{2}^{+}}\right)
$$

$$
=\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-m_{x}}
$$

$$
x \equiv \frac{P_{1}^{+}}{P^{+}}
$$

mass of the single particle states

Results - the truncated free theory

Free two - particle state

$$
M^{2}=2 P^{+} P^{-}
$$

$$
x \equiv \frac{P_{1}^{+}}{P^{+}}
$$

mass of the single particle states
e.g. two-particle threshold, $\left|F_{1}\right\rangle \otimes\left|F_{1}\right\rangle, m_{1}^{2}=m_{2}^{2}=5.7 g^{2} N / \pi$

Results - the truncated free theory

Basis:

$\mathcal{O}_{\Delta_{n}}^{2-\text { part }}= \begin{cases}\psi_{1}(x) P_{n}^{(0,0)}(\overleftarrow{\partial}-\vec{\partial}) \psi_{2}(x), & \text { for } 2 \text { fermions, } \\ \partial \phi(x) P_{n}^{(1,0)}(\overleftarrow{\partial}-\vec{\partial}) \psi(x), & \text { for a boson and a fermion } \\ \partial \phi_{1}(x) P_{n}^{(1,1)}(\overleftarrow{\partial}-\vec{\partial}) \partial \phi_{2}(x), & \text { for } 2 \text { bosons. }\end{cases}$

Mass matrix:

$$
\begin{aligned}
\delta\left(P-P^{\prime}\right) M_{i, j}^{2} & =\int d x d y e^{i P x-i P^{\prime} y}\left\langle\mathcal{O}_{i}(x)\right| M^{2}\left|\mathcal{O}_{j}(y)\right\rangle \\
\phi_{\Delta}(x) & \equiv\langle x, 1-x| \tilde{\mathcal{O}}_{\Delta}^{2-p a r t}|\Omega\rangle
\end{aligned}
$$

$$
\left[M_{2 p a r t}^{2}\right]_{\Delta, \Delta^{\prime}}=\int_{0}^{1} d x \phi_{\Delta}^{*}(x)\left(\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right) \phi_{\Delta^{\prime}}(x)
$$

topological sector (fermions) - change op. dim by I/2

Results - the truncated free theory

Results - the real theory

Results - the real theory

further evidence of effective conformal dominance

Results - bosonic sector

Results - fermionic sector

FI *I $\mathrm{FI} * \mathrm{~F} 2 \quad \mathrm{BI} * \mathrm{BI} \quad \mathrm{FI} * \mathrm{BI}$
no evidence of bosonic bound states?

Conclusions

- Decoupling leads to a basis of quasi-primaries, with which the spectrum converges as $e^{-\Delta_{\max }}$.
- Our method agrees with DLCQ method, with a much smaller basis.
- Effective conformal dominance suggests an expansion parameter $e^{-\Delta_{\max }}$.
- Analytic parton wavefunctions.
- Test this method in other strongly interacting systems.
- Finite N.

Conclusions

- Decoupling leads to a basis of quasi-primaries, with which the spectrum converges as $e^{-\Delta_{\max }}$.
- Our method agrees with DLCQ method, with a much smaller basis.
- Effective conformal dominance suggests an expansion parameter $e^{-\Delta_{\max }}$.
- Analytic parton wavefunctions.
- Test this method in other strongly interacting systems.
- Finite N.

Thank you!

Backup slides

2d QCD with an adjoint fermion

red: bosons
green: fermions

Linear spectrum, not Regge.
Also contains a continuum, multi-particle states

The basis

Write the momenta on a simplex in angle variables:

$$
\begin{aligned}
p_{k} & =P \cos ^{2} \theta_{1} \\
p_{k-1} & =P \sin ^{2} \theta_{1} \cos ^{2} \theta_{2}, \\
& \ldots \\
p_{2} & =P \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \ldots \cos ^{2} \theta_{k-1} \\
p_{1} & =P \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \ldots \sin ^{2} \theta_{k-1}
\end{aligned}
$$

Solutions to the Killing equation:

$$
\begin{aligned}
& f_{n, l_{1}, l_{2}, \ldots, l_{k-2}}\left(P, \theta_{1}, \theta_{2} \ldots, \theta_{k-1}\right) \\
& =P^{n} \sin ^{2 l_{1}} \theta_{1} \sin ^{2 l_{2}} \theta_{2} \ldots \sin ^{2 l_{k-2}} \theta_{k-2} \\
& \times P_{n-l_{1}}^{\left(2 l_{1}+k-2,0\right)}\left(\cos 2 \theta_{1}\right) P_{l_{1}-l_{2}}^{\left(2 l_{2}+k-3,0\right)}\left(\cos 2 \theta_{2}\right) \ldots P_{l_{k-3}-l_{k-2}}^{\left(2 l_{k-2}+1,0\right)}\left(\cos 2 \theta_{k-2}\right) P_{l_{k-2}}\left(\cos 2 \theta_{k-1}\right)
\end{aligned}
$$

Cyclicity and symmetries \longrightarrow coefficients of $f_{n, l_{1}, l_{2}, \ldots, l_{k-2}}$

$$
\mathrm{T} \text { sym } \longrightarrow \psi_{i j} \rightarrow \psi_{j i}
$$

